北黄海盆地东部坳陷下白垩统层序地层及沉积演化

王文娟, 张银国, 陈建文, 杨艳秋

王文娟,张银国,陈建文,等. 北黄海盆地东部坳陷下白垩统层序地层及沉积演化[J]. 海洋地质与第四纪地质,2024,44(3): 125-135. DOI: 10.16562/j.cnki.0256-1492.2023100701
引用本文: 王文娟,张银国,陈建文,等. 北黄海盆地东部坳陷下白垩统层序地层及沉积演化[J]. 海洋地质与第四纪地质,2024,44(3): 125-135. DOI: 10.16562/j.cnki.0256-1492.2023100701
WANG Wenjuan,ZHANG Yinguo,CHEN Jianwen,et al. Sequence stratigraphy and sedimentary evolution in the Lower Cretaceous of the Eastern Depression in the North Yellow Sea Basin[J]. Marine Geology & Quaternary Geology,2024,44(3):125-135. DOI: 10.16562/j.cnki.0256-1492.2023100701
Citation: WANG Wenjuan,ZHANG Yinguo,CHEN Jianwen,et al. Sequence stratigraphy and sedimentary evolution in the Lower Cretaceous of the Eastern Depression in the North Yellow Sea Basin[J]. Marine Geology & Quaternary Geology,2024,44(3):125-135. DOI: 10.16562/j.cnki.0256-1492.2023100701

北黄海盆地东部坳陷下白垩统层序地层及沉积演化

基金项目: 中国地质调查局地质调查项目(DD20221723, DD20211353)
详细信息
    作者简介:

    王文娟(1980—),女,硕士,高级工程师,主要研究方向为海洋油气地质,E-mail:wangwenj04@163.com

    通讯作者:

    张银国(1973—),男,博士,正高级工程师,主要研究方向为海洋油气地质,E-mail:82069747@qq.com

  • 中图分类号: P736

Sequence stratigraphy and sedimentary evolution in the Lower Cretaceous of the Eastern Depression in the North Yellow Sea Basin

  • 摘要:

    北黄海盆地东部坳陷下白垩统是一套有利的油气勘探储集层,对其精细的地层划分及沉积演化的研究薄弱,制约了对东部坳陷油气勘探前景的深入认识。本文通过对东部坳陷钻井的岩芯观察,测井、录井分析及地震层序的井震标定,认为北黄海盆地东部坳陷下白垩统发育典型的陆相层序,可划分为3个三级层序,从底部向上依次为K1SQ1、K1SQ2和K1SQ3。在钻井上仅可见K1SQ1和K1SQ2两个三级层序,且K1SQ2层序的下降半旋回不完整,只残留该层序的上升半旋回。K1SQ1时期为湖盆断陷伸展期,发育一个完整的湖进—湖退旋回。早期盆地边缘发育河流相,南部主控断裂带发育扇三角洲相,北部缓坡带发育辫状河三角洲相;中后期由于湖平面上升,发育泥岩为主的湖泊沉积;晚期北部缓坡带见小规模辫状河三角洲沉积。K1SQ2时期为湖盆稳定裂陷期,继承了K1SQ1时期的沉积特征并略有收缩。K1SQ3时期为湖盆断陷萎缩期,以发育大范围的河流相沉积为特征。

    Abstract:

    The Lower Cretaceous of the Eastern Depression in the North Yellow Sea Basin is a favorable reservoir for hydrocarbon exploration. However, scarce studies on its fine stratigraphic delineation and sedimentary evolution have restricted the deep understanding of the prospect of hydrocarbon exploration in the eastern depression. Through the core observation, logging and recording analyses, and well-seismic calibration in the eastern depression, it is concluded that the Lower Cretaceous mainly developed 3 third-order sequences, K1SQ1, K1SQ2, and K1SQ3 in bottom-up order. Only 2 third-order sequences, K1SQ1 and K1SQ2, are visible in the drilling, and the descending half-circle of the K1SQ2 sequence is always incomplete, with only the ascending half-cycle of the sequence remaining. The K1SQ1 was in the period of faulting extension, and the vertical lithological sequence exhibited a complete depositional cycle with progradation-retrogradation. In the early stage, there were fluvial phases which developed at mainly the basin margins, the fan-delta phases were in the southern rift zone of the basin, and the braided river-delta phase was in the northern slow-slope zone. Due to the uprising of the lake level, mudstone-dominated lake deposits were developed in the middle and late stages. In the advanced stage, small-scale braided river delta deposits developed in the northern slow-slope zone. The K1SQ2 was in the period of stabilized rupture, which inherited the depositional characteristics of the K1SQ1 period and contracted slightly. The K1SQ3 was in the period of faulting abortion, which was characterized by the development of a large area of fluvial phase deposits.

