Reliability assessment and calibration of elemental signal values by XRF core scanning in Qinghai Lake
-
摘要:
XRF岩芯连续扫描因其快速、连续、无损、高分辨率等优势在近30年常被用于不同相沉积物的元素半定量分析,特别是在湖泊沉积岩芯中的应用极为广泛。然而,XRF扫描信号值易受仪器设置和岩芯物理属性的影响,亟需全面评估其结果可靠性和校正效果。基于青海湖2.39 m长的完整沉积岩芯(QHH)高分辨率XRF连续扫描,结合其含水量、粒度、烧失量、元素实际含量等理化特征分析,有效识别了XRF连续扫描信号值及其元素比值的准确性和影响因素,进一步评估了国际通用的Normalized Median-scaled(NMS)和Multivariate Log-ratio Calibration(MLC)模型校正结果的可靠性。结果表明,XRF连续扫描的Zr元素信号值可准确反映QHH岩芯中的实际含量分布,而Si元素和Ti元素因相关性较弱均无法指示其在QHH岩芯中的真实情况。此外,QHH岩芯段较高的含水量明显削弱了Al、Si、K、Ca、Ti、Fe、Mn等原子量较小的元素信号值强度和波动幅度,而干燥岩芯段中XRF扫描的上述元素结果因其高分辨率和颗粒组成差异展现出较大的波动,降低了与实际含量的相关性。Rb、Sr和Zr等原子量较大的微量元素扫描信号值分布受含水量和颗粒组成的影响较小。最后,基于XRF连续扫描的相邻元素比值是快速消除多种因素一致影响的有效方法,而MLC模型对QHH整根岩芯及各段中单一元素信号值校正均有较好效果。上述结果为合理利用湖泊沉积物的XRF连续扫描数据提供借鉴,也为重建青藏高原东北部气候变化及人地关系奠定科学基础。
Abstract:XRF core scanning has been extensively employed for semi-quantitative analysis of elements in various sediment types over the past three decades, particularly in lacustrine deposits due to its rapid, continuous, non-destructive, and high-resolution advantages. However, despite the susceptibility of element signal values obtained through XRF core scanning to instrument settings and core physical properties, there remains a scarcity of comprehensive evaluation regarding data reliability and calibration effects. In this study, a 2.39-m–long sedimentary core from Qinghai Hu (Lake) (QHH) was obtained for high-resolution scanning using an XRF core scanner. Physical and chemical characteristics in water content, grain size distribution, loss on ignition, and actual elemental composition were analyzed for each subsample. Moreover, the accuracy of element signal values and ratios by XRF core scanning and their influencing factors was effectively assessed, and the reliability of calibration results was simultaneously calibrated using internationally recognized models such as Normalized Median-scaled Calibration and Multivariate Log-ratio Calibration (MLC). Results demonstrate that the Zr signal values corresponded accurately to the actual contents in the sediment core sequence, while weak correlations were observed for Si and Ti, indicating their limited significance. Additionally, the presence of higher water content in the core sections significantly attenuated in signal intensity and fluctuation amplitude for elements of Al, Si, K, Ca, Ti, Fe and Mn. Reversely, dry core sections exhibited greater fluctuations in signals of above elements due to high-resolution scanning and variations in particle composition, thereby attenuating their correlations with actual concentrations. Trace elements of higher atomic weights, such as Rb, Sr, and Zr, demonstrated reduced susceptibility to the variations in water content and particle composition in terms of signal distributions. Finally, using the ratio between adjacent elements based on the XRF core scanning was proven a highly effective approach for quickly eliminating the consistent influence of multiple factors. Furthermore, the multivariate log-ratio calibration (MLC) model exhibited superior calibration effects on individual element signal values throughout the QHH core and within each core section. These findings not only offered valuable reference to the scientific application of high-resolution data acquired by XRF core scanning for lake sediments, but also established a foundation for the reconstruction of climate change and for comprehension of human-environment relationships in the northeastern Tibetan Plateau.
