琼东南盆地中新世植被演替与古气候变化

杨锐, 覃军干, 王任, 张伟, 闫琢玉, 崔书姮, 黄智进, 阮枝梅

杨锐,覃军干,王任,等. 琼东南盆地中新世植被演替与古气候变化[J]. 海洋地质与第四纪地质,2025,45(2): 110-120. DOI: 10.16562/j.cnki.0256-1492.2023120502
引用本文: 杨锐,覃军干,王任,等. 琼东南盆地中新世植被演替与古气候变化[J]. 海洋地质与第四纪地质,2025,45(2): 110-120. DOI: 10.16562/j.cnki.0256-1492.2023120502
YANG Rui,QIN Jungan,WANG Ren,et al. Vegetation evolution and climate change during the Miocene in the Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology,2025,45(2):110-120. DOI: 10.16562/j.cnki.0256-1492.2023120502
Citation: YANG Rui,QIN Jungan,WANG Ren,et al. Vegetation evolution and climate change during the Miocene in the Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology,2025,45(2):110-120. DOI: 10.16562/j.cnki.0256-1492.2023120502

琼东南盆地中新世植被演替与古气候变化

基金项目: 广东省软科学研究计划项目(218B030323028);中海石油(中国)有限公司科研项目“琼东南盆地梅山组有效浊积储集体主控因素及储层预测技术”(YXKY-ZX 03 2021)
详细信息
    作者简介:

    杨锐(1990—),男,工程师,从事微体古生物研究,E-mail:yangrui12@cnooc.com.cn

  • 中图分类号: P736

Vegetation evolution and climate change during the Miocene in the Qiongdongnan Basin

  • 摘要:

    南海北部大陆架地区琼东南盆地中新统梅山组因为孢粉贫乏,其形成时的植被及气候条件研究缺乏直接的化石依据。本文对盆地内ST-A井中新统开展了钙质超微化石和孢粉分析,构建了古生物地层格架,重建了中新世植被和气候变化特征。结果显示,该井涵盖中新统三亚组、梅山组和黄流组。三亚组/梅山组、梅山组/黄流组钙质超微化石带的地层界线分别是2780 m和2300 m,中新世研究区内的植被类型是热带、亚热带常绿阔叶林和常绿阔叶-落叶阔叶混交林,其中三亚组时期(早中新世)以松为主的针叶林有一定范围的分布,气候比陵水组时期温暖且湿润,梅山组中下部(中中新世早、中期)针叶林的退缩, 常绿阔叶林和落叶阔叶林的扩张指示了温度和湿度的上升,是中中新世气候最适宜期在琼东南盆地的记录, 梅山组上部及黄流组(中中新世晚期—晚中新世)针叶林的扩张及常绿阔叶林和落叶阔叶林的退缩,指示气候条件有向温凉略干变化的趋势,梅山组记录了中中新世早、中期温暖湿润,晚期温度和湿度均有所下降的气候变化特征。

    Abstract:

    The Miocene Meishan Formation in the Qiongdongnan Basin in the northern continental shelf of the South China Sea lacks direct fossil evidence for understanding the ancient vegetation and climate conditions in the basin due to the scarcity of spores and pollen fossils. The Miocene biostratigraphy, vegetation, and climate changes were documented from 114 fossiliferous samples from Well ST-A. Results show that the calcareous nannofossil boundaries of the Sanya Formation (Early Miocene) / Meishan Formation (Middle Miocene) / Huangliu Formation (Late Miocene) are at 2780 m and 2300 m in depth, respectively. Miocene vegetation in the study area was tropical and subtropical evergreen broad-leaved forest, and mixed forest of evergreen broad-leaved and deciduous broad-leaved. The presence of coniferous forest restricted to the uplands shown in the Sanya Formation reflects warmer and wetter climate in Early Miocene than that of the late Oligocene in the Lingshui Formation. The expansion of the evergreen broad-leaved forest and deciduous broad-leaved forest, accompanied by the contraction of the coniferous forest during early and middle stage of the middle Miocene (the bottom and middle section of Meishan Formation), suggested increases in temperature and humidity, which is indicative of the Middle Miocene Climate Optimum (MMCO). The climate conditions in late Miocene (the top of Meishan Formation and Huangliu Formation) turned to be cold, characterizing of the flourish of coniferous forest again. Meishan Formation witnessed the climate variability of warm and cold during the middle Miocene.

  • 在地质历史时期中,包括构造运动、岩浆活动、海平面变化和气候突变在内的全球重要事件直接或间接影响了富有机质层系的形成与分布[1]。南海北部大陆架位于我国台湾南端至海南岛以南的华南沿岸及越南北部沿岸的浅水区,其陆架上分布了北部湾盆地、莺歌海盆地、琼东南盆地和珠江口盆地等四个重要的新生代含油气盆地。这些盆地油气资源丰富,其中富油源岩集中出现在北部湾盆地始新统流沙港组和珠江口盆地始新统文昌组,始新世炎热多雨的气候条件为珠江口盆地和北部湾盆地开放性淡水湖泊发育[2]、繁茂森林植被生长[3-4]及湖泊内各种藻类勃发[5-6]创造了有利条件,为形成富油源岩提供了充足的母源物质。琼东南盆地中新统三亚组、梅山组和黄流组均是较好的含油气层段[7-8]。中新世(23.03~5.33 Ma)全球出现了早中新世气候变冷事件、中中新世气候最适宜期(Middle Miocene Climatic Optimum, MMCO)、中中新世气候转型期等气候波动事件[9-10],了解琼东南盆地中新世气候条件变化的特征,有助于理解该盆地中新统油气资源发育的地质背景。

