Distribution of strategic key metals in deep-sea polymetallic nodules and their controlling factors
-
摘要:
深海多金属结核富集经济发展和人民生活亟需的战略性关键金属,资源潜力巨大。通过对前人研究工作的系统性归纳总结,揭示不同类型、不同环境多金属结核内主要分布于锰氧化物中的Co、Cu、Li、Mn、Mo、Ni、Tl,以及主要分布在铁羟基氧化物内的REY、Te、Ti的含量,赋存状态,迁移演化过程及富集机制。表面吸附作用首先驱动这些战略性关键金属富集进入多金属结核,其中Mo、Ni、REY和Ti仅通过吸附作用就能实现高度富集。随后Ce、Co和Tl发生的氧化反应,以及Co、Cu、Li、Ni和Te通过晶格进入的方式继续增强这些金属在结核内的富集程度。当结核被沉积物埋藏且周边环境由氧化向次氧化转变后,发生的大规模矿物相变会导致结核富集Co而强烈亏损Ni、REY、Mo和Li。结核最终处于还原环境时,其矿物晶体格架会彻底崩塌和溃散,推测仅有部分铁氧化物组分会残留下来。未来亚微米尺度和原位高精度的实验研究工作,将提升对于这些金属,尤其是诸如Te、Tl等低含量金属在结核内分布、富集过程和控制因素的深刻理解,助力深海金属矿产资源勘查和选冶利用。
Abstract:Deep-sea polymetallic nodules are widely recognized as potential resources in future for strongly enriching in many strategic key metals for high-technology applications and economic prosperity. By summarizing previous studies, the contents, occurrence, enrichment mechanism, migration, and evolution of Co, Cu, Li, Mn, Mo, Ni, and Tl distributed mainly in manganese oxides, and REY, Te, Ti distributed mainly in iron oxyhydroxides in different types and settings of polymetallic nodules were analyzed. The surface sorption drove these metals to enrich into polymetallic nodules first, in which Mo, Ni, REY, and Ti could achieve high enrichment in this stage alone. Subsequently, the oxidation of Ce, Co, and Tl, and the structural incorporation of Co, Cu, Li, Ni, and Te continued to be enriched in these strategic metals in polymetallic nodules. When the polymetallic nodules were buried by abyssal sediments, and the surrounding environment changed from oxic conditions to suboxic conditions, the large-scale mineralogical transformation could lead to the enrichment of Co, but strongly depleted in Ni, REY, Mo, and Li compared to surface nodules. When buried polymetallic nodules were finally in reduced conditions, the mineral crystal lattice of these nodules would dissolve and collapse completely, perhaps only some iron oxyhydroxides component of the former nodule could remain. Future sub-micron and in-situ high-precision experimental research work will improve our deep understanding of the distribution, enrichment history, and controlling factors of these strategic key metals in nodules, especially low-content metals of Te and Tl, and help the exploration and utilization of deep-sea polymetallic nodules.
-
Keywords:
- polymetallic nodules /
- strategic key metals /
- distribution /
- constraint
-
热带海气相互作用在不同时间尺度上影响了全球气候变化。海气相互耦合作用的变化,首先会影响海洋生物圈,尤其是大洋上层的浮游植物。在低纬海区,浮游植物的活跃程度可以通过初级生产力来进行量化,并与海洋表层的风应力动态相关[1]。自Beaufort等成功建立热带大洋初级生产力转换方程,并开创性地应用到赤道太平洋5个柱状样岩芯中以来[2, 3],利用颗石藻特征属种Florisphaera profunda相对百分含量恢复古生产力,在热带太平洋及其边缘海得到了广泛的应用[4-18]。到目前为止,热带太平洋的古生产力研究大多显示了冰期高、间冰期低的变化特征[4, 6, 8, 10],众多证据表明该变动受到北半球高纬地区冰量变动的远程调控[4, 5, 8]。