-
Keywords:
- XRF core scanning /
- element ratio /
- calibration model /
- lacustrine deposit /
- Qinghai Lake
-
碳、氮元素作为基础生源要素在生物地球化学过程中具有不容忽视的作用[1]。海洋与大气进行着复杂的碳交换,是全球最大的碳储库。海水吸收的一部分CO2通过生物泵等机制作用迁移至海底沉积物中贮存,在一定条件下又可被重新释放至海水乃至大气中。沉积物中的碳含量在一定程度上指示了海洋吸收CO2的净通量,也是研究全球碳循环及收支平衡的有效指标[2]。氮是营养盐的重要组成元素,与海洋浮游植物的生长关系密切[3]。海洋沉积物中的氮扮演着与碳元素类似的“源”和“汇”的角色,其赋存、迁移、埋藏和释放过程与机制对于维持海洋生态系统的平衡具有重要意义。
南大洋面积广阔,占世界大洋面积的15%~20%,对CO2具有很强的吸收能力,学者们就此在该区开展了基于碳循环的海气交换作用研究[4-7]。据估算,南大洋对大气CO2的净吸收贡献接近40%,尤其是50°S以南的大洋对CO2的净吸收起到了极其重要的作用[8]。同时,南大洋的锋面系统结构产生的水文动力学差异以及海水中某些元素浓度的制约也影响了浮游植物的生产力[9-12],生产力的变化又进一步影响水体-沉积物中碳、氮元素的转化、迁移和赋存。
前人对南大洋沉积物中有机碳(TOC)和总氮(TN)含量与分布特征进行了研究,但多以南极半岛周边海域和普里兹湾表层沉积物为主[2, 13-15],对罗斯海地区柱状样沉积物TOC和TN的纵向变化却鲜有涉及。本文通过对罗斯海RBA08C柱状样沉积物中的TOC和TN进行分析,探讨了TOC和TN纵向分布特征,并基于TOC/TN比值和δ13C判断了有机质来源,为罗斯海乃至南大洋的生物地球化学过程与碳循环研究提供科学依据。
1. 区域概况
罗斯海(72°~85°S、160°E~160°W)位于南大洋太平洋扇区内的西南极大陆边缘,西临南极大陆横断山脉和维多利亚地,东靠玛丽伯德地,南接巨大的罗斯冰架,北通太平洋(图 1)。其水深为200~3600m,具有北浅南深的特点,即由海向陆朝罗斯冰架逐步加深[16]。罗斯海湾陆缘区宽达850km,长达1500km,展布面积约75×104km2,由于其南部被罗斯冰架所覆盖,因此罗斯海通常是指罗斯海湾78°S以北的区域。
罗斯海是南极调查研究程度相对较高的区域之一。自20世纪60年代以来,多国在本区有计划地开展了地质与地球物理调查。Cooper等[17, 18]根据罗斯海地区地质及地震地层特征,划分出两期构造演化阶段,即晚侏罗世或早白垩世至晚白垩世的早期裂谷阶段和始新世至今的晚期裂谷阶段。与之相对应,发育了两期受张裂作用控制的SW向和NW向断裂。多道地震资料揭示罗斯海有3个主要沉积中心,即维多利亚地盆地、中央海槽和东部盆地(图 1),其间分布着库尔曼高地和中央高地。东部盆地和中央海槽沉积物厚度达5~6km[19],维多利亚盆地则形成了一套始自晚白垩纪或早新生代以来的厚度逾万米的沉积序列[20]。
2. 材料与方法
2.1 样品采集
本文样品来源于“南极周边海洋地质考察”专项第32次南极科学考察所采RBA08C柱状样,使用重力取样器获取柱状连续无扰动沉积物样品。采样站位位于罗斯海,地理坐标77°23′24″ S、178°59′54″ E,采样水深738m,柱长191cm。采获后进行冷冻保存,带回实验室进行分样及分析测试。将柱状样管剖开,自顶部向下以2cm为间隔分样,对奇数层的48个样品进行TOC、TN、δ13C以及粒度的测试。
2.2 分析方法
TOC和TN含量测定采用Elementar Vario Cube有机元素分析仪,在同济大学海洋地质国家重点实验室完成。将样品冷冻干燥后研磨至200目,称取0.5g样品置于试管内,加入6mL浓度为1mol/L的HCl,在超声条件下反应3h去除无机碳,其中6mL的HCl分两次添加。之后,将其在2500r/min转速下离心5min,去除上清液,加入高纯水后再次离心,去除上清液,重复3次,直至冲洗至中性。最后将样品冷冻干燥称重,准确称取30mg样品,用锡纸包裹后放入元素分析仪中测试。在测试过程中,以沉积物标准物质GBW07314作为质量控制,设置平行样进行对比,测量结果的相对标准偏差小于1%。