    前人对琼东南盆地渐新世以来的植被演替及气候变化做了大量研究[11-13], 中新统梅山组由于孢粉贫乏,关于其形成时的植被类型和气候条件的认识缺乏直接的化石证据[12]。本次工作以该盆地ST-A井为研究对象,开展了钙质超微化石和孢粉分析,从包括梅山组在内的中新统获取了丰富的微体古生物化石,基于钙质超微化石分析结果建立了中新统的古生物地层格架,通过孢粉分析结果探讨了整个中新世的植被和气候变化特征,为梅山组时期古植被和古气候研究提供了直接的化石证据。

    ST-A井位于琼东南盆地松南凹陷反转构造带(图1),钻井资料显示松南凹陷钻井目的层主要为梅山组,该段地层有效储层发育且油气运移活跃,具有源内汇聚、断裂沟源,背斜聚集成藏的特点,成藏条件优越。ST-A井自下而上钻遇地层依次为新近系中新统三亚组、梅山组、黄流组以及上新统莺歌海组。

    图  1  琼东南盆地ST-A钻井位置图
    Figure  1.  Location of Well ST-A in the Qiongdongnan Basin

    本次工作共采集岩屑样品114个,井深20053285.85 m,涵盖了中新统三亚组、梅山组和黄流组地层。三亚组上部是灰色泥质粉砂岩、灰色粉砂质泥岩与灰色泥岩不等厚互层;中下部以巨厚灰色泥岩为主,夹灰色粉砂质泥岩与灰色泥质粉砂岩;梅山组顶部以灰色泥质粉砂岩为主,夹薄层灰色泥岩及灰色粉砂质泥岩,中上部灰色泥岩与灰色粉砂质泥岩不等厚互层,夹薄层灰色泥质粉砂岩,下部为灰色泥质粉砂岩、灰色泥岩与灰色粉砂质泥岩不等厚互层;黄流组上部灰色泥岩与灰色粉砂质泥岩不等厚互层夹薄层灰色泥质粉砂岩,下部为巨厚层灰色泥岩夹薄层灰色粉砂质泥岩。

    用于钙质超微化石分析的样品共44个,采样间距为20~30 m,用于孢粉分析的样品共70个,采样间距为6~30 m,各组界线附近加密取样,最小间距为6 m。钙质超微化石和孢粉分析及鉴定统计均按照现行的行业标准在中海油能源发展股份有限公司工程技术分公司湛江实验中心完成,孢粉在每个样品的化石统计数下限为100粒,不足100粒的样品不参与讨论。结合王萍莉等[14]及Liu等[15]的研究,将栎粉细分为常绿类Quercoidites(evergreen)(简称Quercoidites E)和落叶类Quercoidites(deciduous)(简称Quercoidites D)。孢粉属种按孢粉总数换算成百分含量后用Tilia 2.0软件绘制成图谱[16],孢粉组合带用CONISS聚类程序采用地层约束最小方差原则进行分带[17]

    本次工作所分析的44个岩屑样品均出现不同丰度的钙质超微化石,主要种属包括: Calcidiscus leptoporus、C. macintyrei、Coccolithus pelagicus、Cyclicargolithus floridanus、Discoaster berggrenii、D. brouweri、D. deflandrei、D. kugleri、D. pentaradiatus、D. quinqueramus、D. variabilis、Helicosphaera ampliaperta、H. carteri、H. intermedia、Pontosphaera discopora、Reticulofenestra antarctica、R. haqii、R. minuta、R. minutula、R. producta、R. pseudoumbilica (5~7 μm)、R. pseudoumbilica (>7 μm)、Sphenolithus abiesS. belemnosS.conicus、S. disbelemnos、S.presaii、 S. heteromorphusS. moriformis等。常见的钙质超微化石见图2

    图  2  ST-A井常见钙质超微化石
    1. Reticulofenestra haqii2060 m;2. Cyclicargolithus floridanus2400 m;3. Coccolithus pelagicus2350 m;4. Helicosphaera carteri2060 m;5. Helicosphaera ampliaperta2640 m;6. Discoaster quinqueramus2060 m;7. Discoaster deflandrei2300 m;8. Discoaster kugleri2300 m;9-10. Sphenolithus heteromorphus2400 m;11-12. Sphenolithus conicus2400 m;13-14. Sphenolithus presaii2780 m;15-16. Sphenolithus belemnos2870 m。比例尺10 μm。以上化石保存于中海油能源发展股份有限公司工程技术分公司湛江实验中心。
    Figure  2.  Significant calcareous nannofossil recovered from Well ST-A

    本文的钙质超微化石带的建立主要参考Martini(1971)提出的“NN/NP”国际分带方案[18],以钙质超微化石的末现事件为分带标志,该方案适合岩屑录井样品分析,广泛用于油气勘探的生产研究中[19]。ST-A井2870 m为NN3带标志化石Sphenolithus belemnos末现面,2780 m为NN4带内部标志化石Sphenolithus presaii末现面,2640 m为NN4带标志化石Helicosphaera ampliaperta末现面,2400 m同时为NN6带和NN5带标志化石Cyclicargolithus floridanusSphenolithus heteromorphus末现面,2300 m为NN7标志化石Discoaster kugleri末现面,2060 m为NN11带标志化石Discoaster quinqueramus末现面,2005 m出现NN15带标志化石Reticulofenestra pseudoumbilica(>7 μm)。

    由于钙质超微化石具有分布广、个体微小、数量众多、演化迅速、地层延续时限短和易于从沉积物中分离、富集等优点,是中生代和新生代生物地层划分的可靠工具[20-22]。本次工作主要根据钙质超微化石的分析结果划分ST-A井的地层界线(图3)。

    图  3  ST-A井钙质超微化石主要属种分布与地层分带
    Figure  3.  Distribution of the key calcareous nannofossil zones and the stratigraphic division of Well ST-A

    中新统与渐新统的界线年龄为23.03 Ma。ST-A井2870 m出现NN3带标准化石Sphenolithus belemnos,其末现界面年龄为17.95 Ma[23]28703285.85 m井段未出现NN2带及更老地层的标志化石,因此将28703285.85 m划分为NN3带,地层时代为早中新世,地层为三亚组。