然而,由于海气相互作用的复杂性,对于热带西太平洋海区古生产力在冰期—间冰期时间尺度上变化的驱动机制,到目前为止依然存在争议。通过对热带大洋多个岩芯古生产力的对比以及频谱分析,Beaufort等提出晚更新世古生产力的变化受到冰期旋回以及长期ENSO (El Niño-Southern Oscillation)过程的影响[3];这一观点在随后得到海水表层温度和其他古生产力等古海洋学记录证据的支持[8, 9, 13, 19]。然而,也有学者持不同的看法,例如,Zhang等提出西赤道太平洋生产力变动的主控因素是来自东亚大陆中部的风尘输入[20]。随着研究的深入开展,发现热带西太平洋初级生产力的受控因素较为复杂,可能是长期ENSO过程以及东亚季风共同调控的结果。但是由于研究指标的局限性,往往侧重某一方面进行讨论。Li等认为尽管东亚冬季风携带来的营养物质能够在一定程度上影响生产力,但冰期—间冰期水体结构的变动对生产力的作用不容忽视,并提出冰期热带太平洋类似于现代El Niño状态,热带西太平洋温跃层上升,因此加强了下部营养物质的向上输送,有利于初级生产力的增加[9]。Xu等则利用热带西太平洋70万年以来东亚冬季风风尘记录及溶解铁与生产力指标的对比,进一步支持了东亚风尘带来的营养物质对冰期生产力的刺激作用[21]。
热带西菲律宾海位于西太平洋暖池北部边缘,由于同时受东亚季风和热带ENSO过程的影响,因此对气候变化的响应非常敏感。东亚冬季风在1—3月爆发,可以引起颗石藻的繁盛[22];同时,ENSO过程也可以造成热带西太平洋水体结构的变动,从而影响生产力的变化[3, 23]。近年来热带西太平洋古海洋学的发展,提供了众多指示东亚季风强弱以及长期ENSO过程的记录,为进一步开展西菲律宾海冰期—间冰期时间尺度的古生产力研究提供了条件。在西菲律宾海选取合适的岩芯,通过与前人已有的研究工作的对比,有利于进一步查明热带西太平洋古生产力变化的驱动机制。
1. 材料和方法
1.1 研究材料
本研究使用的MD06-3047柱状样岩芯(17°00.44′N、124°47.93′E,水深2510m,柱长8.9m),于2006年由法国极地研究所的Marion-Dufresne考察船取自吕宋岛以东海域本哈姆海台(图 1)。本哈姆海台是沿着中央海盆洋脊方向的海底高原,约在45~50Ma期间形成[24]。钻孔位置位于吕宋岛以东约240km。由于吕宋岛东部大陆架很窄(平均少于10km),且岩芯位置距离陆架相对较远,因此海平面变化导致的来自吕宋岛的陆源输入对于本站位的影响可以忽略[25]。吕宋岛以及邻近海域主要受亚热带东亚季风气候的控制。
图 1 MD06-3047岩芯站位图(根据ODV软件制图)Figure 1. Map of the sampling location in the west Philippine Sea(from Schilitzer, R., Ocean Data View, odv.awi.de, 2017; available at http://odv.awi.de)岩芯以黄褐色粉砂质黏土为主,未见浊流层以及滑坡沉积。MD06-3047岩芯所在海区现代溶跃面深度约3400m [26, 27],沉积物样品中出现翼足类壳体,表明钙质微体化石保存情况良好[28]。MD06-3047岩芯年代模式根据底栖有孔虫C. wuellerstorfi的δ18O记录[19]与LR04氧同位素标准曲线[29]进行对比建立。岩芯上部330cm用于本研究工作,按照2cm间隔取样,用于颗石藻特征种属鉴定,时间跨度为260ka至晚全新世,分辨率约为1.5ka。
1.2 Florisphaera profunda——有效的古生产力指标
颗石藻是一种广泛生存在海洋透光带的浮游植物,对光照和营养物质变动响应敏感。相对于透光带上部,下透光带相对光线不足但营养物质较高。在热带大洋,下透光带属种主要以F. profunda为主,而大部分颗石藻属种生活在上部透光带[30]。F. profunda占颗石藻群落的相对百分含量与营养跃层的变动密切相关[31]。营养跃层是指海洋上层水体营养盐浓度(如NO3-, PO43-)发生显著变动的水层。Li等根据ODV数据库的现代调查数据,绘制了西菲律宾海区Ph05-5站位附近温度、盐度、磷酸盐、硝酸盐等参数的深度剖面曲线,认为研究区的年均营养跃层深度约在200m水深[7]。当营养跃层变浅,颗石藻种群以上部透光带属种为主,而当营养跃层加深的时候,颗石藻种群中下透光带属种F. profunda的比例则大大增加。在低纬度开放大洋,营养跃层的深度主要受到风力强度的影响。风力强时,上部水层混合加强,下部营养物质上涌至上部透光带;反之,当风力减弱的时候,上部水体混合作用减弱,透光带营养物质输入减少[5]。营养跃层深度变化与颗石藻种群组成的这种关系,已成为追踪热带大洋营养跃层深度变化的重要指标[6, 10, 31-33]。同时,通过校正F. profunda相对百分含量(Fp%)与初级生产力(PP)的关系,建立了有效的古生产力替代性指标[2]。F. profunda相对丰度与初级生产力的函数关系如下:
$$ {\rm{PP}} = 617 - [279{\rm{log}}({\rm{Fp}} + 3)] $$ (1) 其中,PP是年均生产力(gC ·m-2·a-1),Fp是F. profunda的相对百分含量×100。该方程基于印度洋低纬海区大量表层沉积物样品建立。研究表明,利用Fp得到的古生产力变化与其他古生产力替代性指标相一致[2]。
1.3 实验方法
取沉积物样品1~5mg放至载玻片上,用洗瓶滴加一滴蒸馏水使其分散,用圆滑的牙签侧面来回涂抹至均匀,自然晾干后,在中间滴适量中性树胶,用盖玻片进行固定。将制备的玻片在烘箱中50℃烘干。颗石鉴定工作在同济大学海洋地质国家重点实验室,利用颗石自动鉴定系统对玻片进行常见种属统计。统计方法如下:在Leica偏光显微镜(LEICA DM6000 B)下放大500倍,随机选取40个颗石分布均匀清楚的视域,利用数字摄像头(Spot Inlight FireWire,200万像素)进行拍照。图片进行适当处理后,运行Syraco4.0软件分析统计颗石数目和种属鉴定。该自动鉴定的方法已经成功地应用于不同海区多个岩芯中[3, 10, 11, 32, 34]。通过计算获得颗石藻下透光带属种F. profunda占全部颗石个数的百分含量,并按照方程(1)计算获得260ka以来初级生产力变化。
2. 结果
2.1 F. profunda相对丰度变化
