Reliability assessment and calibration of elemental signal values by XRF core scanning in Qinghai Lake
-
摘要:
XRF岩芯连续扫描因其快速、连续、无损、高分辨率等优势在近30年常被用于不同相沉积物的元素半定量分析,特别是在湖泊沉积岩芯中的应用极为广泛。然而,XRF扫描信号值易受仪器设置和岩芯物理属性的影响,亟需全面评估其结果可靠性和校正效果。基于青海湖2.39 m长的完整沉积岩芯(QHH)高分辨率XRF连续扫描,结合其含水量、粒度、烧失量、元素实际含量等理化特征分析,有效识别了XRF连续扫描信号值及其元素比值的准确性和影响因素,进一步评估了国际通用的Normalized Median-scaled(NMS)和Multivariate Log-ratio Calibration(MLC)模型校正结果的可靠性。结果表明,XRF连续扫描的Zr元素信号值可准确反映QHH岩芯中的实际含量分布,而Si元素和Ti元素因相关性较弱均无法指示其在QHH岩芯中的真实情况。此外,QHH岩芯段较高的含水量明显削弱了Al、Si、K、Ca、Ti、Fe、Mn等原子量较小的元素信号值强度和波动幅度,而干燥岩芯段中XRF扫描的上述元素结果因其高分辨率和颗粒组成差异展现出较大的波动,降低了与实际含量的相关性。Rb、Sr和Zr等原子量较大的微量元素扫描信号值分布受含水量和颗粒组成的影响较小。最后,基于XRF连续扫描的相邻元素比值是快速消除多种因素一致影响的有效方法,而MLC模型对QHH整根岩芯及各段中单一元素信号值校正均有较好效果。上述结果为合理利用湖泊沉积物的XRF连续扫描数据提供借鉴,也为重建青藏高原东北部气候变化及人地关系奠定科学基础。
Abstract:XRF core scanning has been extensively employed for semi-quantitative analysis of elements in various sediment types over the past three decades, particularly in lacustrine deposits due to its rapid, continuous, non-destructive, and high-resolution advantages. However, despite the susceptibility of element signal values obtained through XRF core scanning to instrument settings and core physical properties, there remains a scarcity of comprehensive evaluation regarding data reliability and calibration effects. In this study, a 2.39-m–long sedimentary core from Qinghai Hu (Lake) (QHH) was obtained for high-resolution scanning using an XRF core scanner. Physical and chemical characteristics in water content, grain size distribution, loss on ignition, and actual elemental composition were analyzed for each subsample. Moreover, the accuracy of element signal values and ratios by XRF core scanning and their influencing factors was effectively assessed, and the reliability of calibration results was simultaneously calibrated using internationally recognized models such as Normalized Median-scaled Calibration and Multivariate Log-ratio Calibration (MLC). Results demonstrate that the Zr signal values corresponded accurately to the actual contents in the sediment core sequence, while weak correlations were observed for Si and Ti, indicating their limited significance. Additionally, the presence of higher water content in the core sections significantly attenuated in signal intensity and fluctuation amplitude for elements of Al, Si, K, Ca, Ti, Fe and Mn. Reversely, dry core sections exhibited greater fluctuations in signals of above elements due to high-resolution scanning and variations in particle composition, thereby attenuating their correlations with actual concentrations. Trace elements of higher atomic weights, such as Rb, Sr, and Zr, demonstrated reduced susceptibility to the variations in water content and particle composition in terms of signal distributions. Finally, using the ratio between adjacent elements based on the XRF core scanning was proven a highly effective approach for quickly eliminating the consistent influence of multiple factors. Furthermore, the multivariate log-ratio calibration (MLC) model exhibited superior calibration effects on individual element signal values throughout the QHH core and within each core section. These findings not only offered valuable reference to the scientific application of high-resolution data acquired by XRF core scanning for lake sediments, but also established a foundation for the reconstruction of climate change and for comprehension of human-environment relationships in the northeastern Tibetan Plateau.