    中中新统和下中新统的界线年龄为15.97 Ma,在南海北部大陆架的生物地层研究中,常用钙质超微NN4带顶界划分中中新统和下中新统界线[19, 24-25],ST-A井2640 m出现NN4带标准化石Helicosphaera ampliaperta,其顶界年龄为14.91 Ma[23],因此,NN4带的顶界高于中中新统与下中新统界线(15.97 Ma)。2780 m出现NN4带内部标志化石Sphenolithus presaii,其末现界面年龄为16.04 Ma[26],接近于中中新世与早中新世的界线,可作为中中新统与下中新统界线,即三亚组和梅山组的界线为2780 m。

    上中新统和中中新统的界线年龄为11.63 Ma,中中新统包括了NN7带、NN6带和NN5带,2300 m出现NN7标志化石Discoaster kugleri,其末现界面年龄为11.58 Ma[23],接近于上中新统和中中新统的界线,因此将2300 m划分为梅山组和黄流组的界线。

    上新统与中新统的界线年龄为5.33 Ma,ST-A井2060 m层段出现NN11带标准化石Discoaster quinqueramus,其末现界面年龄为5.59 Ma[23],接近于上新统和上中新统的界线,故将20602300 m划分为黄流组地层。

    ST-A井70个样品中有68个样品的孢粉统计数量超过100粒,鉴定的孢粉化石共计93属种,大多数孢粉类型与现代植物分类系统的亲缘关系明确,常见孢粉化石见图4。根据主要孢粉属种及其百分含量的变化,该井20053285.85 m井段可划分为3个孢粉组合(图5),自下而上各个孢粉组合特征如下:

    图  4  ST-A井常见孢粉化石
    Polypodiaceaesporites haardti (Pot. Et Ven.) Potonie, 1956, 2230 m;② Polypodiisporites favus Potonie, 1931, 2316 m;③ Cyathidites australis Couper, 1953, 2620 m;④ Crassoretitriletes nanhaiensis Zhang et Li, 1981, 2560 m;⑤ Polypodiisporites usmensis (Van der Hamman) Sun et Li, 1981, 2930 m;⑥-⑦. Pinuspollenites labdacus (Potonie) Raatz, 1937, 2340 m;⑧ Taxodiaceaepollenites hiatus (Potonie) Kremp, 1949, 2820 m;⑨ Laricoidites magnus (Potonie) Potonie, Thomson et Thiergart, 1950 ex Potonie, 1958, 2300 m;⑩ Tsugaepollenites igniculus Potonie et Venitz, 1934, 2400 m;⑪ Piceapollis praemarianus Krutzsch, 1971, 2450 m;⑫ Podocarpidites minutus ( Maljav.) Sun et He, 1980, 2270 m;⑬-⑭ Quercoidites minutus (Zakl. ) Ke et Shi, 1978, 2640 m, 2990 m;⑮ Quercoidites henrici (Pot.) Pot. , Thoms. Et Thier. , 1950, 2450 m;⑯ Caryapollenites simples (Pot.) Raatz, 1937, 2780 m;⑰-⑱ Dicolpopollis kockelii Pflanzi, 1956, 2510 m, 3020 m;⑲ Momipites coryloides Wodehouse, 1933, 2600 m;⑳ Juglanspollenites verus Raatz, 1939, 2806 m;㉑ Liquidambarpollenites pauciporus M. R. Sun, 1989, 2600 m;㉒ Liquidambarpollenites pachydermus M. R. Sun, 1989, 2540 m;㉓ Ulmipollenites minor Groot J. et Groot G., 1962, 2766 m;㉔ Ulmipollenites granulatus Stone, 1973, 2900 m;㉕ Alnipollenites metaplasmus (Potonie) Potonie, 1960, 2806 m;㉖ Alnipollenites verus (Potonie) Potonie, 1960, 2790 m;㉗ Corylopsis princeps Lubomirova, 2560 m;㉘ Tiliaepollenites indubitabilis (Pot. ) Potonie, 1960, 2480 m。比例尺20 μm。以上化石保存于中海油能源发展股份有限公司工程技术分公司湛江实验中心。
    Figure  4.  Significant spore and pollen recovered from Well ST-A
    图  5  ST-A井孢粉图式
    Figure  5.  The palynological diagram of Well ST-A

    (1)ST-A-a: 28063285.85 m,Pinuspollenites-Liquidambarpollenites- Inaperturopollenites parvus -Juglanspollenites - Quercoidites(E)组合。

    该段地层中孢粉绝对浓度较高,其变化范围为226~893粒/g,平均为558粒/g。孢粉组合以蕨类植物孢子为主,含量为27.5%~50.5%(占孢粉总数,下同),其次为裸子植物花粉,其含量为25.3%~49.3%,被子植物花粉含量较低,为18.4%~39.7%。

    该组合蕨类植物孢子以Polypodiaceaesporites为主,含量为8.1%~24.7%,其次为Polypodiisporites usmensis,含量为1.4%~14.4%,Polypodiisporites favusPterisisporites spp.较常见,Osmundacidites spp.、Crassoretitriletes nanhaiensisMagnastriatites hawardtii等少量出现;裸子植物花粉中Pinuspollenites占绝对优势,其含量为16.5%~29.8%,其次为Inaperturopollenites parvus,含量为0.5%~10.6%,Taxodiaceaepollenites hiatus含量显著,为0.5%~9.3%,Laricoidites magnusPiceapollis较常见,此外,Tsugaepollenites igniculusPodocarpidites spp.、Dacrydiumites floriniiCedripites spp.等少量出现;被子植物花粉以Liquidambarpollenites为主,含量为2.5%~14.8%,其次为Juglanspollenites,含量为0.5%~8.2%,Quercoidites(E)含量比较显著,为1.0%~9.9%,Tricolpopollenites spp.、Caryapollenites simplesUlmipollenitesMomipites coryloidesRetitricolpites spp.较常见,此外,Dicolpopollis kockeliiNyssapollenitesCorylopsis princepsPotamogetonaciditesCarpinipites orbicularisFlorschuetzia semilobata等少量出现。陆生草本植物花粉连续出现,但含量较低。