260ka以来,F. profunda百分含量为45%~93%,平均值为67%, 其在MIS 8,MIS 6,MIS 4以及MIS 2的平均值分别为58.1%、66.6%、62.4%、66.6%,而在MIS 7,MIS 5,MIS 3以及全新世的平均值分别为63%、72.5%、68.9%、69.6%。尽管F. profunda百分含量在间冰期平均值相对冰期平均值略高,但通过与代表冰期旋回变化的底栖有孔虫δ18O曲线进行对比(图 2),发现两者之间相关性并不好,因此认为F.profunda%在过去26万年来冰期-间冰期旋回特征不明显。相对于冰期旋回时间尺度来说,Fp%在千年尺度上变化特征更为明显。比如,Fp%在MIS 5a, MIS 5b, MIS 5c出现低值,分别为59.4%、57.6%、51.9%,而在MIS 5d, MIS 5e则呈现高值,分别为68.4%、80.5%,变化幅度高达28%,指示了在MIS 5期内,营养跃层发生了重大的变动,其在MIS 5d之前相对较深,且波动较少,而在MIS 5c—MIS 5a期间营养跃层变化幅度很大,并出现营养跃层异常浅的现象。在冰期,MIS 4—MIS 2期以及MIS 6期,Fp%的变化幅度甚至更大,最高可达40%,指示了研究区营养跃层在千年尺度和亚轨道尺度上的振荡。此外,F.profunda相对百分含量还具有长期变化的趋势,整体可以划分为两个阶段,在150~260ka期间,即MIS 8后期至MIS 6中期,整体相对较低,而在150ka至晚全新世,整体有所升高,表明西菲律宾海营养跃层自MIS 8期以来呈现了由浅变深的整体变化趋势。
图 2 260 ka以来MD06-3047岩芯F. profunda相对百分含量以及初级生产力变化曲线MD06-3047岩芯的年代模式由底栖有孔虫C. wuellerstorfi的氧同位素曲线对比LR04标准曲线而建立[19]Figure 2. Records of variations in the abundance of F. profunda and primary productivity for the Core MD06-3047 in the last 260 kaAge model of MD06-3047 was established based on benthic foraminiferal C. wuellerstorfi δ18O stratigraphy by correlating to LR04 δ18O stack [19]利用PAST软件对26万年以来F.profunda%进行单频谱分析,结果显示了较强的轨道周期(55, 28, 19, 14ka)和千年周期(7.5, 4, 3ka)。其中55ka可能是10ka偏心率周期与41ka斜率周期叠加造成,28ka则可能是由斜率周期(41ka)与岁差周期(19ka)合成。
2.2 初级生产力变化
MD06-3047岩芯在研究时间段260ka以来,生产力的变动范围为64~148gC·m-2·a-1,平均值为104gC·m-2·a-1; 初级生产力的变动趋势与Fp%的变化趋势正好相反(图 2)。其在冰期,即MIS 8,MIS 6,MIS 4以及MIS 2的平均值相对较高,分别为120、104.7、111.4、104.4gC·m-2·a-1, 而在间冰期,即MIS 7,MIS 5, MIS 3以及全新世相对较低,平均值分别为110.2、94.1、100、98.9gC·m-2·a-1;此外,初级生产力在MIS 5a, MIS 5b以及MIS 5c出现峰值,分别为116.1、119.7、131.8gC·m-2·a-1,而在MIS 5d和MIS 5e则出现低值,分别为99.9、80.9gC·m-2·a-1。此外,初级生产力表现出长期的变化趋势,即在MIS 8期至155ka期间,初级生产力整体较高,平均值为96.8gC·m-2·a-1,自155ka开始,初级生产力出现快速降低,随后短暂升高,并再次降低,自MIS 5d之后,生产力有所回升,并出现多次峰值,但是155ka至全新世晚期,生产力整体相对较低,平均值为116.4gC·m-2·a-1。
3. 讨论
3.1 相邻海区不同岩芯初级生产力对比
将MD06-3047岩芯获取的初级生产力结果与邻近的站位进行对比,发现不同站位的古生产力记录虽然在整体上存在冰期高—间冰期低的变化趋势,但是各站位的生产力变化范围以及变化幅度之间差别较大。整体看来位于苏禄海区的MD97-2141站位的初级生产力相对较高,变化范围为80~224gC·m-2·a-1, 在过去200ka以来古生产力平均值为136.8gC·m-2·a-1[4]。MD06-3050岩芯次之,在研究时段260ka以来生产力变化范围为69.6~225.5gC·m-2·a-1,平均值120gC·m-2·a-1[32]。MD06-3047岩芯初级生产力变化幅度以及平均值略低于MD06-3050岩芯。Ph05-5岩芯的初级生产力最低,变化幅度为63~112.5gC·m-2·a-1,平均值为83gC·m-2·a-1[35]。说明尽管研究区域相近,不同站位的初级生产力受控因素仍存在较大的差别。由于颗石藻是钙质浮游生物,其在海底的保存受到溶解作用的影响,颗石藻的种属会随着深部溶解作用的加强而有所变化,诸如Gephyrocapsa spp, Emiliania huxleyi等易溶种属相对含量会有所减少,而F.profunda, Calcidiscus leptoporus等抗溶种相对含量则有所增加[36]。Ph05-5岩芯所在站位的现代水深为3382m,接近西太平洋海区现代溶跃面深度(约3400m)[26, 27],因此,该站位受到溶解作用较强,导致颗石藻易溶种属减少,F.profunda相对百分含量较高,从而导致初级生产力的评估可能受到影响,相对其他站位显示了低值。
此外造成不同站位岩芯初级生产力差别的另外一个重要原因是鉴定方法的差异。Ph05-5站位是人工镜下鉴定,而MD06-3047岩芯和MD06-3050岩芯利用颗石自动鉴定系统进行种属统计,由于自动鉴定系统无法像人工鉴定那样进行视域旋转,可能会漏检到一部分F.profunda,导致人工鉴定的结果得到的古生产力数值往往低于自动鉴定结果[10, 32],因此,在对不同站位数据结果进行对比时,要注意不同方法所产生的影响。
值得一提的是,尽管MD97-2141岩芯所在水深为3633m,比位于本哈姆海台的MD06-3047,MD06-3050以及Ph05-5岩芯均要深,受溶解作用应该最强,且采用人工鉴定的方法,但是其初级生产力平均值以及变化幅度最高,因此推测在过去的200ka,苏禄海区表层初级生产力整体高于西菲律宾海,这可能与苏禄海区受较强东亚季风有关[5]。
3.2 西菲律宾海区初级生产力变化的受控因素