  • 厚层辫状河道储集层内部发育多种类型隔夹层,各隔夹层形态和规模相差大,而隔夹层展布的定量研究对厚层砂岩中骨架河道刻画和河道期次划分意义重大。近年来,国内外学者多侧重于露头和现代沉积的河流相储层构型研究,对地下储层构型的研究多集中于曲流河储层,有关辫状河道储层的定量表征研究较少[1-5]

    西湖凹陷A构造其花港组主力目的层H3砂层组发育厚层辫状河道砂岩,渗透率多为(0.1~10)×10−3 μm2,储层质量较差,为低渗—特低渗储层。多口井取心资料证实,物性整体随着埋深的加大而变差,横向及纵向非均质性强,因此,寻找优质储层发育区是产能释放、储量升级的攻关方向。

    前人定性评价认为强水动力、稳定、低摆动条件下的骨架河道砂体为优质储层发育区,但骨架河道的期次、连通性及其展布范围尚需进一步研究。因此,本文引入灰色理论进行半定量研究,通过隔夹层的识别,半定量划分河道砂体期次,再利用与工区构造、沉积背景相似地区的经验公式,计算单河道宽厚比和砂地比,明确河道连通性及展布范围,为下一步勘探开发指明方向[6-9]

    西湖凹陷位于东海陆架盆地东北部,是隶属于东海陆架盆地的次级构造单元,呈NNE向展布,东临钓鱼岛隆褶带,西临海礁隆起,北部为虎皮礁隆起。自西向东可划分出西斜坡、中央反转构造带以及东部断阶带[10-13]图1)。西湖凹陷新生代经历基隆运动、瓯江运动、玉泉运动、龙井运动和冲绳海槽运动,将新生代自下而上分为断陷期、拗陷期和区域沉降期3大构造演化阶段,发育始新统平湖组、渐新统花港组、中新统龙井组、玉泉组、柳浪组、上新统三潭组与更新统东海群等地层,其中本次研究的主要目的层位为渐新统花港组[13-17]表1)。花港组自下而上发育H12—H1砂层组,A构造气层分布在花港组H3—H9,H3为主力目的层。西湖凹陷花港组为东缘受强挤压的大型坳陷盆地充填沉积,并经历两期从坳陷冲积平原–大型轴向河流体系–湖泊三角洲体系–浅水湖泊充填演化过程。花港组下段为强坳陷次幕充填沉积,具“北高南低、北窄南宽、三源三汇多通道”的古构造地貌格局;花港组上段为裂后挤压I幕弱坳陷次幕充填沉积,该阶段继承了花下段沉积时的古构造地貌格局,但其沉积沉降中心逐渐移向坳陷中部,H5—H3砂组为低容纳空间背景下的多源汇聚大型轴向河道体系沉积;H2—H1砂组充填时为高容纳空间背景下的湖泊体系、湖泊三角洲体系沉积。

    图  1  西湖凹陷构造带位置及钻探井位
    Figure  1.  Regional tectonic pattern of the Xihu Sag

    隔夹层是沉积过程中河流水动力条件变化或沉积后成岩作用导致沉积物岩性差异而形成的,隔夹层与不同级次的构型界面相对应。一类是基准面下降晚期或上升早期,可容纳空间增量小于沉积物供给量,多见于岩性突变面,如各级冲刷面等;界面之上多发育大套泥岩隔层,测井曲线多位于基线附近,呈线形或微齿线形。另一类是基准面持续上升期,此时沉积物供给量小于可容纳空间增量,物源供给不足,沉积物以粉砂岩、泥岩等细粒为主,易形成落淤层夹层、钙质夹层等,测井曲线呈现小幅回返,自然伽马异常幅度小于1/3,电阻、声波曲线异常幅度1/3~2/3[18-19]

    西湖凹陷A构造已钻井揭示该区花港组砂层厚度大,录井资料显示H3砂层厚度可达100余米,岩性为多种粒径砂岩,稳定泥岩不发育,仅利用单一测井曲线难以准确识别隔夹层类型,严重制约了单砂体和单河道的划分,故而本文引入灰色理论,选取对泥岩敏感的GR、RT与DEN曲线值,计算各曲线的权重指数,从而拟合出表征隔夹层类型的综合评价指标IRE,同时可以看出IRE值与泥质含量有较好的对应关系(图2);通过对比取心段IRE值与隔夹层对应关系,确定工区隔夹层定量划分标准,进而得出全井段的隔夹层分布特征[20-21]