    (2)ST-A-b: 24002790 m,Pinuspollenites-Liquidambarpollenites- Inaperturopollenites parvus - Quercoidites( E)组合。

    该段地层中孢粉绝对浓度相较于下伏地层有所降低,其变化范围为84~578粒/g,平均为275粒/g。孢粉组合以蕨类植物孢子为主,含量为32.9%~52.3%,被子植物花粉含量较下伏地层略有上升,为26.3%~40.5%,而裸子植物花粉含量与下伏地层相比则略有下降,为17.7%~36.8%。

    该组合蕨类植物孢子以Polypodiaceaesporites为主,其含量为11.6%~23.8%,其次为Polypodiisporites usmensis,相较于下伏地层含量略微有所上升,为3.6%~19.5%,Polypodiisporites favus含量较下伏地层略微有所降低,为0~5.6%,Deltooidospora regularisPterisisporites spp. 较常见,Osmundacidites spp.、CyathiditesCrassoretitriletes nanhaiensisMagnastriatites hawardtii等少量出现;裸子植物花粉中Pinuspollenites的含量较下伏地层有所下降,其变化范围是9.1%~18.1%,而Inaperturopollenites parvusLaricoidites magnus的含量较下伏地层则有所上升,两者分别为2.2%~8.2%和0.5%~9.0%,Taxodiaceaepollenites hiatus较常见,此外,Tsugaepollenites igniculusPiceapollisPodocarpidites spp.等少量出现;被子植物花粉中,与下伏地层相比,LiquidambarpollenitesQuercoidites(E)含量均有所上升,两者分别为4.4%~14.2%和0~7.9%,其次为Juglanspollenites,此外Tricolpopollenites spp.和Momipites coryloides含量相对较突出,Caryapollenites simplesUlmipollenitesRetitricolpites spp.、PotamogetonaciditesDicolpopollis kockelii较常见,此外,NyssapollenitesCupuliferoipollenitesSalixpollenites trochuensisChenopodipollis microporatusCarpinipites orbicularis等少量出现。陆生草本植物花粉连续出现,与下伏地层相比,其含量变化不明显。

    (3)ST-A-c: 20052380 m,Pinuspollenites - Inaperturopollenites parvus - Liquidambarpollenites - Laricoidites magnus组合。

    该段地层中孢粉绝对浓度相较于下伏地层进一步降低,其变化范围为78~415粒/g,平均为210粒/g。该组合以裸子植物花粉为主,含量为20.7%~58.2%,其次为蕨类植物孢子,其含量为24.6%~48.2%,被子植物花粉含量较低,为17.2%~40.1%。

    该组合蕨类植物孢子仍以Polypodiaceaesporites为主,其含量为9.2%~27.3%,Polypodiisporites usmensis较于下伏地层含量明显下降,为0~15.5%,Polypodiisporites favus含量较下伏地层略微有所上升,为0.6%~7.3%,Deltooidospora regularisPterisisporites spp.、Osmundacidites spp.、CyathiditesCrassoretitriletes nanhaiensisMagnastriatites hawardtii等少量出现;裸子植物花粉中PinuspollenitesInaperturopollenites parvus含量较下伏地层有所上升,两者分别为13.0%~41.8%和2.0%~11.1%,Taxodiaceaepollenites hiatus含量相对较显著,PiceapollisTsugaepollenites igniculusPodocarpidites spp.和Cedripites spp.等少量出现;被子类植物花粉中LiquidambarpollenitesQuercoidites(E)含量较下伏地层有所下降,两者分别为1.8%~11.2%和0.6%~4.8%,Ulmipollenites含量较下伏地层略有上升,为0~6.8%,Juglanspollenites含量较显著,为0.5%~5.9%,Tricolpopollenites spp.、Momipites coryloidesCaryapollenites simples较常见,此外,AlnipollenitesCarpinipites orbicularisQuercoidites (D)、Dicolpopollis kockeliiFlorschuetzia levipli 等少量出现。陆生草本植物花粉含量较下伏地层明显升高,在20052230 m达到整个钻井的峰值。

    ST-A井中新统绝大部分样品包含比较丰富的孢粉化石,具备建立连续孢粉组合序列的条件,进而可以恢复其形成时的古植被面貌和古气候条件(图6)。

    图  6  琼东南盆地中新世植被演化图
    Figure  6.  Vegetation evolution during the Miocene in the Qiongdongnan Basin

    虽然经历了短暂的Mi-1降温事件(23.13 Ma)[27],全球早中新世整体上处于比较稳定的相对温暖期[9-10],欧亚大陆的植被以亚热带常绿阔叶林和混交中生林为主,林中喜热的组分比较常见,针叶林主要分布在海拔比较高的丘陵和山地[28-32]。我国南部地区早中新世的年平均温度为15℃左右,降水量超过1000 mm[32],东部、东南部和西藏高原均有喜湿润的植被分布[33],青冈栎等多个亚热带常绿阔叶林重要组分发生了辐射演化[34]。ST-A井三亚组(27803285.85 m井段,早中新世)以松属、枫香属、常绿栎类、胡桃属、榆属、山核桃属、杉科、紫萁科和海金沙科等花粉和孢子为主的化石组合特征显示,在早中新世,研究区内的植被类型是热带、亚热带常绿阔叶林和常绿阔叶-落叶阔叶混交林,周边丘陵及山地有以松属为主的针叶林分布,气候条件较温暖湿润,相似的植被类型在琼东南盆地西部、中部和东部地区的三亚组[12-13, 35-36]、珠江口盆地下中新统珠江组[3, 37]及雷州半岛均有记录[38]。与渐新世温凉的气候条件相比较,早中新世的气候条件显现出更加温暖湿润的特征[12-13, 35]