-
Keywords:
- XRF core scanning /
- element ratio /
- calibration model /
- lacustrine deposit /
- Qinghai Lake
-
-
表 1 QHH-21a岩芯段粗颗粒层(n=9)和细颗粒层(n=42)的XRF连续扫描元素信号值与实际含量的相关性系数
Table 1 Correlation coefficients between elements signal values by XRF core scanning and their actual concentrations in coarse layers (n=9) and fine layers (n=42) in the QHH-21a sequence
Al Si K Ca Ti Fe Mn Rb Sr Zr 粗颗粒层(48~65 cm) −0.67 0.83 −0.47 −0.13 −0.29 −0.22 −0.26 0.48 0.60 0.62 细颗粒层(0~47 cm, 66~101 cm) 0.73 −0.33 0.65 0.48 0.42 0.45 0.61 0.36 0.45 0.94 表 2 QHH岩芯及各段XRF连续扫描元素信号值、NMS及MLC校正结果分别与实际含量的相关性系数
Table 2 Correlation coefficients among elements signal values by XRF core scanning, the NMS calibration data, the MLC calibration data, and their actual concentrations of the whole sedimentary sequence and the two sections in QHH
元素 QHH QHH-21a QHH-21b 扫描值 NMS MLC 扫描值 NMS MLC 扫描值 NMS MLC Al 0.47 0.49 0.92 0.71 0.73 0.93 0.16 0.17 0.91 Si −0.31 −0.36 0.92 −0.39 −0.44 0.97 −0.20 −0.27 0.67 K 0.47 0.49 0.94 0.62 0.65 0.94 0.29 0.60 0.92 Ca 0.44 0.50 0.96 0.49 0.55 0.98 0.42 0.42 0.92 Ti 0.22 0.21 0.74 0.36 0.36 0.66 0.12 0.11 0.73 Fe 0.43 0.48 0.94 0.46 0.56 0.95 0.39 0.40 0.90 Mn 0.51 0.56 0.92 0.57 0.67 0.94 0.46 0.47 0.88 Rb 0.46 0.56 0.92 0.41 0.58 0.93 0.58 0.55 0.89 Sr 0.58 0.70 0.94 0.43 0.64 0.94 0.77 0.80 0.93 Zr 0.92 0.89 0.95 0.95 0.94 0.96 0.79 0.73 0.85 -
[1] Rothwell R G, Croudace I W. Micro-XRF studies of sediment cores: a perspective on capability and application in the environmental sciences[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht, The Netherlands: Springer, 2015: 1-21.
[2] Hennekam R, de Lange G. X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high-resolution paleoenvironmental records[J]. Limnology and Oceanography:Methods, 2012, 10(12):991-1003. doi: 10.4319/lom.2012.10.991
[3] Nowaczyk N R, Liu J B, Plessen B, et al. A high-resolution paleosecular variation record for marine isotope stage 6 from Southeastern Black Sea sediments[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(3):e2020JB021350. doi: 10.1029/2020JB021350
[4] 杨涵菲, 赵艳, 崔巧玉, 等. 基于XRF岩芯扫描的Rb/Sr比值的古气候意义探讨: 以青藏高原东部若尔盖盆地为例[J]. 中国科学: 地球科学, 2021, 51(1): 73-91 YANG Hanfei, ZHAO Yan, CUI Qiaoyu, et al. Paleoclimatic indication of X-ray fluorescence core-scanned Rb/Sr ratios: a case study in the Zoige Basin in the eastern Tibetan Plateau[J]. Science China Earth Sciences, 2021, 64(1): 80-95.]
[5] Wang X Q, Wang Z S, Xiao J, et al. Soil erosion fluxes on the central Chinese Loess Plateau during CE 1811 to 1996 and the roles of monsoon storms and human activities[J]. CATENA, 2021, 200:105148. doi: 10.1016/j.catena.2021.105148
[6] Sun Y B, Clemens S C, Guo F, et al. High-sedimentation-rate loess records: a new window into understanding orbital- and millennial-scale monsoon variability[J]. Earth-Science Reviews, 2021, 220:103731. doi: 10.1016/j.earscirev.2021.103731
[7] 李东, 谭亮成, 郭飞, 等. Avaatech XRF岩芯扫描分析方法在石笋Sr/Ca测试中的应用[J]. 中国科学: 地球科学, 2019, 49(6): 1014-1023 LI Dong, TAN Liangcheng, GUO Fei, et al. Application of Avaatech X-ray fluorescence core-scanning in Sr/Ca analysis of speleothems[J]. Science China Earth Sciences, 2019, 62(6): 964-973.]