    图  2  IRE与泥质含量关系
    Figure  2.  Diagram of IRE vs mud content

    以A1井为例,通过计算可知,选取的三条曲线GR、RT、DEN权重指数分别为0.46、0.36和0.18,将原曲线值与权重指数分别相乘再求和,即可得到该井区指示隔夹层类型的综合评价指标IRE值。结合录井资料可知,H3顶部厚层泥岩隔层测井曲线回返幅度小,位于泥岩基线附近,且IRE值明显偏高,为51~110;中间砂砾岩发育段揭示落淤层夹层测井曲线回返显著,IRE值偏低,为24~45。对照IRE值,H3砂层组100 余米的厚砂岩可识别出3大套共10期河道砂体。其中渗透率在1×10−3 μm2以上的优质储层主要发育在H3b正旋回的中下部,其IRE值低,多为25~30,指示隔夹层均为落淤层,处在滞留沉积发育的上覆砂体之中,是在多次洪泛事件不断向下游移动过程中垂向加积而成的正向地貌,主要是一套以粗粒沉积为主的沉积物,岩相组合为强水动力条件下的大量含砾砂岩–中粗砂岩–中砂岩,其渗透率往往较高,可以达到1×10−3 μm2以上,判断为I类储层。H3c IRE值略高,集中在36~45,泥岩夹层逐渐增加,水动力条件减弱,岩相组合表现为少量砂质砾岩–少量块状层理中粗砂岩–大量块状及平行层理细砂岩,渗透率大于1×10−3 μm2的储层也相对减少,判断为II1类储层。而H3a IRE更高,隔夹层多泥岩层,多为洪水退却期水流波动在心滩顶部沉积物质;或者为局部动荡洪水期淹没心滩,形成类似于天然堤的沉积。由于水动力环境较弱,其沉积物粒度较细,代表弱水动力的细粒砂岩增多,物性更差,渗透率往往较低,多小于1×10−3 μm2,为II2类储层(图3表2

    图  3  A1井隔夹层识别与划分
    Figure  3.  Identification and division of barrier and interlayer in Well A1
    表  2  IRE与储层类型定量关系
    Table  2.  Quantitative relationship between IRE and reservoir type
    隔夹层类型IRE岩相组合水动力强弱渗透率/10−3 μm2储层类型
    落淤层24~37块状含砾砂岩–中粗砂岩–块状中砂岩高能水道0.3~79
    (均值 21)
    I类
    落淤层35~45少量砂质砾岩–少量块状中粗砂岩–大量块状细砂+平行细砂低能水道0.5~8
    (均值1.2)
    II1类
    泥岩层51~110平行中细砂岩–粉细砂低能水道0~1
    (均值0.4)
    II2类
    下载: 导出CSV 
    | 显示表格

    利用灰色理论对A构造其他各井进行划分与识别,并在储层隔夹层类型、厚度和频率认识的基础上,对隔夹层在剖面上的分布展开进一步的研究。在H3沉积早期,3口井隔夹层均发育较少;进入H3沉积中期,A5井和A4井隔夹层开始增多,其中A5井发育薄厚不等的隔夹层,A4井则发育厚层隔夹层;H3沉积晚期,各井的隔夹层开始丰富发育起来。但是各井间差异也尤为凸显,其中A5井的隔夹层发育频繁,纵向上反复切割砂体,且发育厚度较薄,使得储层的非均质性进一步加剧;A4井则发育大套厚层的隔层,储层基本不发育(表3图4)。

    表  3  A构造H3 IRE值与隔夹层类型划分
    Table  3.  The IRE value of A Structure and the corresponding interlayer type
    砂层期次12345678910
    A1井IRE36~4241~4554~7030~3926~3424~2927~3031~4234~4351~72
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层落淤层泥岩层落淤层落淤层泥岩层
    A2井IRE37~4630~3344~7024~2927~3041~6031~4234~5341~5243~104
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层泥岩层落淤层泥岩层泥岩层泥岩层
    A4井IRE43~4947~5342~8242~4731~4245~7741~7653~67
    隔夹层类型泥岩层泥岩层泥岩层落淤层落淤层泥岩层泥岩层泥岩层
    A5井IRE43~5036~5537~4538~4739~4343~5042~7152~6047~5643~92
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层落淤层泥岩层落淤层泥岩层泥岩层
    下载: 导出CSV 
    | 显示表格
    图  4  A构造H3储层物性分布连井剖面
    Figure  4.  The crosswell profile of H3 reservoir physical distribution in the A Structure

    在单河道砂体识别划分的基础上,从井资料上读出各单河道的厚度,如果能得到工区河道宽厚比,就能进一步计算出单河道的展布范围。通过调研,本文建立了一套通过计算单河道满岸深度,定量刻画单河道展布规模的经验公式[22-24]