    作为34 Ma以来最温暖的时期,中中新世气候最适宜期全球地表年平均温度可达18.4℃[39],比现今高5~6℃[40],我国南部地区中中新世的年平均气温最高可达23℃[32],17~13. 2 Ma东亚夏季风降水量比较稳定,最高平均值可达618 mm[41],琼东南盆地周边中中新世平均温度和降水量分别为19.4~22.7℃和10491708.5 mm[42]。15.97~13.82 Ma(Langhian阶)东南亚地区热带常绿阔叶林盛行[43],与三亚组的孢粉组合相比,琼东南盆地梅山组中下部(24002780 m井段,中中新世早、中期)的孢粉组合中来自松属的花粉含量明显下降,而喜温暖湿润的枫香属花粉含量则有所上升,同时,广泛分布在亚洲热带和亚热带地区的省藤属[44]花粉Dicolpopollis kockelii、喜温热的蓝果树属[45]花粉Nyssapollenites及主要分布于热带潮湿地区的桫椤科[46]孢子也持续出现,植被类型是三亚组时期植被类型的延续,但是气温较三亚组时期有上升的趋势,是中中新世气候最适宜期在琼东南盆地的记录。

    全球气温在MMCO之后逐渐下降[9],13.2~7.4 Ma东亚夏季风降水减量减少到400 mm[40]。温度和湿度下降导致了植被面貌的明显变化,东南亚地区13.82~7.246 Ma(即Seravallian阶—Tortonian阶)热带常绿阔叶林逐渐被热带落叶阔叶林、暖温带常绿阔叶林和混交林、稀疏丛林和草原等所取代[43]。雷州半岛晚中新世—上新世初期孢粉组合中针叶林和温带落叶阔叶组分含量增加,热带、亚热带常绿阔叶组分和热带雨林组分含量减少[42]。琼东南盆地梅山组上部和黄流组(20602400 m井段,中中新世晚期—晚中新世)孢粉组合与梅山组中下部的孢粉组合相比,松属、榆属和云杉属花粉含量略有上升,而枫香属、常绿栎类、蓝果树属和省藤属的花粉含量则有所下降,反映了落叶阔叶林和常绿阔叶林的收缩及针叶林的扩张。与珠江口盆地晚中新世—上新世的植被类型[3]相似,研究区内的植被仍是以热带、亚热带常绿阔叶林为主,但是温度和湿度较MMCO呈现下降的趋势,8.2 Ma之后,盆地西部地区喜温凉的落叶阔叶树桤木和针叶树松含量的升高也是植被对较温凉气候条件的响应[47],7.5~5.7 Ma东亚地区陆地降温幅度达7℃[48],ST-A井20052230 m陆生草本植物花粉含量的上升指示了研究区内由于温度和湿度的下降导致了草甸的扩张。

    (1)ST-A井钙质超微化石属种较丰富,数量较多,标志化石特征明显,是划分古生物地层的可靠指标。该井2780 m为NN4带内部标志化石Sphenolithus presaii末现面,末现界面年龄为16.04 Ma,2300 m为NN7标志化石Discoaster kugleri末现面,末现界面年龄为11.58 Ma。钙质超微化石的分布特征显示三亚组/梅山组和梅山组/黄流组的界线深度分别是2780 m和2300 m。

    (2)ST-A井所在的研究区域中新世的植被类型是热带、亚热带常绿阔叶林和常绿阔叶-落叶阔叶混交林,针叶林有一定范围分布,各个时期植被的演替反映了气候条件的波动。早中新世少量针叶林的出现说明气候条件较渐新世温暖湿润,中中新世常绿阔叶林和落叶阔叶林的扩张是中中新世气候最适宜期在琼东南盆地的记录,晚中新世针叶林的发育则显示气温和湿度呈现出下降的趋势,整个梅山组形成时期气候条件经历了温暖湿润到温凉略干的变化。

  • 图  1   琼东南盆地ST-A钻井位置图

    Figure  1.   Location of Well ST-A in the Qiongdongnan Basin

    图  2   ST-A井常见钙质超微化石

    1. Reticulofenestra haqii2060 m;2. Cyclicargolithus floridanus2400 m;3. Coccolithus pelagicus2350 m;4. Helicosphaera carteri2060 m;5. Helicosphaera ampliaperta2640 m;6. Discoaster quinqueramus2060 m;7. Discoaster deflandrei2300 m;8. Discoaster kugleri2300 m;9-10. Sphenolithus heteromorphus2400 m;11-12. Sphenolithus conicus2400 m;13-14. Sphenolithus presaii2780 m;15-16. Sphenolithus belemnos2870 m。比例尺10 μm。以上化石保存于中海油能源发展股份有限公司工程技术分公司湛江实验中心。

    Figure  2.   Significant calcareous nannofossil recovered from Well ST-A

    图  3   ST-A井钙质超微化石主要属种分布与地层分带

    Figure  3.   Distribution of the key calcareous nannofossil zones and the stratigraphic division of Well ST-A