[8] Kern O A, Koutsodendris A, Mächtle B, et al. XRF core scanning yields reliable semiquantitative data on the elemental composition of highly organic-rich sediments: evidence from the Füramoos peat bog (southern Germany)[J]. Science of the Total Environment, 2019, 697:134110. doi: 10.1016/j.scitotenv.2019.134110
[9] Perez L, Crisci C, Lüning S, et al. Last millennium intensification of decadal and interannual river discharge cycles into the Southwestern Atlantic Ocean increases shelf productivity[J]. Global and Planetary Change, 2021, 196:103367. doi: 10.1016/j.gloplacha.2020.103367
[10] Croudace I W, Teasdale P A, Cundy A B. 200-year industrial archaeological record preserved in an Isle of Man saltmarsh sediment sequence: geochemical and radiochronological evidence[J]. Quaternary International, 2019, 514:195-203. doi: 10.1016/j.quaint.2018.09.045
[11] Roethlin R L, Gilli A, Wehrli B, et al. Tracking the legacy of early industrial activity in sediments of Lake Zurich, Switzerland: using a novel multi-proxy approach to find the source of extensive metal contamination[J]. Environmental Science and Pollution Research, 2022, 29(57):85789-85801. doi: 10.1007/s11356-022-21288-6
[12] Gardes T, Portet-Koltalo F, Debret M, et al. Historical and post-ban releases of organochlorine pesticides recorded in sediment deposits in an agricultural watershed, France[J]. Environmental Pollution, 2021, 288:117769. doi: 10.1016/j.envpol.2021.117769
[13] 黄平安, 王夏青, 唐湘玲, 等. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展[J]. 物探与化探, 2023, 47(3):726-738 HUANG Ping’an, WANG Xiaqing, TANG Xiangling, et al. Research progress in the influencing factors and correction methods of XRF-CS[J]. Geophysical and Geochemical Exploration, 2023, 47(3):726-738.]
[14] 雷国良, 张虎才, 常凤琴, 等. 湖泊沉积物XRF元素连续扫描与常规ICP-OES分析结果的对比及校正: 以兹格塘错为例[J]. 湖泊科学, 2011, 23(2):287-294 doi: 10.18307/2011.0220 LEI Guoliang, ZHANG Hucai, CHANG Fengqin, et al. Comparison and correction of element measurements in lacustrine sediments using X-ray fluorescence core-scanning with ICP-OES method: a case study of Zigetang Co[J]. Journal of Lake Sciences, 2011, 23(2):287-294.] doi: 10.18307/2011.0220
[15] Liang L J, Sun Y B, Yao Z Q, et al. Evaluation of high-resolution elemental analyses of Chinese loess deposits measured by X-ray fluorescence core scanner[J]. CATENA, 2012, 92:75-82. doi: 10.1016/j.catena.2011.11.010
[16] 张晓楠, 张灿, 吴铎, 等. 基于XRF岩心扫描的中国西部湖泊沉积物元素地球化学特征[J]. 海洋地质与第四纪地质, 2015, 35(1):163-174 ZHANG Xiaonan, ZHANG Can, WU Duo, et al. Element geochemistry of lake deposits measured by X-ray fluorescence core scanner in northwest China[J]. Marine Geology & Quaternary Geology, 2015, 35(1):163-174.]
[17] Jarvis S, Croudace I W, Rothwell R G. Parameter optimisation for the ITRAX core scanner[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht, The Netherlands: Springer, 2015: 535-562.
[18] 成艾颖, 余俊清, 高春亮, 等. 湖泊沉积物微量元素ICP-AES与XRF分析方法和相关性研究[J]. 光谱学与光谱分析, 2013, 33(7):1949-1952 CHENG Aiying, YU Junqing, GAO Chunliang, et al. Study on trace elements of lake sediments by ICP-AES and XRF core scanning[J]. Spectroscopy and Spectral Analysis, 2013, 33(7):1949-1952.]
[19] 周锐, 李珍, 宋兵, 等. 长江三角洲平原湖沼沉积物XRF岩芯扫描结果的可靠性分析[J]. 第四纪研究, 2013, 33(4):697-704 ZHOU Rui, LI Zhen, SONG Bing, et al. Reliability analysis of X-ray fluorescence core-scanning in the Yangtze River Delta limnetic sediments[J]. Quaternary Sciences, 2013, 33(4):697-704.]