已有的研究表明热带西太平洋气候条件受东亚季风和ENSO过程的共同影响[7, 8]。更新世以来东亚季风强度以及ENSO过程的发生频率也有了较为深入的研究[21, 25, 37, 38],然而,到目前为止,在不同时期东亚季风与ENSO过程对热带西太平洋生产力的影响,孰重孰轻?如何评价?仍旧是热带西太平洋海区古气候研究的难点。借助于最近发表的热带东西太平洋温度梯度的记录[28]以及东亚冬季风强度变动指标[21],可以尝试探讨热带西菲律宾海古生产力变化的影响因素。
Beaufort等通过对赤道太平洋和印度洋9个高质量岩芯的颗石藻初级生产力记录进行频谱分析,发现了显著的30ka周期和岁差周期,提出类ENSO过程是驱动晚更新世低纬大洋初级生产力变化的重要机制[3]。对MD06-3047岩芯F.profunda%进行频谱分析,同样发现了比较显著的30ka周期和岁差周期(图 3),表明该岩芯受到热带ENSO过程的影响。在现代热带太平洋,由于信风的作用,形成了自东向西的北赤道流,大量暖水遇到菲律宾岛屿等地形阻隔后积聚在热带西太平洋,因此,热带西太平洋具有相对较厚的温跃层/营养跃层,相对较高的海水表层温度,并与东赤道太平洋温跃层以及表层海水温度形成明显的梯度。当发生El Niño时,赤道信风显著减弱,北赤道流减弱,西太平洋暖池的部分温暖海水向东输送,因此,西太平洋温跃层变浅,东太平洋温跃层加深,且表层海水温度有所升高,ΔSST则相对减少;反之,在La Niña年间,东西太平洋ΔSST有所增加。古海洋学研究表明,热带太平洋存在长期的类ENSO过程[28, 39-43],当东西太平洋ΔSST较大时,认为热带太平洋处于长期类La Niña状态,反之则为类El Niño状态。
从图 4中可以看出在MIS 8后期至MIS 5a, 即260~80ka,热带东西太平洋温度差值(ΔSST)与Fp%和PP表现出一致性,当ΔSST较小时,F. profunda百分含量相对较低,指示营养跃层较浅,对应于较高的初级生产力,热带西太平洋处于类El Niño的状态;当ΔSST较大时,F. profunda百分含量相对较高,指示营养跃层加深,恰好对应于较低的初级生产力,此时热带西太平洋对应于类La Niña状态。而在该时段,相同岩芯中能够指示东亚冬季风强弱的伊利石/蒙脱石指标,与PP以及Fp%曲线相似性较低,因此,认为在MIS 5a之前,长期的ENSO过程相对于东亚冬季风来说,对热带西太平洋古生产力变化的影响可能更为显著。
图 4 西太平洋边缘海区260ka以来不同站位F.profunda百分含量对比MD97-2141(8°47′N、121°17′E, 水深3633m,苏禄海区)资料据文献[4];Ph05-5(16°3′N、124°21′E, 水深3382m, 本哈姆高原)资料据文献[35];MD06-3050(15°57.0943′N, 124°46.7747′E; 水深2967m,本哈姆高原)资料据文献[5, 33, 35]Figure 4. Comparison of F.profunda% record at different sites in Western Pacific marginal seas in the last 260ka然而,自MIS 5末期,东西太平洋ΔSST的变化与Fp%呈现相反的趋势,即ΔSST相对较低的时候,如MIS 3期,Fp%值相对较高,指示了营养跃层较深,初级生产力相对较低,这与类El Niño状态时较浅的温跃层/营养跃层相矛盾,同理,当ΔSST较大时,指示了热带西太平洋为长期的类La Niña状态,如MIS 2期,此时,热带西太平洋应呈现较深的温跃层/营养跃层,然而实际上Fp%显示了低值,指示了较浅的营养跃层,对应着较高的初级生产力。基于以上讨论,推测在MIS 5a至晚全新世期间,长期ENSO过程并非影响生产力变化的主要因素。实际上,基于单个有孔虫个体的Mg/Ca比的海水表层温度指示了在末次冰期冰盛期(LGM)热带太平洋ENSO活动有所减弱,进一步支持了我们的推论[41]。
相反,在MIS 5a至末次冰消期,伊利石/蒙脱石比值与初级生产力之间表现了较高的相似性变化(图 5)。伊利石/蒙脱石的高值,指示了东亚冬季风的加强。中尺度铁肥实验表明,对包括热带太平洋在内的很多大洋海区,海洋上层常因缺铁等营养因素而使浮游植物的生长受到限制[44]。有证据表明,在赤道太平洋中部,冰期大陆矿物悬浮颗粒(风尘)的通量最大可以超过间冰期该通量的2倍[45]。冰期,风尘的增加,会带来更多的铁,很可能会刺激热带赤道太平洋的生物生产力。Zhang等的研究支持了这一观点,认为过去550ka以来,西赤道太平洋生物生产力增加的主要驱动者很可能是来自东亚中部大陆的风尘通量[20]。此外,Kim等对西太平洋沉积物捕获器样品的分析表明,在La Niña强盛的时期,颗粒物通量的增加与季风加强造成的上部水体的混合加强有关[23]。东亚冬季风的加强一方面使得研究区上部水体混合增加,营养跃层变浅,向上输送的营养物质增加;另一方面加强了风尘的输入,刺激了上部水体浮游植物的生长。尽管不能定量地评估风尘通量对生产力的影响,但可以肯定的是,东亚冬季风加强以及大陆的干旱条件,在冰期向海洋输送了大量的大陆风尘,进而影响热带西太平洋生产力的增加[21]。苏禄海MD97-2141岩芯也显示了生产力在冰期增加,认为与东亚冬季风的加强有关,并且提出在过去的8万年间,苏禄海区存在8个显著的初级生产力增加事件,对应于该时期中国黄土记录的东亚季风的加强[4]。而当伊利石/蒙脱石出现低值时,即MIS3期,东亚冬季风相对较弱,上部水体混合减弱,风尘输入也有所减少,对应于上部水体相对较低的初级生产力。
图 5 过去260ka以来西菲律宾海MD06-3047岩芯初级生产力及F. profunda相对百分含量变化与其他古环境指标对比图自上而下分别为东亚冬季风替代指标——黏土矿物伊利石/蒙脱石变化曲线[21];基于经验公式计算得到的初级生产力变化曲线(本研究);指示热带太平洋长期ENSO过程的热带东西太平洋海水表层温度梯度异常变化曲线(相对于全新世SST数值)[28];颗石藻下透光带属种F. profunda相对百分含量变化曲线(本研究)Figure 5. Correlation between primary productivity and abundance of F. profunda of Core MD06-3047 for the past 260ka, compared with long term ENSO proxy and East Asian Winter Monsoon proxyThe above curve is illite/smectite ratio in clay mineral fraction of core MD06-3047 that could indicate the intensity of the East Asian Winter Monsoon [21]; Zonal SST gradient anomaly relative to the Holocene values, which represents the SST difference of the western and eastern Pacific based on the Mg/Ca-based SSTs [28]东亚季风与ENSO过程之间存在着复杂的耦合过程[46],一定程度上解释了MD06-3047岩芯呈现较不明显的冰期-间冰期旋回变化以及较强的千年尺度变化。