    首先通过岩心资料,统计出工区H3交错层系组的平均厚度h1为0.6 m,从而利用公式(1)、(2)计算出沙丘高度h2为1.76 m,再利用公式(3)得出单河道满岸深度h3为18.7 m,通过单河道满岸深度h3与单河道宽度wb的关系式(4),得到单河道宽度wb为726.8 m,最后得到工区宽厚比A为38.87,而该宽厚比与井上读出的各单河道砂体厚度的乘积即为各期河道横向展布范围。通过计算可知,A1井区单河道展布范围为1.1~2.3 km,符合辫状河三角洲河道宽度一般为1~3 km的经验数值。

    $$ \beta = h_{1} /1.8 $$ (1)
    $$ h_{ 2} = 5.3\beta + 0.001\beta $$ (2)
    $$ h_{3}= 11.6h_{2}^{0.84 } \quad(0.1\;{\rm m} {\text{<}} h_{3} {\text{<}} 100\;{\rm m}) $$ (3)
    $$ w_{\rm b}=11.413\times h_{3}^{1.4182 } $$ (4)
    $$ A=w_{\rm b}/h_{3 } $$ (5)

    根据野外露头研究,辫状河三角洲单河道砂体常叠置出现,并能进一步划分为叠拼式、侧拼式和孤立式3大类。各单砂体垂向厚度和砂地比与砂体横向连通性呈现正相关关系,垂向上的砂岩含量大致等于平面上单河道的密度,等于横向上砂体连通的概率,能够反映平面上单河道砂体连通的概率;单砂体垂向厚度越大,砂地比越高,单河道密度越高,横向连通概率越大[25-26]

    单河道砂体厚度大于10 m,砂地比大于80%时,GR曲线多表现为箱型,齿化程度低,单砂体连通性好,以叠拼式为主。单河道砂体厚度为5~10 m,砂地比多为50%~80%,GR曲线以钟型–齿化箱型为主,砂体连通性变差,多呈侧拼式出现。单河道砂体厚度小于5 m,砂地比小于50%时,砂体连通性更差,多为孤立砂体出现。通过统计西湖凹陷A构造砂体厚度和砂地比可知,A构造花港组H3砂层组单砂体厚度均大于10 m,最大可达25 m,多集中在15 m,砂地比均大于85%,所以认为该区砂体以叠拼式为主。

    在单井类比的基础上,我们基于“旋回对比、分级控制、厚度约束”的原则,对井间也进行了类比。以同一油气藏系统的A1井和A5井为例,A1井和A5井岩性组合自下而上共识别出10期砂体,这10期砂体表现出细—粗—细的特征,粗粒相带主要集中于4—6期砂体发育,反映河道早期稳定,晚期摆动的特征;测井相多表现为箱型,A5井齿化程度强,局部可见漏斗型;从地震相来看,两口井早期同相轴变化弱,中晚期同相轴向A5井逐渐发散。结合岩心相、测井相和地震相认为,A1井与A5井间距3.17 km,属同一复河道带之内,但处于不同的部位,A1井更靠近河道的中心部位,A5井处于河道侧缘。而两口井砂地比约84%,自下而上单砂体厚度逐渐减薄,延伸宽度逐渐减小,所以推测砂体为拼叠型展布,且平面上同一套砂体连通性逐渐变差(图5)。

    图  5  A5井与A1井砂体精细对比
    Figure  5.  Detailed comparison of sand bodies between well A5 and A1

    从A1、A2、A4井来看,依然可以划分出10期砂体,与A1井相比,A2井GR值更低,晚期粗粒更为发育,地震相变化规律相似,优质储层占比略高,由于不属同一油气藏系统,认为A2井处于另一条分流河道的中心部位;A1井与A4井相比,A4井晚期河道不发育且自然伽马齿化程度增高,且不属于同一油气藏系统,因此认为A4井处于另一条分流河道的侧缘(图6)。

    图  6  A2井—A1井—A4井砂体精细对比
    Figure  6.  Fine comparison of sand bodies among wells A2-A1-A4

    优质储层的形成和发育受到两个方面因素的制约,其中沉积作用起决定性作用,构造和成岩作用是对沉积物改造的作用,一定程度上受沉积作用制约。综合构造、沉积与成岩作用等多方面的研究,认为在沉积卸载区内,高砂地比发育区,稳定、低摆动、强水动力条件、低泥质含量条件下的粗粒相带,后期易于受溶蚀改造的分流河道砂岩控制优质储层的发育。结合常规地震复合微相、瞬时地层切片、沉积微相及强溶蚀区分布,对优质储层发育的优势相带展开预测。