[20] Poto L, Gabrieli J, Crowhurst S, et al. Cross calibration between XRF and ICP-MS for high spatial resolution analysis of ombrotrophic peat cores for palaeoclimatic studies[J]. Analytical and Bioanalytical Chemistry, 2015, 407(2):379-385. doi: 10.1007/s00216-014-8289-3
[21] 吴兰军, 黎刚. XRF岩心扫描估算海洋沉积物有机碳含量的适用性[J]. 热带海洋学报, 2022, 41(2):112-120 WU Lanjun, LI Gang. The estimation of organic contents in marine sediments based on bromine intensity by the XRF scanner[J]. Journal of Tropical Oceanography, 2022, 41(2):112-120.]
[22] Tjallingii R, Röhl U, Kölling M, et al. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2):Q02004.
[23] Wang X Q, Jin Z D, Zhang X B, et al. High-resolution geochemical records of deposition couplets in a palaeolandslide-dammed reservoir on the Chinese Loess Plateau and its implication for rainstorm erosion[J]. Journal of Soils and Sediments, 2018, 18(3):1147-1158. doi: 10.1007/s11368-017-1888-9
[24] Cuven S, Francus P, Lamoureux S F. Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty, Canadian High Arctic[J]. Journal of Paleolimnology, 2010, 44(3):803-817. doi: 10.1007/s10933-010-9453-1
[25] Xue G, Cai Y J, Lu Y B, et al. Speleothem-based hydroclimate reconstructions during the penultimate deglaciation in northern China[J]. Paleoceanography and Paleoclimatology, 2021, 36(4):e2020PA004072. doi: 10.1029/2020PA004072
[26] Chawchai S, Kylander M E, Chabangborn A, et al. Testing commonly used X-ray fluorescence core scanning-based proxies for organic-rich lake sediments and peat[J]. Boreas, 2016, 45(1):180-189. doi: 10.1111/bor.12145
[27] Lyle M, Lyle A O, Gorgas T, et al. Data report: raw and normalized elemental data along the Site U1338 splice from X-ray fluorescence scanning[J]. Proceedings of the Integrated Ocean Drilling Program, 2012, 320-321:1-19.
[28] Weltje G J, Bloemsma M R, Tjallingii R, et al. Prediction of geochemical composition from XRF core scanner data: a new multivariate approach including automatic selection of calibration samples and quantification of uncertainties[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht, The Netherlands: Springer, 2015: 507-534.
[29] Chen Q, Kissel C, Govin A, et al. Correction of interstitial water changes in calibration methods applied to XRF core-scanning major elements in long sediment cores: case study from the South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(5):1925-1934. doi: 10.1002/2016GC006320
[30] 庞红丽, 高红山, 刘晓鹏, 等. 河流沉积物原位XRF岩芯扫描结果定量估算的初步研究[J]. 第四纪研究, 2016, 36(1):237-246 PANG Hongli, GAO Hongshan, LIU Xiaopeng, et al. Preliminary study on calibration of X-ray fluorescence core scanner for quantitative element records in the Yellow River sediments[J]. Quaternary Sciences, 2016, 36(1):237-246.]
[31] 张玉枝, 张家武, 毛春晖, 等. 湖泊沉积物含水量和结构对XRF扫描结果影响的评估及校正: 以西藏阿翁错为例[J]. 第四纪研究, 2020, 40(5):1145-1153 ZHANG Yuzhi, ZHANG Jiawu, MAO Chunhui, et al. Accuracy assessment and calibration of the impact of water content and structure of lake sediments on the XRF scanning data: a case study of Aweng Co in the Tibetan Plateau[J]. Quaternary Sciences, 2020, 40(5):1145-1153.]
[32] 张喜林, 范德江, 王亮, 等. X-射线岩心扫描系统对海洋沉积物成分测定质量的综合评价和校正[J]. 海洋学报, 2013, 35(6):86-95 ZHANG Xilin, FAN Dejiang, WANG Liang, et al. The calibration and quality evaluation of elemental analysis results of marine sediment measured by an X-ray fluorescence core scanner[J]. Acta Oceanologica Sinica, 2013, 35(6):86-95.]