    图  4   ST-A井常见孢粉化石

    Polypodiaceaesporites haardti (Pot. Et Ven.) Potonie, 1956, 2230 m;② Polypodiisporites favus Potonie, 1931, 2316 m;③ Cyathidites australis Couper, 1953, 2620 m;④ Crassoretitriletes nanhaiensis Zhang et Li, 1981, 2560 m;⑤ Polypodiisporites usmensis (Van der Hamman) Sun et Li, 1981, 2930 m;⑥-⑦. Pinuspollenites labdacus (Potonie) Raatz, 1937, 2340 m;⑧ Taxodiaceaepollenites hiatus (Potonie) Kremp, 1949, 2820 m;⑨ Laricoidites magnus (Potonie) Potonie, Thomson et Thiergart, 1950 ex Potonie, 1958, 2300 m;⑩ Tsugaepollenites igniculus Potonie et Venitz, 1934, 2400 m;⑪ Piceapollis praemarianus Krutzsch, 1971, 2450 m;⑫ Podocarpidites minutus ( Maljav.) Sun et He, 1980, 2270 m;⑬-⑭ Quercoidites minutus (Zakl. ) Ke et Shi, 1978, 2640 m, 2990 m;⑮ Quercoidites henrici (Pot.) Pot. , Thoms. Et Thier. , 1950, 2450 m;⑯ Caryapollenites simples (Pot.) Raatz, 1937, 2780 m;⑰-⑱ Dicolpopollis kockelii Pflanzi, 1956, 2510 m, 3020 m;⑲ Momipites coryloides Wodehouse, 1933, 2600 m;⑳ Juglanspollenites verus Raatz, 1939, 2806 m;㉑ Liquidambarpollenites pauciporus M. R. Sun, 1989, 2600 m;㉒ Liquidambarpollenites pachydermus M. R. Sun, 1989, 2540 m;㉓ Ulmipollenites minor Groot J. et Groot G., 1962, 2766 m;㉔ Ulmipollenites granulatus Stone, 1973, 2900 m;㉕ Alnipollenites metaplasmus (Potonie) Potonie, 1960, 2806 m;㉖ Alnipollenites verus (Potonie) Potonie, 1960, 2790 m;㉗ Corylopsis princeps Lubomirova, 2560 m;㉘ Tiliaepollenites indubitabilis (Pot. ) Potonie, 1960, 2480 m。比例尺20 μm。以上化石保存于中海油能源发展股份有限公司工程技术分公司湛江实验中心。

    Figure  4.   Significant spore and pollen recovered from Well ST-A

    图  5   ST-A井孢粉图式

    Figure  5.   The palynological diagram of Well ST-A

    图  6   琼东南盆地中新世植被演化图

    Figure  6.   Vegetation evolution during the Miocene in the Qiongdongnan Basin

  • [1] 潘松圻, 邹才能, 李勇, 等. 重大生物事件与石化能源形成演化: 兼论地球系统框架下能源学发展[J]. 石油勘探与开发, 2021, 48(3):498-509

    PAN Songqi, ZOU Caineng, LI Yong, et al. Major biological events and fossil energy formation: On the development of energy science under the earth system framework[J]. Petroleum Exploration and Development, 2021, 48(3):498-509.]

    [2] 朱伟林, 吴国瑄, 黎明碧. 南海北部陆架北部湾盆地古湖泊与烃源条件[J]. 海洋与湖沼, 2004, 35(1):8-14

    ZHU Weilin, WU Guoxuan, LI Mingbi. Palaeolimology and hydrocarbon potential in Beibu Gulf Basin of South China Sea[J]. Oceanologia et Limnologia Sinica, 2004, 35(1):8-14.]

    [3] 雷作淇. 珠江口盆地第三纪孢粉组合及其意义[J]. 植物学报, 1985, 27(1):94-105

    LEI Zuoqi. Tertiary sporo-sollen assemblage of Zhujiangkou (Pearl River North) Basin and its stratigraphical significance[J]. Acta Botanica Sinica, 1985, 27(1):94-105.]

    [4] 李君, 王任, 覃军干, 等. 北部湾盆地涠西南凹陷古、新近系古生物记录及古环境意义[J]. 海洋地质与第四纪地质, 2020, 40(2):29-36

    LI Jun, WANG Ren, QIN Jungan, et al. Paleogene-Neogene micropaleontological records of the of Weixinan Depression, Beibuwan Basin and their paleoenvironmental significance[J]. Marine Geology & Quaternary Geology, 2020, 40(2):29-36.]

    [5] 黄家保, 黄合庭, 吴国瑄, 等. 北部湾盆地始新统湖相富有机质页岩特征及成因机制[J]. 石油学报, 2012, 33(1):25-31

    HUANG Jiabao, HUANG Heting, WU Guoxuan, et al. Geochemical characteristics and formation mechanism of Eocene lacustrine organic-rich shales in Beibuwan Basin[J]. Acta Petrolei Sinica, 2012, 33(1):25-31.]

    [6] 张丽丽, 舒梁锋, 冯轩, 等. 再论珠江口盆地恩平组时代归属[J]. 中国海上油气, 2020, 32(5):9-18

    ZHANG Lili, SHU Liangfeng, FENG Xuan, et al. Further discussion on the age assignment of Enping Formation in the Pearl River Mouth basin[J]. China Offshore Oil and Gas, 2020, 32(5):9-18.]

    [7] 李金帅, 李贤庆, 王元, 等. 琼东南盆地深水区烃源岩地球化学特征和生烃潜力评价[J]. 矿业科学学报, 2021, 6(2):166-175

    LI Jinshuai, LI Xianqing, WANG Yuan, et al. Geochemical characteristics and hydrocarbon generation potential evaluation of source rocks in deepwater area of Qiongdongnan Basin[J]. Journal of Mining Science and Technology, 2021, 6(2):166-175.]

    [8] 谢玉洪, 李绪深, 范彩伟, 等. 琼东南盆地上中新统黄流组轴向水道源汇体系与天然气成藏特征[J]. 石油勘探与开发, 2016, 43(4):521-528

    XIE Yuhong, LI Xushen, FAN Caiwei, et al. The axial channel provenance system and natural gas accumulation of the Upper Miocene Huangliu Formation in Qiongdongnan Basin, South China Sea[J]. Petroleum Exploration and Development, 2016, 43(4):521-528.]