    A构造H3古地貌呈现北高南低的趋势,使得南块成为有利的汇水聚砂地区(图7a)。地震相显示,在A构造南块同相轴数量增加,前积特征显著(图7b、c),发育多期顶平底凸下切河道,多期河道呈纵向叠置横向交切发育(图7d)。因此,认为南块所处的沉积卸载区控制古水流向南在地势低洼区内汇聚,使得多期厚层辫状化分流河道的主体砂岩储层在该块发育,这一背景同样有利于高砂地比区在南块发育。

    图  7  A构造H3古地貌及地震复合微相河道识别
    Figure  7.  The paleogeomorphology of H3 in the A Structure and channel microfacies identification from seismic profile

    在H3沉积时期,西湖凹陷A构造主要受西部侧向和轴向物源影响,其中A1井与A5井处于同一条分流河道带之内,但分处不同部位,A1井区位于分流河道带多期叠置的中心部位,而A5井区则位于分流河道带侧缘部位,且分流河道由北向南有变好的趋势;A4井位于另一条分流河道之内,且受到轴向物源和侧向挤压应力影响,优质储层不发育(图8a)。

    图  8  H3沉积微相及粗粒相带分布图
    Figure  8.  Sedimentary microfacies and the distribution of coarse-grain facies in H3

    结合优质储层主控因素,粗粒相带是控制优质储层发育的关键,经过梳理发现砂地比与粗粒相带发育呈正相关。因此借助反演数据体,对平面砂地比进行预测,结合前期分流河道带的展布规模与范围刻画,形成H3粗粒相带的预测分布图,A构造南块处于粗粒相带的发育区(图8b)。

    A构造花港组H3储集空间类型为原生孔+次生溶蚀孔+少量微裂缝,溶蚀作用对砂体物性的改善是另一优质储层控制因素(图9)。中成岩A期主要受有机酸溶蚀,其主要来源为下伏平湖组烃源岩,因此,有效的供酸断裂体系及长时间的酸性环境,是形成强溶蚀区的关键。

    图  9  A构造花港组溶蚀面孔率与物性关系
    Figure  9.  Relationship between the porosity ratio in dissolution surface and the physical property in Huagang Formation of the A Structure

    在明确溶蚀作用控制优质储层发育的基础上,对强溶蚀区进行了平面预测。强溶蚀区主要分布在通源主控断裂F1两侧,由于南块通源断裂更为发育,南块的强溶蚀区范围也更大(表4图10a)。在沉积微相、粗粒相带、强溶蚀区预测的基础上,将三图进行叠合,认为A构造南块为优质储层发育的有利区(图10b)。

    表  4  强溶蚀区划分依据
    Table  4.  Identification criterion for the division of diagenetic facies in strong dissolution area
    成岩储集相A相B相C相D相
    岩石类型中、粗砂岩
    含砾砂岩
    中–细砂岩
    含砾砂岩
    细砂岩粉–细砂岩、泥砾砂岩、钙质砂岩
    沉积微相辫状河道主体河道侧缘
    泥质杂基/%0~42~51~71~13
    孔隙度/%6~115~103.5~102.2~9
    渗透率/10−3 μm2>10.5~10.2~0.5<0.2
    视压实率/%85~9980~9440~9540~93
    视胶结率/%<61~8.51~171~68
    视溶蚀率/%4~202.3~100.5~90~8
    DTS/(μs/ft)95~10590~115
    GR/API≤55>55
    RT/(Ω·m)≥45<45
    ZDEN/(g/cm)≤2.52>2.52
    储集性能较好致密
    下载: 导出CSV 
    | 显示表格
    图  10  A构造H3强溶蚀区分布及有利区带叠合图
    Figure  10.  Distribution of strong dissolution area in A Structure H3 and the superimposition map with promising reservoir

    (1)H3厚层砂岩储集层内发育2种类型隔夹层:落淤层夹层和泥岩层隔层。其中物性最好的中部低IRE值段,隔夹层均为落淤层,为I类储层;而上部IRE高,隔夹层多泥岩层,物性差,为II2类储层。

    (2)工区内单河道宽厚比为38.87,结合单砂体厚度,折算出各期河道展布范围为1.1~2.3 km。A构造H3砂地比多在70%以上,所以认为该区砂体多呈现叠拼型,垂向上连通性有所变化。

    (3)基于前期建立的河道发育模式,在地震复合微相指导下,对H3早期河道进行识别和追踪,认为复合河道带向南交汇增多,水动力更强,更利于优质储层发育。最后结合沉积微相、粗粒相带及成岩相分布特征,认为A构造南部有利储层更为发育。

  • 图  1   北黄海盆地东部坳陷地理位置及构造区划图[15]