δ13C值于青岛海洋地质研究所采用Thermo MAT253同位素比值质谱仪进行测量。取0.5g样品于聚丙烯材质的具盖离心管中,缓慢滴加5mL浓度为10%的盐酸,充分摇匀,待反应结束后于室温下敞口静置8~12h,期间再次摇匀2~3次。之后,于2500r/min转速下离心5min,弃除上清液。加入5mL高纯水充分摇匀,离心5min后弃除上清液。上述过程共重复3次,直至上清液洗至近中性。将上述处理好的样品于-20℃预冻后,再于-50℃以下真空冷冻干燥24h。将干燥好的样品研磨成粉,待上机测定。测量结果的标准偏差小于0.2‰。
粒度测试在青岛海洋地质研究所完成,仪器为Mastersizer2000型激光粒度仪。筛选出粒径小于2mm的样品,经双氧水去除有机质、醋酸去除钙质壳体以及用氢氧化钠溶液去除生源蛋白石后,加入适量的六偏磷酸钠煮沸1min之后上机测试。该仪器测量范围为0.02~2000μm,对同一样品平均粒径的重复性测试偏差不超过1%。
3. 结果与讨论
3.1 TOC、TN和δ13C的纵向变化
RBA08C柱样沉积物中TOC含量为0.25%~1.42%,平均为0.38%,高于深海沉积物中0.2%的有机质平均含量[21]。顶层0~12cm的TOC含量相对较高,呈现随柱深增加而降低的趋势(图 2)。自柱深约12cm以深含量总体相对稳定,仅发生小幅波动,但在柱深184cm处出现最大值,可能指示了一次有机质异常输入事件。TN含量为0.05%~0.22%,平均为0.08%,总体上具有与TOC相同的变化趋势,两者呈较强正相关性(相关系数R2=0.67),说明沉积物中TOC和TN可能具有一致的来源,但沉积物中氮的反硝化作用可能对两者的相关性造成了一定的影响[22]。与北极周边海域相比(表 1),罗斯海柱样的TOC和TN含量相对较低,这可能与前者具有较高的上层水体生产力和较有利的有机质保存条件有关[23-25]。δ13C值波动幅度相对较大,范围-25.64‰~-19.94‰,在柱深4cm和24cm处分别达到最低值和最高值,整个柱样的δ13C平均值为-21.72‰。
表 1 不同海区沉积物中有机质参数对比Table 1. Parameter comparison for organic matters in sediments from the different areas站位 位置 TOC TN TOC/TN TOC埋藏率/% 平均沉积速率/(mm/a) 参考文献 Ⅲ-13 普里兹湾中心 0.90% 0.18% 5.00 91 1.88 [2, 26] Ⅳ-10 普里兹湾中心 0.93% 0.17% 5.70 84 1.29 [2, 26] IS-4 普里兹湾埃默里冰架边缘 0.31% 0.05% 6.70 50 0.47 [2, 26] M07 楚科奇海北部陆架边缘 0.79% 0.90% 8.84 / / [27] BL6 白令海陆架区 1.48% 0.25% 6.10 / / [22] RBA08C 罗斯海罗斯冰架前缘 0.38% 0.08% 4.74 50 / 本文 3.2 沉积有机质来源
海洋沉积物中的有机质主要有两种来源——陆源和海源。研究表明,来自海洋藻类的有机质的TOC/TN比值通常为3~8,而陆生植物的TOC/TN比值通常为20,甚至更高[28, 29];典型海源有机碳δ13C值为-22‰~-19‰[30],典型陆地C3植物的δ13C值为-31‰~-22‰[31],C4植物的δ13C平均值为-14‰[32]。由此可见,TOC/TN比值和δ13C值随有机质来源不同而存在差异,因此可作为判别有机质类型的有效参数[33-36]。RBA08C柱样沉积物的TOC/TN比值介于3.16~7.80之间,平均为4.74,δ13C变化于-25.64‰~-19.94‰之间,绝大部分为-23‰~-19‰。在有机质来源判别图上[37],绝大多数样品落入海洋藻类区域内,与位于白令海陆坡的BS3站[24]具有相同的有机质来源,即海洋生物源,但与北冰洋波弗特海CG1站[24]、楚科奇海S11站[27]以及长江口C19柱[38]显著不同,这些地区沉积物含有陆源和海源混合的有机质,因而在图 3上落入陆生植物和海洋藻类之间的区域。需注意的是,RBA08C柱样顶部两个样品具有较低的δ13C值(低于-25‰),在投图上十分接近湖泊藻类区域,但与混合来源有机质的TOC/TN比值相差较大,推测可能与本区海水PCO2变化有关。研究表明[37],海水中CO2浓度会影响藻类有机质的δ13C组成,当PCO2增大时,碳同位素分馏倾向于富集轻碳,反之则相反。具体机制还有待进一步研究。