    [9]

    Zachos J C, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517):686-693. doi: 10.1126/science.1059412

    [10]

    Westerhold T, Bickert T, Rőhl U. Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea-level fluctuations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 217:205-222. doi: 10.1016/j.palaeo.2004.12.001

    [11] 谢金有, 覃军干, 李君, 等. 南海莺歌海盆地渐新世—上新世孢粉组合序列及其古环境意义[J]. 微体古生物学报, 2014, 31(1):85-87

    XIE Jinyou, QIN Jungan, LI Jun, et al. Palynological assemblages of the Oligocene and Pliocene in the Yinggehai-Qiongdongnan Basin of the Northern South China Sea and their paleoenvironmental implications[J]. Acta Micropalaeontologica Sinica, 2014, 31(1):85-87.]

    [12] 覃军干, 吴国瑄, 李君, 等. 琼东南盆地渐新统—上新统孢粉、藻类记录[J]. 微体古生物学报, 2016, 33(4):335-349

    QIN Jungan, WU Guoxuan, LI Jun, et al. Spores, pollen, freshwater alage and dinoflagellate cysts recorded in the Oligocene—Pliocene from Southeast Hainan Basin, South China Sea[J]. Acta Micropalaeontologica Sinica, 2016, 33(4):335-349.]

    [13] 陈平, 王任, 覃军干, 等. 琼东南盆地深水区WN-A井渐新世—中新世孢粉地层学及古气候[J]. 吉林大学学报:地球科学版, 2022, 52(2):390-402

    CHEN Ping, WANG Ren, QIN Jungan, et al. Oligocene-Miocene palynostratigraphy and paleoclimate of Well WN-A from deep water area, Southeast Hainan Basin[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2):390-402.]

    [14] 王萍莉, 溥发鼎. 壳斗科植物花粉形态及生物地理[M]. 广州: 广东科技出社, 2004

    WANG Pingli, PU Fading. Pollen Morphology and Biogeography of Fagaceae[M]. Guangzhou: Guangdong Science and Technology Press, 2004.]

    [15]

    Liu Y S, Zetter R, Ferguson D K, et al. Discriminating fossil evergreen and deciduous quercus pollen: A case Study from the Miocene of Eastern China[J]. Review of Palaeobotany and Palynology, 2007, 145:289-303. doi: 10.1016/j.revpalbo.2006.12.001

    [16]

    Grimm E C. TGview Version 2.0. 2. Illinois State Museum Research Collection Center[R]. Springfield, 2004.

    [17]

    Grimm E C. CONISS: A fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares[J]. Comput Geosci, 1987, 13(1):13-35. doi: 10.1016/0098-3004(87)90022-7

    [18]

    Martini E. Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation[C]// Farinacci A. Proceedings Ⅱ Planktonic Conference. Roma: Edizioni Tecnoscienza, 1971, 2: 739-785.

    [19] 谢金有, 祝幼华, 麦文, 等. 南海北部莺歌海盆地钙质超微化石年代地层研究[J]. 微体古生物学报, 2010, 27(4):289-298

    XIE Jinyou, ZHU Youhua, MAI Wei, et al. Chronostratigraphy of calcareous nannofossils in the Yinggehai-Qiongdongnan Basin, Northern South China Sea[J]. Acta Micropalaeontologica Sinica, 2010, 27(4):289-298.]

    [20]

    Bown P R. Calcareous Nannofossils Biostratigraphy[M]. Chapman & Hall, 1998: 1-314.

    [21]

    Howard A, Martin B. Microfossils[M]. Blackwell, 2005.

    [22]

    Saraswati P K, Srinivasan M S. Micropaleontology Principles and Applications[M]. Springer, 2016.

    [23]

    Gradstein F M, Ogg J G, Smith M D, et al. The Geologic Time Scale 2012[M]. Cambridge: Cambridge University Press, 2012.

    [24] 姜仕军. 珠江口盆地PY27-2-1井高分辨率钙质超微生物地层和层序地层学研究[J]. 中国海上油气(地质), 1999, 13(3):189-195

    JIANG Shijun. High resolution calcareous nannofossil biostratigraphy and sequence stratigraphy of Well PY27-2-1 Pearl River Mouth Basin[J]. China Offshore Oil and Gas (Geology), 1999, 13(3):189-195.]

    [25] 黄虑生. 珠江口盆地第三系生物地层框架[J]. 中国海上油气(地质), 1999, 13(6):406-414

    HUANG Lusheng. Tertiary biostratigraphic framework of Pearl River Mouth Basin[J]. China Offshore Oil and Gas(Geology), 1999, 13(6):406-414.]

    [26]

    Bergen J, Kaenel E D, Blair S, et al. Oligocene-Pliocene taxonomy and stratigraphy of the genus Sphenolithus in the circum North Atlantic Basin: Gulf of Mexico and ODP Leg 154[J]. Journal of Nannoplankton Research, 2017, 37(2-3):77-112. doi: 10.58998/jnr2016

    [27]

    Miller K G, Wright J D, Fairbanks R G. Unlocking the ice house: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4):6829-6848. doi: 10.1029/90JB02015

    [28]

    Akgün F, Kayseri M S, Akkiraz M S. Palaeoclimatic evolution and vegetational changes during the Late Oligocene-Miocene period in Western and Central Anatolia (Turkey)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253(1-2):56-90. doi: 10.1016/j.palaeo.2007.03.034

    [29]

    Ivanov D, Utescher T, Mosbrugger V, et al. Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304(3-4):262-275. doi: 10.1016/j.palaeo.2010.07.006

    [30]

    Kovar-Eder J, Jechorek H, Kvaçek Z, et al. The integrated plant record: An essential tool for reconstructing neogene zonal vegetation in Europe[J]. Palaios, 2008, 23(2):97-111. doi: 10.2110/palo.2006.p06-039r

    [31]

    Utescher T, Bruch A A, Micheels A, et al. Cenozoic climate gradients in Eurasia—a palaeo-perspective on future climate change?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304:351-358. doi: 10.1016/j.palaeo.2010.09.031

    [32]

    Yao Y F, Bruch A A, Mosbrugger V, et al. Quantitative reconstruction of Miocene climate patterns and evolution in Southern China based on plant fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304(3-4):291-307. doi: 10.1016/j.palaeo.2010.04.012

    [33]

    Sun X J, Wang P X, How old is the Asian monsoon system? -palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222: 181-222.