通过多指标对比研究表明,在260~80ka,西菲律宾海区初级生产力受到长期ENSO过程下营养跃层/温跃层变动的影响相对较强;而在80 ka以来,东亚冬季风相对于长期ENSO过程来说,对该区初级生产力的影响可能更为显著。
4. 结论
对位于西菲律宾海的MD06-3047岩芯,进行颗石藻化石鉴定统计,获取F. profunda百分含量,并基于此恢复了该海区26万年以来的初级生产力和营养跃层的变化历史,发现初级生产力冰期旋回的变动特征并不明显。频谱分析结果显示西菲律宾海上层水体结构具有明显的轨道周期和千年尺度变化周期,说明该区的初级生产力的受控因素相对较为复杂。
(1) 26万年到8万年之间,东西太平洋温度梯度(ΔSST)与初级生产力变动具有较强的相似性,指示了长期ENSO过程对西菲律宾海初级生产力的影响相对于东亚季风对初级生产力的影响更为显著,认为在MIS7初期,MIS6期前半段以及MIS5中后期,热带太平洋呈现类El Niño状态,对应研究区较浅的营养跃层/温跃层,初级生产力相对较高;其余时段热带太平洋则处于长期的类La Niña状态,对应较深的营养跃层/温跃层,初级生产力相对较低。
(2) 8万年以来,西菲律宾海初级生产力受东亚冬季风的影响加强或者ENSO状态的减弱,可能掩盖了长期ENSO过程对生产力影响的信号。冰期时东亚冬季风加强,一方面可以加强上部水体的混合作用,另一方面增加了来自东亚中部的风尘物质的输入,两者均有利于初级生产力的增加;而在间冰期,东亚冬季风减弱,上部水体混合作用减少,同时风尘物质输入量也显著降低,因此初级生产力相对降低。
1 许东禹. 大洋矿产资源调查研究拾零. 奔跑与奋斗-我与海地所的故事, 2022: 79-88. -
图 1 战略性关键金属在不同成因类型结核铁锰氧化物组分中的差异性分布
灰色部分为锰氧化物,土黄色部分为铁羟氧化物。水成型和成岩型结核的战略性关键金属含量从上到下按高低顺序排列。热液型结核因测试数量和代表性不足不作含量高低排列。
Figure 1. The dDifferent distribution of strategic critical key metals in Fe oxyhydroxide and Mn oxides of three genetic types of polymetallic nodules
The gray part represents manganese oxide, and the brown part represents iron oxyhydroxide. The strategic key metal contents of hydrogenetic and diagenetic modules gradually decrease from top to bottom. Due to the lacks in the quantity and the representativeness of assays, the strategic key metal contents of hydrothermal modules could not be ranked.
图 2 制约多金属结核内战略性关键金属富集的主要因素
a:表面吸附;b:氧化反应;c:晶格进入;d:矿物相变,单箭头表示主要为净迁移,双箭头表示迁入和移出现象共存。
Figure 2. The main constraints on the enrichment of strategic key metals in polymetallic nodules
a: surface complexation; b: oxidation; c: structural incorporation; d: mineralogical transformation, the single arrow in mineralogical transformation indicates mostly the net migration, and the double arrow indicates coexistence of the immigration and migration.
-
[1] Hein J R, Koschinsky A. 13.11 - deep-ocean ferromanganese crusts and nodules[J]. Treatise on Geochemistry, 2014, 13:273-291.
[2] Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer, 2017: 23-63.
[3] Bruland K W, Middag R, Lohan M C. 8.2 - controls of trace metals in seawater[J]. Treatise on Geochemistry (Second Edition), 2014, 8:19-51.
[4] Rudnick R L, Gao S. 4.1 - composition of the continental crust[J]. Treatise on Geochemistry (Second Edition), 2014, 4:1-51.
[5] 《矿产资源工业要求参考手册》编委会. 矿产资源工业要求参考手册[M]. 北京: 地质出版社, 2021 Reference Manual for Industrial Requirements of Mineral Resources[M]. Beijing: Geological Publishing House, 2016.]