南极普里兹湾沉积物中生物标志物特征显示有机质主要来自于硅藻等浮游植物[39];鲍威尔海盆有机碳同位素组成表明其来源主要以海洋水生生物为主[40];杰拉许海峡表层沉积物TOC/TN比值为6.6~7.8,亦揭示海源性质[13]。由此可见,海洋浮游生物应是南极周边海域沉积物中有机质的主要来源。
3.3 影响有机质保存的主要因素
一般情况下,有机质沉降至沉积物-水界面时会发生降解矿化,随着沉积物的不断堆积和埋藏深度的增加,其分解作用逐渐趋于稳定。通过对普里兹湾多个柱状岩心的TOC和TN含量变化研究发现,沉积速率是影响沉积物中有机质降解矿化时间的重要因素[2, 26, 41],即相对较高的沉积速率会导致有机质的快速埋藏,使其降解矿化过程不充分,因而在沉积物中含量相对较高且呈现一定的波动性。
前已述及,南极海区沉积物中的海源有机质占相当比重,这与上部水体的生物生产力具有紧密联系,有机质的含量一定程度上反映了海洋生产力的变化[42]。硅藻是南极周边近岸海域浮游植物中的优势种属,也是代表高生产力的主控物种[43, 44],占南极初级生产力的75%左右[45]。硅藻等浮游植物吸收海水中的硅,并通过生物泵作用将TOC输送至海底[46, 47],对海底沉积物的物质组成具有直接影响。因此,以硅藻为代表的上层水体生产力也是影响沉积物中有机质含量的重要因素。
由图 4可以看出,TOC和TN与黏土含量和平均粒径并无相关性,说明沉积物粒度组成并不是影响RBA08C柱样中有机质含量的主要因素。另外,韩喜彬等[40]基于Pr/Ph比值研究发现,缺氧环境有利于南极半岛东北海域沉积物中有机质的保存;Goñi等[23]对北极周边海域沉积物中TOC分布特征研究发现,TOC埋藏通量较高海区的底质沉积物具有较薄的MnO2富集层,而后者用以指示沉积物原位的氧化还原状况和氧气穿透深度。综上所述,研究区沉积物中有机质的保存应主要受控于上层水体生产力、沉积速率和氧化还原环境等因素的共同作用。
3.4 TOC埋藏率
由图 2可见,罗斯海柱样沉积物中TOC自12cm以深含量较为稳定,因此可将这些经过矿化分解处于较稳定状态的TOC含量近似看作碳储藏量,而将表层0~2cm的TOC含量近似视为碳沉积量,以此用两者比值(埋藏量/沉积量)来计算碳埋藏率[14]。估算结果表明,位于罗斯冰架前缘的RBA08C柱样的碳储藏量约为0.34%,碳沉积量约为0.68%,TOC埋藏率为50%,与位于普里兹湾埃默里冰架边缘的IS-4柱样相同(表 1),另外两者还具有较为相近的TOC和TN含量,且均从10~12cm层位往下生源有机质含量趋于稳定,表明IS-4和RBA08C两个站位可能具有相近的沉积速率,这有待进一步的数据补充和深入研究。另有研究表明,南极布兰斯菲尔德海峡和杰拉许海峡沉积物中TOC埋藏率可达80%左右[13, 14],可见这些海区共同组成了南极海域重要的碳循环和碳储区。
4. 结论
(1) RBA08C柱样中TOC含量在顶部0~12cm呈现随柱深增加而降低的趋势,自柱深12cm以深含量总体相对稳定。TN总体具有与TOC相同的变化趋势,两者含量变化呈现较强正相关性,说明可能具有相同来源。
(2) 沉积物TOC/TN比值和δ13C值揭示RBA08C柱样有机质主要为海洋生源沉积,其含量变化应主要受控于上层水体生产力、沉积速率和氧化还原环境等因素的共同作用。
(3) RBA08C柱样的TOC埋藏率约为50%,与位于普里兹湾埃默里冰架边缘的IS-4柱样相同,加之较为相近的TOC和TN含量及变化趋势,表明两者可能具有相近的沉积速率,其所在的海区也是南极海域较重要的碳循环和碳储区。
-
表 1 QHH-21a岩芯段粗颗粒层(n=9)和细颗粒层(n=42)的XRF连续扫描元素信号值与实际含量的相关性系数
Table 1 Correlation coefficients between elements signal values by XRF core scanning and their actual concentrations in coarse layers (n=9) and fine layers (n=42) in the QHH-21a sequence
Al Si K Ca Ti Fe Mn Rb Sr Zr 粗颗粒层(48~65 cm) −0.67 0.83 −0.47 −0.13 −0.29 −0.22 −0.26 0.48 0.60 0.62 细颗粒层(0~47 cm, 66~101 cm) 0.73 −0.33 0.65 0.48 0.42 0.45 0.61 0.36 0.45 0.94 表 2 QHH岩芯及各段XRF连续扫描元素信号值、NMS及MLC校正结果分别与实际含量的相关性系数