    [34]

    Jin D M, Yuan Q, Dai X L, et al. Enhanced precipitation has driven the evolution of subtropical evergreen broad-leaved forests in eastern China since the early Miocene: Evidence from ring-cupped oaks[J]. Journal of Systematics and Evolution, 2023, doi. org/10.1111/jse. 13022.

    [35] 阮培华, 万晓樵, 徐钰林, 等. 莺-琼盆地第三纪微体古生物群及地层划分[J]. 中国海上油气(地质), 1994, 8(6):377-386

    RUAN Peihua, WAN Xiaoqiao, XU Yulin, et al. Tertiary micropaleontology and stratigraphic division of Yinggehai-Qiongdongnan Basin[J]. China Offshore Oil and Gas (Geology), 1994, 8(6):377-386.]

    [36] 张一凡, 刘东生, 张训华. 琼东南盆地新生代孢粉组合及其古气候意义[J]. 海洋地质与第四纪地质, 2017, 37(1):93-101

    ZHANG Yifan, LIU Dongsheng, ZHANG Xunhua. Neogene palynological assemblages from Qiongdongnan Basin and their paleoclimatic implications[J]. Marine Geology& Quaternary Geology, 2017, 37(1):93-101.]

    [37] 赵飞, 祝幼华, 季兴开, 等. 南海北部珠江口盆地深水区LW5井晚渐新世—早中新世孢粉组合[J]. 微体古生物学报, 2017, 34(2):201-210

    ZHAO Fei, ZHU Youhua, JI Xingkai, et al. Late Oligocene to Early Miocene palynological assemblages of Well LW5 in the deep water area, Pearl River Mouth Basin, Northern South China Sea[J]. Acta Micropalaeontologica Sinica, 2017, 34(2):201-210.]

    [38] 张宗言, 刘祥, 李响, 等. 广东雷州半岛河头镇ZKA01钻孔剖面晚渐新世-早更新世孢粉组合及古植被演替[J]. 地质通报, 2020, 39(6):880-892

    ZHANG Zongyan, LIU Xiang, LI Xiang, et al. The Late Oligocene-Early Pleistocene sporopollen assemblages and paleovegetation succession of core ZKA01 in Hetou Town, Leizhou Peninsula of Guangdong Province[J]. Geological Bulletin of China, 2020, 39(6):880-892.]

    [39]

    You Y, Huber M, Müller R D, et al. Simulation of the Middle Miocene Climate Optimum[J]. Geophysical Research Letters, 2009, 36:L04702.

    [40]

    Hui Z, Zhang J, Ma Z, et al. Global warming and rainfall: Lessons from an analysis of Mid-Miocene climate data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 512:106-117. doi: 10.1016/j.palaeo.2018.10.025

    [41]

    Hui Z, Zhou X, Chevalier M, et al. Miocene East Asia summer monsoon precipitation variability and its possible driving forces[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 581: Art. Nr. 110609.

    [42] 张宗言, 刘祥, 李响, 等. 广东雷州半岛晚渐新世—早更新世孢粉共存因子分析及古气候变化重建[J]. 地学前缘, 2022, 29(2):303-316

    ZHANG Zongyan, LIU Xiang, LI Xiang, et al. Insights into the late Oligocene-early Pleistocene vegetation secession and climate change in the Leizhou Peninsula Guangdong, China[J]. Earth Science Frontiers, 2022, 29(2):303-316.]

    [43]

    Pound M J, Haywood A M, Salzmann U, et al. Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97-5.33 Ma)[J]. Earth-Science Reviews, 2012, 112(1-2):1-22. doi: 10.1016/j.earscirev.2012.02.005

    [44] 中国科学院中国植物志编辑委员会. 中国植物志( 第13卷第1册)[M]. 科学出版社, 1979: 68-108

    Editorial Board of Flora of China, Chinese Academy of Science. Flora of China (Volume 13, Volume 1)[M]. Science Press, 1979: 68-108.]

    [45] 中国科学院中国植物志编辑委员会. 中国植物志(52卷第2册)[M]. 科学出版社, 1979: 148-157

    Editorial Board of Flora of China, Chinese Academy of Science. Flora of China (Volume 52, Volume 2) [M]. Science Press, 1979: 148-157.]

    [46] 中国科学院中国植物志编辑委员会. 中国植物志(第6卷第3册)[M]. 科学出版社, 1979: 256-274

    Editorial Board of Flora of China, Chinese Academy of Science. Flora of China (Volume 6, Volume 3) [M]. Science Press, 1979: 256-274.]

    [47]

    Ding W, Hou D, Gan J, et al. Sedimentary geochemical records of late Miocene-early Pliocene palaeovegetation and palaeoclimate evolution in the Ying-Qiong Basin, South China Sea[J]. Marine Geology, 2022, 445:106750. doi: 10.1016/j.margeo.2022.106750

    [48]

    Wen Y, Zhang L, Holbourn A E, et al. CO2-forced Late Miocene cooling and ecosystem reorganizations in East Asia[J]. Proceedings of the National Academy of Sciences, 2023, 120(5):e2214655120. doi: 10.1073/pnas.2214655120

图(6)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  1
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-03-03
  • 录用日期:  2024-03-03
  • 刊出日期:  2025-04-27

目录

/

返回文章
返回