[33] Xu F J, Hu B Q, Wang C, et al. Comparison and calibration of elemental measurements in sediments using X-Ray Fluorescence core scanning with ICP methods: a case study of the South China Sea deep Basin[J]. Journal of Ocean University of China, 2021, 20(4):848-856. doi: 10.1007/s11802-021-4554-1
[34] Yan D D, Wünnemann B, Hu Y B, et al. Wetland evolution in the Qinghai Lake area, China, in response to hydrodynamic and eolian processes during the past 1100 years[J]. Quaternary Science Reviews, 2017, 162:42-59. doi: 10.1016/j.quascirev.2017.02.027
[35] 金章东, 张飞, 王红丽, 等. 2005年以来青海湖水位持续回升的原因分析[J]. 地球环境学报, 2013, 4(3):1355-1362 JIN Zhangdong, ZHANG Fei, WANG Hongli, et al. The reasons of rising water level in Lake Qinghai since 2005[J]. Journal of Earth Environment, 2013, 4(3):1355-1362.]
[36] Lin P L, Du Z H, Wang L, et al. Hotspots of riverine greenhouse gas (CH4, CO2, N2O) emissions from Qinghai Lake Basin on the northeast Tibetan Plateau[J]. Science of the Total Environment, 2023, 857:159373. doi: 10.1016/j.scitotenv.2022.159373
[37] 徐海, 刘晓燕, 安芷生, 等. 青海湖现代沉积速率空间分布及沉积通量初步研究[J]. 科学通报, 2010, 55(4-5): 384-390 XU Hai, LIU Xiaoyan, AN Zhisheng, et al. Spatial pattern of modern sedimentation rate of Qinghai lake and a preliminary estimate of the sediment flux[J]. Chinese Science Bulletin, 2010, 55(7): 621-627.]
[38] 韩艳莉, 于德永, 陈克龙, 等. 2000—2018年青海湖流域气温和降水量变化趋势空间分布特征[J]. 干旱区地理, 2022, 45(4):999-1009 HAN Yanli, YU Deyong, CHEN Kelong, et al. Spatial distribution characteristics of temperature and precipitation trend in Qinghai Lake Basin from 2000 to 2018[J]. Arid Land Geography, 2022, 45(4):999-1009.]
[39] 李新新, 宋友桂. 伊犁尼勒克剖面烧失量变化特征及影响因素[J]. 海洋地质与第四纪地质, 2014, 34(5):127-135 LI Xinxin, SONG Yougui. Variation in loss on ignition of the Nilka loess section in the Yili Basin and its impact factors[J]. Marine Geology & Quaternary Geology, 2014, 34(5):127-135.]
[40] 王夏青, 彭保发, 李福春, 等. 黄土高原聚湫沉积旋回特征及地球化学划分[J]. 土壤, 2018, 50(5):1046-1054 WANG Xiaqing, PENG Baofa, LI Fuchun, et al. Features and geochemical identification index of deposition couplets in landslide-dammed reservoirs on Loess Plateau of China[J]. Soils, 2018, 50(5):1046-1054.]
[41] Jones A F, Macklin M G, Brewer P A. A geochemical record of flooding on the Upper River Severn, UK, during the last 3750 years[J]. Geomorphology, 2012, 179:89-105. doi: 10.1016/j.geomorph.2012.08.003
[42] MacLachlan S E, Hunt J E, Croudace I W. An empirical assessment of variable water content and grain-size on X-ray fluorescence core-scanning measurements of deep sea sediments[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht, The Netherlands: Springer, 2015: 173-185.
-
期刊类型引用(5)
1. 李彦杰,朱友生,陈冠军,王姝,王微微. 基于AUV观测数据的南海东沙北部浅表层精细地质特征及其灾害因素分析. 热带海洋学报. 2023(01): 114-123 . 百度学术
2. 杨天宇,邹立,赵彦彦,宋晓帅,权永峥,贾永刚. 南海东北部上层沉积物有机碳的沉积特征. 海洋环境科学. 2022(01): 16-23 . 百度学术
3. 王大伟,曾凡长,王微微,孙悦. 海底冲沟——深水沉积输运系统的“毛细血管”. 地球科学进展. 2022(04): 331-343 . 百度学术
4. Xishuang Li,Chengyi Zhang,Baohua Liu,Lejun Liu. Mounded seismic units in the modern canyon system in the Shenhu area, northern South China Sea: Sediment deformation, depositional structures or the mixed system?. Acta Oceanologica Sinica. 2022(09): 107-116 . 必应学术
5. 龚广传,李磊,何旺,张威,高毅凡,程琳燕,杨志鹏. 块体搬运沉积顶面沉积过程模拟--以南海北部坡为例. 海洋地质前沿. 2022(12): 75-83 . 百度学术
其他类型引用(0)