    Figure  1.   Geographic location and tectonic units of the Eastern Dpression in the North Yellow Sea Basin[15]

    图  2   东部坳陷下白垩统沉积地层综合柱状图

    Figure  2.   Comprehensive stratigraphic column of the Lower Cretaceous sedimentary strata in the East Depression

    图  3   层序地层地震和钻井标定

    Figure  3.   Seismic and drilling calibration for the sequence stratigraphic

    图  4   C井 SB1层序界面岩电性特征(左)及古风化壳特征(右)

    Figure  4.   Lithology and electrical characteristics of the SB1 sequence boundary in Well C (left) and the characteristics of the paleoweathering crust (right)

    图  5   SB1层序界面B井岩电性特征(左)和地震反射波特征(右)

    Figure  5.   Lithology and electrical characteristics of the SB1 sequence boundary in Well B (left) and the characteristics of the seismic reflected waves (right)

    图  6   SB2层序界面的A井岩电性特征

    Figure  6.   Lithologic and electrical characteristics of the SB2 in Well A

    图  7   SB4层序界面地震反射波特征

    Figure  7.   Characterization of seismic reflected waves of the SB4 sequences interface

    图  8   SB4层序界面的D井岩电性特征

    Figure  8.   Lithologic and electrical characteristics of the SB4 in Well D

    图  9   钻井层序地层划分对比

    Figure  9.   Divisions and comparisons in sequence stratigraphy among 3 wells

    图  10   北黄海盆地东部凹陷沉积相标志

    Figure  10.   Indicators of sedimentary facies in the Eastern Depressions of the North Yellow Sea

    图  11   K1SQ1—K1SQ3时期沉积相平面展布图

    Figure  11.   Sedimentary phase distribution in the K1SQ1-K1SQ3 period

    图  12   早白垩世三级层序及沉积充填模式图

    Figure  12.   The third-order sequences and sedimentary filling patterns in the early cretaceous

  • [1]

    Mitchum R M, Sangree J B, Vail P R, et al. Recognizing sequences and systems tracts from well logs, seismic data, and biostratigraphy: examples from the late Cenozoic of the Gulf of Mexico[M]//Weimer P, Posamentier H. Siliciclastic Sequence Stratigraphy: Recent Developments and Applications. Tulsa: American Association of Petroleum Geologists, 1993.

    [2]

    Van Wagoner J C, Mitchum R M, Campion K M, et al. Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops: Concepts for High-Resolution Correlation of Time and Facies[M]. Tulsa: Association of Petroleum Geologists, 1990: 7-66.

    [3]

    Hunt D, Tucker M E. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall—reply[J]. Sedimentary Geology, 1995, 95(1-2):147-160. doi: 10.1016/0037-0738(94)00123-C

    [4]

    Helland-Hansen W, Gjelberg J G. Conceptual basis and variability in sequence stratigraphy: a different perspective[J]. Sedimentary Geology, 1994, 92(1-2):31-52. doi: 10.1016/0037-0738(94)90053-1

    [5]

    Shanley K W, McCabe P J. Perspectives on the sequence stratigraphy of continental strata[J]. AAPG Bulletin, 1994, 78(4):544-568.

    [6] 李思田, 林畅松, 解习农, 等. 大型陆相盆地层序地层学研究: 以鄂尔多斯中生代盆地为例[J]. 地学前缘, 1995, 2(3-4):133-136,148

    LI Sitian, LIN Changsong, XIE Xinong, et al. Approaches of nonmarine sequence stratigraphy: a case study on the Mesozoic Ordos Bain[J]. Earth Science Frontiers, 1995, 2(3-4):133-136,148.]

    [7] 顾家裕, 郭彬程, 张兴阳. 中国陆相盆地层序地层格架及模式[J]. 石油勘探与开发, 2005, 32(5):11-15 doi: 10.3321/j.issn:1000-0747.2005.05.002

    GU Jiayu, GUO Bincheng, ZHANG Xingyang. Sequence stratigraphic framework and model of the continental basins in China[J]. Petroleum Exploration and Development, 2005, 32(5):11-15.] doi: 10.3321/j.issn:1000-0747.2005.05.002

    [8] 于兴河, 姜辉, 李胜利, 等. 中国东部中、新生代陆相断陷盆地沉积充填模式及其控制因素: 以济阳坳陷东营凹陷为例[J]. 岩性油气藏, 2007, 19(1):39-45 doi: 10.3969/j.issn.1673-8926.2007.01.007

    YU Xinghe, JIANG Hui, LI Shengli, et al. Depositional filling models and controlling factors on Mesozoic and Cenozoic fault basins of terrestrial facies in eastern China: a case study of Dongying sag of Jiyang depression[J]. Lithologic Reservoirs, 2007, 19(1):39-45.] doi: 10.3969/j.issn.1673-8926.2007.01.007

    [9] 操应长. 断陷湖盆层序地层学[M]. 北京: 地质出版社, 2005: 36-59

    CAO Yingchang. Rift Lacustrine Basin Sequence Stratigraphy[M]. Beijing: Geology Press, 2005: 36-59.]