[6] Mizell K, Hein J R, Au M, et al. Estimates of metals contained in abyssal manganese nodules and ferromanganese crusts in the global ocean based on regional variations and genetic types of nodules[M]//Sharma R. Perspectives on Deep-Sea Mining: Sustainability, Technology, Environmental Policy and Management. Cham: Springer, 2022: 53-80.
[7] Hein J R, Koschinsky A, Kuhn T. Deep-ocean polymetallic nodules as a resource for critical materials[J]. Nature Reviews Earth & Environment, 2020, 1(3):158-169.
[8] 国土资源部信息中心. 世界矿产资源年评-2016[M]. 北京: 地质出版社, 2016 Information Center of Ministry of Land and Resources, China. World Mineral Resources Annual Review 2016[M]. Beijing: Geological Publishing House, 2016.]
[9] 国土资源部, 国家发展和改革委员会, 工业和信息化部, 等. 全国矿产资源规划(2016—2020年)[R]. 北京, 2016 Ministry of Land and Resources, National Development and Reform Commission, Ministry of Industry and Information Technology, et al. National mineral resources planning (2016-2020)[R]. Beijing, 2016.]
[10] 陈其慎, 张艳飞, 邢佳韵, 等. 国内外战略性矿产厘定理论与方法[J]. 地球学报, 2021, 42(2):137-144 CHEN Qishen, ZHANG Yanfei, XING Jiayun, et al. Methods of strategic mineral resources determination in China and abroad[J]. Acta Geoscientica Sinica, 2021, 42(2):137-144.]
[11] 陈甲斌, 霍文敏, 冯丹丹, 等. 中国与美欧战略性(关键)矿产资源形势分析[J]. 中国国土资源经济, 2020, 33(8):9-17 CHEN Jiabin, HUO Wenmin, FENG Dandan, et al. Analysis of strategic (critical) mineral resources situation in China and the U. S. and the EU[J]. Natural Resource Economics of China, 2020, 33(8):9-17.]
[12] 王登红, 孙艳, 代鸿章, 等. 我国“三稀矿产”的资源特征及开发利用研究[J]. 中国工程科学, 2019, 21(1):119-127 doi: 10.15302/J-SSCAE-2019.01.017 WANG Denghong, SUN Yan, DAI Hongzhang, et al. Characteristics and exploitation of rare earth, rare metal and rare-scattered element minerals in China[J]. Strategic Study of CAE, 2019, 21(1):119-127.] doi: 10.15302/J-SSCAE-2019.01.017
[13] Belkin I M, Andersson P S, Langhof J. On the discovery of ferromanganese nodules in the World Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 175:103589. doi: 10.1016/j.dsr.2021.103589
[14] 张海文. 《联合国海洋法公约》开放签署四十周年: 回顾与展望[J]. 武大国际法评论, 2022, 6(6):1-14 ZHANG Haiwen. The 40th anniversary of the opening for signature of the united nations convention on the law of the sea: retrospect and prospect[J]. Wuhan University International Law Review, 2022, 6(6):1-14.]
[15] 许东禹, 金庆焕, 梁德华. 太平洋中部多金属结核及其形成环境[M]. 北京: 地质出版社, 1994 XU Dongyu, JIN Qinghuan, LIANG Dehua. Polymetallic Nodules and Their Formation Environment in the Central Pacific Ocean[M]. Beijing: Ocean Press, 1994.]
[16] 许东禹. 多金属结核的特征及成因[M]. 北京: 地质出版社, 1993 XU Dongyu. Characteristics and Genesis of Polymetallic Nodules[M]. Beijing: Geological Publishing House, 1993.]
[17] 许东禹. 大洋矿产地质学[M]. 北京: 海洋出版社, 2013 XU Dongyu. Ocean Mineral Geology[M]. Beijing: Ocean Press, 2013.]
[18] ISA. (International Seabed Authority)[EB/OL]. 2023. https://www.isa.org.jm/exploration-contracts/.
[19] 中华人民共和国常驻国际海底管理局代表处. 国际海底管理局第28届第二期会议闭幕[EB/OL]. (2023-08-01). http://isa.china-mission.gov.cn/xwdt/202308/t20230801_11120483.htm Permanent Mission of PRC to International Seabed Authority. Closure of the second part of the 28th session of the International Seabed Authority[EB/OL]. (2023-08-01). http://isa.china-mission.gov.cn/xwdt/202308/t20230801_11120483.htm.]
[20] Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements[J]. Ore Geology Reviews, 2017, 87:3-15. doi: 10.1016/j.oregeorev.2016.09.003
[21] Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology, 2014, 381:1-9. doi: 10.1016/j.chemgeo.2014.05.004
[22] 王嫱, 苏轶娜, 闻少博, 等. 主要矿产品供需形势分析报告(2020年)[M]. 北京: 地质出版社, 2020 WANG Qiang, SU Yina, WEN Shaobo, et al. Analysis on Supply and Demand Situation of Mineral Resources (2020)[M]. Beijing: Geological Publishing House, 2020.]