Table 2 Correlation coefficients among elements signal values by XRF core scanning, the NMS calibration data, the MLC calibration data, and their actual concentrations of the whole sedimentary sequence and the two sections in QHH
元素 QHH QHH-21a QHH-21b 扫描值 NMS MLC 扫描值 NMS MLC 扫描值 NMS MLC Al 0.47 0.49 0.92 0.71 0.73 0.93 0.16 0.17 0.91 Si −0.31 −0.36 0.92 −0.39 −0.44 0.97 −0.20 −0.27 0.67 K 0.47 0.49 0.94 0.62 0.65 0.94 0.29 0.60 0.92 Ca 0.44 0.50 0.96 0.49 0.55 0.98 0.42 0.42 0.92 Ti 0.22 0.21 0.74 0.36 0.36 0.66 0.12 0.11 0.73 Fe 0.43 0.48 0.94 0.46 0.56 0.95 0.39 0.40 0.90 Mn 0.51 0.56 0.92 0.57 0.67 0.94 0.46 0.47 0.88 Rb 0.46 0.56 0.92 0.41 0.58 0.93 0.58 0.55 0.89 Sr 0.58 0.70 0.94 0.43 0.64 0.94 0.77 0.80 0.93 Zr 0.92 0.89 0.95 0.95 0.94 0.96 0.79 0.73 0.85 -
[1] Rothwell R G, Croudace I W. Micro-XRF studies of sediment cores: a perspective on capability and application in the environmental sciences[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht, The Netherlands: Springer, 2015: 1-21.
[2] Hennekam R, de Lange G. X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high-resolution paleoenvironmental records[J]. Limnology and Oceanography:Methods, 2012, 10(12):991-1003. doi: 10.4319/lom.2012.10.991
[3] Nowaczyk N R, Liu J B, Plessen B, et al. A high-resolution paleosecular variation record for marine isotope stage 6 from Southeastern Black Sea sediments[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(3):e2020JB021350. doi: 10.1029/2020JB021350
[4] 杨涵菲, 赵艳, 崔巧玉, 等. 基于XRF岩芯扫描的Rb/Sr比值的古气候意义探讨: 以青藏高原东部若尔盖盆地为例[J]. 中国科学: 地球科学, 2021, 51(1): 73-91 YANG Hanfei, ZHAO Yan, CUI Qiaoyu, et al. Paleoclimatic indication of X-ray fluorescence core-scanned Rb/Sr ratios: a case study in the Zoige Basin in the eastern Tibetan Plateau[J]. Science China Earth Sciences, 2021, 64(1): 80-95.]