    [10] 刘振湖, 高红芳, 胡小强, 等. 北黄海盆地东部坳陷中生界含油气系统研究[J]. 中国海上油气, 2007, 19(4):229-233 doi: 10.3969/j.issn.1673-1506.2007.04.003

    LIU Zhenhu, GAO Hongfang, HU Xiaoqiang, et al. A study on the Mesozoic petroleum system in East depression, North Yellow Sea basin[J]. China Offshore Oil and Gas, 2007, 19(4):229-233.] doi: 10.3969/j.issn.1673-1506.2007.04.003

    [11] 龚承林, 雷怀彦, 王英民, 等. 北黄海盆地东部坳陷构造演化与油气地质特征[J]. 海洋地质与第四纪地质, 2009, 29(1):79-86

    GONG Chenglin, LEI Huaiyan, WANG Yingmin, et al. Hydrocarbon geologic characters and structural evolution in the eastern depression of North Yellow sea Basin[J]. Marine Geology & Quaternary Geology, 2009, 29(1):79-86.]

    [12]

    Zhang Y G, Chen Q H, Sun K, et al. Characteristics and influencing factors of Cretaceous reservoir in eastern depression of North Yellow Sea basin[J]. Journal of Petroleum Exploration and Production Technology, 2022, 12(7):1907-1918. doi: 10.1007/s13202-021-01362-4

    [13] 杜民, 胡小强, 王改云. 北黄海盆地东部坳陷东南部层序地层特征及沉积体系[J]. 海洋地质前沿, 2014, 30(1):25-33

    DU Min, HU Xiaoqiang, WANG Gaiyun. Sequence stratigraphic characteristics and depositional systems in the southeast of the eastern depression of the North Yellow Sea Basin[J]. Marine Geology Frontiers, 2014, 30(1):25-33.]

    [14] 王改云, 刘金萍, 王后金, 等. 北黄海盆地东部坳陷中生界沉积特征及演化[J]. 沉积学报, 2015, 33(3):561-567

    WANG Gaiyun, LIU Jinping, WANG Houjin, et al. Sedimentary characteristics and evolution of Mesozoic in the eastern depression, North Yellow Sea Basin[J]. Acta Sedimentologica Sinica, 2015, 33(3):561-567.]

    [15] 王改云, 刘金萍, 王嘹亮, 等. 北黄海东部次盆地下白垩统沉积环境及沉积充填[J]. 中国地质, 2018, 45(1):69-80 doi: 10.12029/gc20180107

    WANG Gaiyun, LIU Jinping, WANG Liaoliang, et al. Early Cretaceous sedimentary environment and filling in the Eastern Sub-basin, North Yellow Sea[J]. Geology in China, 2018, 45(1):69-80.] doi: 10.12029/gc20180107

    [16] 王任, 石万忠, 肖丹, 等. 北黄海盆地下白垩统层序构成特点及控制因素[J]. 石油学报, 2015, 36(12):1531-1542 doi: 10.7623/syxb201512007

    WANG Ren, SHI Wanzhong, XIAO Dan, et al. Architecture characteristics and control factors of Lower Cretaceous sequence in North Yellow Sea Basin[J]. Acta Petrolei Sinica, 2015, 36(12):1531-1542.] doi: 10.7623/syxb201512007

    [17] 蔡乾忠. 黄海含油气盆地区域地质与大地构造环境[J]. 海洋地质动态, 2002, 18(11):8-12 doi: 10.3969/j.issn.1009-2722.2002.11.005

    CAI Qianzhong. Regional geology and geotectonic environment of petroliferous basins in the Yellow Sea[J]. Marine Geology Frontiers, 2002, 18(11):8-12.] doi: 10.3969/j.issn.1009-2722.2002.11.005

    [18] 简晓玲, 刘金萍, 王改云. 北黄海东部次盆地中新生代原型盆地分析[J]. 中国海上油气, 2019, 31(1):22-31

    JIAN Xiaoling, LIU Jinping, WANG Gaiyun. Analysis of Meso-Cenozoic prototype basins in the East sub-basin, northern Yellow Sea[J]. China Offshore Oil and Gas, 2019, 31(1):22-31.]