[23] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources[J]. Ore Geology Reviews, 2013, 51:1-14. doi: 10.1016/j.oregeorev.2012.12.001
[24] Hein J R, Koschinsky A, Halbach P, et al. Iron and manganese oxide mineralization in the Pacific[J]. Geological Society, London, Special Publications, 1997, 119:123-138. doi: 10.1144/GSL.SP.1997.119.01.09
[25] Post J E, Heaney P J, Hanson J. Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite[J]. American Mineralogist, 2003, 88(1):142-150. doi: 10.2138/am-2003-0117
[26] Bodeï S, Manceau A, Geoffroy N, et al. Formation of todorokite from vernadite in Ni-rich hemipelagic sediments[J]. Geochimica et Cosmochimica Acta, 2007, 71(23):5698-5716. doi: 10.1016/j.gca.2007.07.020
[27] Post J E, McKeown D A, Heaney P J. Raman spectroscopy study of manganese oxides: Tunnel structures[J]. American Mineralogist, 2020, 105(8):1175-1190. doi: 10.2138/am-2020-7390
[28] Kuhn T, Bostick B C, Koschinsky A, et al. Enrichment of Mo in hydrothermal Mn precipitates: possible Mo sources, formation process and phase associations[J]. Chemical Geology, 2003, 199(1-2):29-43. doi: 10.1016/S0009-2541(03)00054-8
[29] Azami K, Koyama K, Machida S, et al. Formation of hydrothermal ferromanganese oxides from the Daigo-Kume Knoll in the middle Okinawa Trough, Japan[J]. Marine Geology, 2023, 463:107117. doi: 10.1016/j.margeo.2023.107117
[30] Gueguen B, Rouxel O, Fouquet Y. Nickel isotopes and rare earth elements systematics in marine hydrogenetic and hydrothermal ferromanganese deposits[J]. Chemical Geology, 2021, 560:119999. doi: 10.1016/j.chemgeo.2020.119999
[31] Shaw T J, Gieskes J M, Jahnke R A. Early diagenesis in differing depositional environments: The response of transition metals in pore water[J]. Geochimica et Cosmochimica Acta, 1990, 54(5):1233-1246. doi: 10.1016/0016-7037(90)90149-F
[32] Von Stackelberg U. Growth history of manganese nodules and crusts of the Peru Basin[J]. Geological Society, London, Special Publications, 1997, 119:153-176. doi: 10.1144/GSL.SP.1997.119.01.11
[33] Volz J B, Mogollón J M, Geibert W, et al. Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton Zone, Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2018, 140:159-172. doi: 10.1016/j.dsr.2018.08.006
[34] Mewes K, Mogollón J M, Picard A, et al. Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion-Clipperton Fracture Zone[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 91:125-141. doi: 10.1016/j.dsr.2014.06.001
[35] Mewes K, Mogollón J M, Picard A, et al. Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: An example from the Clarion–Clipperton Fracture Zone[J]. Earth and Planetary Science Letters, 2016, 433:215-225. doi: 10.1016/j.jpgl.2015.10.028
[36] Wegorzewski A V, Kuhn T. The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean[J]. Marine Geology, 2014, 357:123-138. doi: 10.1016/j.margeo.2014.07.004
[37] Koschinsky A, Winkler A, Fritsche U. Importance of different types of marine particles for the scavenging of heavy metals in the deep-sea bottom water[J]. Applied Geochemistry, 2003, 18(5):693-710. doi: 10.1016/S0883-2927(02)00161-0
[38] Foster A L, Klofas J M, Hein J R, et al. Speciation of energy critical elements in marine ferromanganese crusts and nodules by principal component analysis and least-squares fits to XAFS spectra[C]//American Geophysical Union, Fall Meeting 2011. 2011.
[39] Hein J R, Koschinsky A, Halliday A N. Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium[J]. Geochimica et Cosmochimica Acta, 2003, 67(6):1117-1127. doi: 10.1016/S0016-7037(02)01279-6
[40] Wang X Y, Sherman D M. Molecular speciation of Mo (VI) on goethite and its implications for molybdenum and its isotopic cycle in ocean[J]. Geochimica et Cosmochimica Acta, 2021, 313:116-132. doi: 10.1016/j.gca.2021.08.040
[41] Kashiwabara T, Takahashi Y, Tanimizu M, et al. Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides[J]. Geochimica et Cosmochimica Acta, 2011, 75(19):5762-5784. doi: 10.1016/j.gca.2011.07.022
[42] Hodkinson R A, Stoffers P, Scholten J, et al. Geochemistry of hydrothermal manganese deposits from the Pitcairn Island hotspot, southeastern Pacific[J]. Geochimica et Cosmochimica Acta, 1994, 58(22):5011-5029. doi: 10.1016/0016-7037(94)90228-3
[43] Manceau A, Simionovici A, Findling N, et al. Crystal chemistry of thallium in marine ferromanganese deposits[J]. ACS Earth and Space Chemistry, 2022, 6(5):1269-1285. doi: 10.1021/acsearthspacechem.1c00447
[44] Rehkämper M, Frank M, Hein J R, et al. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits[J]. Earth and Planetary Science Letters, 2002, 197(1-2):65-81. doi: 10.1016/S0012-821X(02)00462-4
[45] Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation[J]. Marine Geology, 2003, 198(3-4):331-351. doi: 10.1016/S0025-3227(03)00122-1
[46] Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: Genetic implications[J]. Geochimica et Cosmochimica Acta, 1995, 59(24):5113-5132. doi: 10.1016/0016-7037(95)00358-4
[47] Halbach P E, Jahn A, Cherkashov G. Marine co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer, 2017: 65-141.
[48] Astakhova N V. Occurrence forms and distribution of precious and base metals in ferromanganese crusts from the Sea of Japan[J]. Oceanology, 2013, 53(6):686-701. doi: 10.1134/S0001437013050019
[49] Marcus M A, Toner B M, Takahashi Y. Forms and distribution of Ce in a ferromanganese nodule[J]. Marine Chemistry, 2018, 202:58-66. doi: 10.1016/j.marchem.2018.03.005
[50] Peacock C L. Physiochemical controls on the crystal-chemistry of Ni in birnessite: Genetic implications for ferromanganese precipitates[J]. Geochimica et Cosmochimica Acta, 2009, 73(12):3568-3578. doi: 10.1016/j.gca.2009.03.020
[51] Peacock C L, Sherman D M. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules[J]. American Mineralogist, 2007, 92(7):1087-1092. doi: 10.2138/am.2007.2378
[52] Kashiwabara T, Takahashi Y, Tanimizu M. A XAFS study on the mechanism of isotopic fractionation of molybdenum during its adsorption on ferromanganese oxides[J]. Geochemical Journal, 2009, 43(6):e31-e36. doi: 10.2343/geochemj.1.0060
[53] Azami K, Hirano N, Machida S, et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts[J]. Chemical Geology, 2018, 493:224-233. doi: 10.1016/j.chemgeo.2018.05.045
[54] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10):1709-1725. doi: 10.1016/0016-7037(96)00063-4
[55] 姜学钧, 林学辉, 姚德, 等. 稀土元素在水成型海洋铁锰结壳中的富集特征及机制[J]. 中国科学: 地球科学, 2011, 41(2): 197-204 JIANG Xuejun, LIN Xuehui, YAO De, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts[J]. Science China Earth Sciences, 2011, 54(2): 197-203.]