[5] Wang X Q, Wang Z S, Xiao J, et al. Soil erosion fluxes on the central Chinese Loess Plateau during CE 1811 to 1996 and the roles of monsoon storms and human activities[J]. CATENA, 2021, 200:105148. doi: 10.1016/j.catena.2021.105148
[6] Sun Y B, Clemens S C, Guo F, et al. High-sedimentation-rate loess records: a new window into understanding orbital- and millennial-scale monsoon variability[J]. Earth-Science Reviews, 2021, 220:103731. doi: 10.1016/j.earscirev.2021.103731
[7] 李东, 谭亮成, 郭飞, 等. Avaatech XRF岩芯扫描分析方法在石笋Sr/Ca测试中的应用[J]. 中国科学: 地球科学, 2019, 49(6): 1014-1023 LI Dong, TAN Liangcheng, GUO Fei, et al. Application of Avaatech X-ray fluorescence core-scanning in Sr/Ca analysis of speleothems[J]. Science China Earth Sciences, 2019, 62(6): 964-973.]
[8] Kern O A, Koutsodendris A, Mächtle B, et al. XRF core scanning yields reliable semiquantitative data on the elemental composition of highly organic-rich sediments: evidence from the Füramoos peat bog (southern Germany)[J]. Science of the Total Environment, 2019, 697:134110. doi: 10.1016/j.scitotenv.2019.134110
[9] Perez L, Crisci C, Lüning S, et al. Last millennium intensification of decadal and interannual river discharge cycles into the Southwestern Atlantic Ocean increases shelf productivity[J]. Global and Planetary Change, 2021, 196:103367. doi: 10.1016/j.gloplacha.2020.103367
[10] Croudace I W, Teasdale P A, Cundy A B. 200-year industrial archaeological record preserved in an Isle of Man saltmarsh sediment sequence: geochemical and radiochronological evidence[J]. Quaternary International, 2019, 514:195-203. doi: 10.1016/j.quaint.2018.09.045
[11] Roethlin R L, Gilli A, Wehrli B, et al. Tracking the legacy of early industrial activity in sediments of Lake Zurich, Switzerland: using a novel multi-proxy approach to find the source of extensive metal contamination[J]. Environmental Science and Pollution Research, 2022, 29(57):85789-85801. doi: 10.1007/s11356-022-21288-6
[12] Gardes T, Portet-Koltalo F, Debret M, et al. Historical and post-ban releases of organochlorine pesticides recorded in sediment deposits in an agricultural watershed, France[J]. Environmental Pollution, 2021, 288:117769. doi: 10.1016/j.envpol.2021.117769
[13] 黄平安, 王夏青, 唐湘玲, 等. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展[J]. 物探与化探, 2023, 47(3):726-738 HUANG Ping’an, WANG Xiaqing, TANG Xiangling, et al. Research progress in the influencing factors and correction methods of XRF-CS[J]. Geophysical and Geochemical Exploration, 2023, 47(3):726-738.]
[14] 雷国良, 张虎才, 常凤琴, 等. 湖泊沉积物XRF元素连续扫描与常规ICP-OES分析结果的对比及校正: 以兹格塘错为例[J]. 湖泊科学, 2011, 23(2):287-294 doi: 10.18307/2011.0220 LEI Guoliang, ZHANG Hucai, CHANG Fengqin, et al. Comparison and correction of element measurements in lacustrine sediments using X-ray fluorescence core-scanning with ICP-OES method: a case study of Zigetang Co[J]. Journal of Lake Sciences, 2011, 23(2):287-294.] doi: 10.18307/2011.0220
[15] Liang L J, Sun Y B, Yao Z Q, et al. Evaluation of high-resolution elemental analyses of Chinese loess deposits measured by X-ray fluorescence core scanner[J]. CATENA, 2012, 92:75-82. doi: 10.1016/j.catena.2011.11.010
[16] 张晓楠, 张灿, 吴铎, 等. 基于XRF岩心扫描的中国西部湖泊沉积物元素地球化学特征[J]. 海洋地质与第四纪地质, 2015, 35(1):163-174 ZHANG Xiaonan, ZHANG Can, WU Duo, et al. Element geochemistry of lake deposits measured by X-ray fluorescence core scanner in northwest China[J]. Marine Geology & Quaternary Geology, 2015, 35(1):163-174.]