    [19] 胡小强, 唐大卿, 王嘹亮, 等. 北黄海盆地东部坳陷断裂构造分析[J]. 地质科技情报, 2017, 36(1):117-127

    HU Xiaoqiang, TANG Daqing, WANG Liaoliang, et al. Fault structures in the eastern depression of the North Yellow Sea basin[J]. Geological Science and Technology Information, 2017, 36(1):117-127.]

    [20] 陈书伟, 魏文艳, 龚胜利, 等. 北黄海东部坳陷中侏罗世-早白垩世孢粉组合序列[J]. 地层学杂志, 2019, 43(1):51-62

    CHEN Shuwei, WEI Wenyan, GONG Shengli, et al. Middle Jurassic to early cretaceous palynological assemblages in the eastern depression, North Yellow Sea basin[J]. Journal of Stratigraphy, 2019, 43(1):51-62.]

    [21]

    Vail P R. Seismic stratigraphy interpretation using sequence stratigraphy: Part 1: seismic stratigraphy interpretation procedure[M]//Bally A W. Atlas of Seismic Stratigraphy. Tulsa: American Association of Petroleum Geologists, 1987: 1-10.

    [22]

    Cross T A, Baker M R, Chapin M A, et al. Applications of high-resolution sequence stratigraphy to reservoir analysis[M]//Eschard R, Dologez B. Subsurface Reservoir Characterization from Outcrop Observation. Paris: Editions Technip, 1993: 11-33.

    [23]

    Catuneanu O. Principles of Sequence Stratigraphy[M]. Amsterdam: Elsevier, 2006: 1-369.

    [24] 李绍虎. 浅议层序边界[J]. 地学前缘, 2012, 19(1):20-31

    LI Shaohu. About sequence boundary[J]. Earth Science Frontiers, 2012, 19(1):20-31.]

    [25] 于兴河. 碎屑岩系油气储层沉积学[M]. 2版. 北京: 石油工业出版社, 2008

    YU Xinghe. Clastic Hydrocarbon Reservoir Sedimentology [M]. 2nd ed. Beijing: Petroleum Industry Press, 2008.]

    [26] 朱筱敏. 层序地层学[M]. 2版. 青岛: 中国石油大学出版社, 2023

    ZHU Xiaomin. Sequence Stratigraphy[M]. 2nd ed. Qingdao: China University of Petroleum Press, 2023.]

    [27] 邹才能, 侯连华, 杨帆, 等. 碎屑岩风化壳结构及油气地质意义[J]. 中国科学: 地球科学, 2014, 44(12): 2652-2664

    ZOU Caineng, HOU Lianhua, YANG Fan, et al. Structure of weathered clastic crust and its petroleum potential[J]. Science China Earth Sciences, 2014, 57(12): 3015-3026.]

    [28] 周瑶琪, 张悦, 周腾飞, 等. 黄海及邻区晚中生代构造转换与原型盆地构造格局[J]. 地球科学, 2023, 48(4):1461-1480

    ZHOU Yaoqi, ZHANG Yue, ZHOU Tengfei, et al. Tectonic transition of the Late-Mesozoic Yellow Sea and adjacent region and its tectonic framework of the proto-basin[J]. Earth Science, 2023, 48(4):1461-1480.]

    [29]

    Yu H T, Xu Z J, Cheng R H, et al. Late Mesozoic transformation from the compressive to extensional tectonic regime of the Eastern North China Craton: sedimentary records from the North Yellow Sea Basin[J]. Journal of Asian Earth Sciences, 2023, 256:105809. doi: 10.1016/j.jseaes.2023.105809

    [30] 张自力, 朱筱敏, 张锐锋, 等. 典型箕状断陷湖盆层序划分及层序结构样式: 以霸县凹陷古近系为例[J]. 地球科学, 2020, 45(11):4218-4235

    ZHANG Zili, ZHU Xiaomin, ZHANG Ruifeng, et al. Sequence framework and sequence filling style in lacustrine rift basin: taking Paleogene in Baxian sag as an example[J]. Earth Science, 2020, 45(11):4218-4235.]

    [31] 朱筱敏, 康安, 王贵文. 陆相坳陷型和断陷型湖盆层序地层样式探讨[J]. 沉积学报, 2003, 21(2):283-287 doi: 10.3969/j.issn.1000-0550.2003.02.015

    ZHU Xiaomin, KANG An, WANG Guiwen. Sequence stratigraphic models of depression and faulted-down lake basins[J]. Acta Sedimentologica Sinica, 2003, 21(2):283-287.] doi: 10.3969/j.issn.1000-0550.2003.02.015

图(12)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  3
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-06
  • 修回日期:  2023-11-19
  • 录用日期:  2023-11-19
  • 网络出版日期:  2024-06-20
  • 刊出日期:  2024-06-20

目录

/

返回文章
返回