[56] Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1):37-47. doi: 10.2343/geochemj.1.0005
[57] Bidoglio G, Gibson P N, O'Gorman M, et al. X-ray absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides[J]. Geochimica et Cosmochimica Acta, 1993, 57(10):2389-2394. doi: 10.1016/0016-7037(93)90576-I
[58] Bau M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect[J]. Geochimica et Cosmochimica Acta, 1999, 63(1):67-77. doi: 10.1016/S0016-7037(99)00014-9
[59] Yang P, Post J E, Wang Q, et al. Metal adsorption controls stability of layered manganese oxides[J]. Environmental Science & Technology, 2019, 53(13):7453-7462.
[60] Peacock C L, Moon E M. Oxidative scavenging of thallium by birnessite: Explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates[J]. Geochimica et Cosmochimica Acta, 2012, 84:297-313. doi: 10.1016/j.gca.2012.01.036
[61] Lide D R. CRC Handbook of Chemistry and Physics[M]. Florida: CRC Press, 2010.
[62] Manceau A, Lanson M, Takahashi Y. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule[J]. American Mineralogist, 2014, 99(10):2068-2083. doi: 10.2138/am-2014-4742
[63] Sherman D M, Peacock C L. Surface complexation of Cu on birnessite (δ-MnO2): Controls on Cu in the deep ocean[J]. Geochimica et Cosmochimica Acta, 2010, 74(23):6721-6730. doi: 10.1016/j.gca.2010.08.042
[64] Manceau A, Marcus M A, Grangeon S. Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy[J]. American Mineralogist, 2012, 97(5-6):816-827. doi: 10.2138/am.2012.3903
[65] Halbach P, Scherhag C, Hebisch U, et al. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean[J]. Mineralium Deposita, 1981, 16(1):59-84.
[66] Jiang X J, Lin X H, Yao D, et al. Geochemistry of lithium in marine ferromanganese oxide deposits[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2007, 54(1):85-98. doi: 10.1016/j.dsr.2006.10.004
[67] Kashiwabara T, Oishi Y, Sakaguchi A, et al. Chemical processes for the extreme enrichment of tellurium into marine ferromanganese oxides[J]. Geochimica et Cosmochimica Acta, 2014, 131:150-163. doi: 10.1016/j.gca.2014.01.020
[68] Hens T, Brugger J, Etschmann B, et al. Nickel exchange between aqueous Ni(II) and deep-sea ferromanganese nodules and crusts[J]. Chemical Geology, 2019, 528:119276. doi: 10.1016/j.chemgeo.2019.119276
[69] Heller C, Kuhn T, Versteegh G J M, et al. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2018, 142:16-33. doi: 10.1016/j.dsr.2018.09.008
[70] Wegorzewski A V, Grangeon S, Webb S M, et al. Mineralogical transformations in polymetallic nodules and the change of Ni, Cu and Co crystal-chemistry upon burial in sediments[J]. Geochimica et Cosmochimica Acta, 2020, 282:19-37. doi: 10.1016/j.gca.2020.04.012
[71] Marcus M A, Edwards K J, Gueguen B, et al. Iron mineral structure, reactivity, and isotopic composition in a South Pacific Gyre ferromanganese nodule over 4 Ma[J]. Geochimica et Cosmochimica Acta, 2015, 171:61-79. doi: 10.1016/j.gca.2015.08.021
[72] Huang F, Fu Y, Li D F, et al. Early diagenetic REE migration from Fe-Mn nodules to fish teeth in deep sea sediments[J]. Ore Geology Reviews, 2023, 160:105581. doi: 10.1016/j.oregeorev.2023.105581
[73] Atkins A L, Shaw S, Peacock C L. Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments[J]. Geochimica et Cosmochimica Acta, 2014, 144:109-125. doi: 10.1016/j.gca.2014.08.014
[74] Missen O P, Etschmann B, Mills S J, et al. Tellurium biogeochemical transformation and cycling in a metalliferous semi-arid environment[J]. Geochimica et Cosmochimica Acta, 2022, 321:265-292. doi: 10.1016/j.gca.2021.12.024
[75] Morishita Y, Usui A, Takahata N, et al. Secondary ion mass spectrometry microanalysis of platinum in hydrogenetic ferromanganese crusts[M]//Sharma R. Perspectives on Deep-Sea Mining: Sustainability, Technology, Environmental Policy and Management. Cham: Springer, 2022: 115-133.
[76] de Matos C S, Benites M, Jovane L, et al. Chemical-mineralogical characterization of critical elements into ferromanganese crusts[J]. Journal of Materials Research and Technology, 2023, 25:5633-5649. doi: 10.1016/j.jmrt.2023.07.021
[77] Sutherland K M, Wankel S D, Hein J R, et al. Spectroscopic insights into ferromanganese crust formation and diagenesis[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(11):e2020GC009074. doi: 10.1029/2020GC009074
-
期刊类型引用(0)
其他类型引用(1)