[17] Jarvis S, Croudace I W, Rothwell R G. Parameter optimisation for the ITRAX core scanner[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht, The Netherlands: Springer, 2015: 535-562.
[18] 成艾颖, 余俊清, 高春亮, 等. 湖泊沉积物微量元素ICP-AES与XRF分析方法和相关性研究[J]. 光谱学与光谱分析, 2013, 33(7):1949-1952 CHENG Aiying, YU Junqing, GAO Chunliang, et al. Study on trace elements of lake sediments by ICP-AES and XRF core scanning[J]. Spectroscopy and Spectral Analysis, 2013, 33(7):1949-1952.]
[19] 周锐, 李珍, 宋兵, 等. 长江三角洲平原湖沼沉积物XRF岩芯扫描结果的可靠性分析[J]. 第四纪研究, 2013, 33(4):697-704 ZHOU Rui, LI Zhen, SONG Bing, et al. Reliability analysis of X-ray fluorescence core-scanning in the Yangtze River Delta limnetic sediments[J]. Quaternary Sciences, 2013, 33(4):697-704.]
[20] Poto L, Gabrieli J, Crowhurst S, et al. Cross calibration between XRF and ICP-MS for high spatial resolution analysis of ombrotrophic peat cores for palaeoclimatic studies[J]. Analytical and Bioanalytical Chemistry, 2015, 407(2):379-385. doi: 10.1007/s00216-014-8289-3
[21] 吴兰军, 黎刚. XRF岩心扫描估算海洋沉积物有机碳含量的适用性[J]. 热带海洋学报, 2022, 41(2):112-120 WU Lanjun, LI Gang. The estimation of organic contents in marine sediments based on bromine intensity by the XRF scanner[J]. Journal of Tropical Oceanography, 2022, 41(2):112-120.]
[22] Tjallingii R, Röhl U, Kölling M, et al. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2):Q02004.
[23] Wang X Q, Jin Z D, Zhang X B, et al. High-resolution geochemical records of deposition couplets in a palaeolandslide-dammed reservoir on the Chinese Loess Plateau and its implication for rainstorm erosion[J]. Journal of Soils and Sediments, 2018, 18(3):1147-1158. doi: 10.1007/s11368-017-1888-9
[24] Cuven S, Francus P, Lamoureux S F. Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty, Canadian High Arctic[J]. Journal of Paleolimnology, 2010, 44(3):803-817. doi: 10.1007/s10933-010-9453-1
[25] Xue G, Cai Y J, Lu Y B, et al. Speleothem-based hydroclimate reconstructions during the penultimate deglaciation in northern China[J]. Paleoceanography and Paleoclimatology, 2021, 36(4):e2020PA004072. doi: 10.1029/2020PA004072
[26] Chawchai S, Kylander M E, Chabangborn A, et al. Testing commonly used X-ray fluorescence core scanning-based proxies for organic-rich lake sediments and peat[J]. Boreas, 2016, 45(1):180-189. doi: 10.1111/bor.12145
[27] Lyle M, Lyle A O, Gorgas T, et al. Data report: raw and normalized elemental data along the Site U1338 splice from X-ray fluorescence scanning[J]. Proceedings of the Integrated Ocean Drilling Program, 2012, 320-321:1-19.
[28] Weltje G J, Bloemsma M R, Tjallingii R, et al. Prediction of geochemical composition from XRF core scanner data: a new multivariate approach including automatic selection of calibration samples and quantification of uncertainties[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht, The Netherlands: Springer, 2015: 507-534.
[29] Chen Q, Kissel C, Govin A, et al. Correction of interstitial water changes in calibration methods applied to XRF core-scanning major elements in long sediment cores: case study from the South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(5):1925-1934. doi: 10.1002/2016GC006320
[30] 庞红丽, 高红山, 刘晓鹏, 等. 河流沉积物原位XRF岩芯扫描结果定量估算的初步研究[J]. 第四纪研究, 2016, 36(1):237-246 PANG Hongli, GAO Hongshan, LIU Xiaopeng, et al. Preliminary study on calibration of X-ray fluorescence core scanner for quantitative element records in the Yellow River sediments[J]. Quaternary Sciences, 2016, 36(1):237-246.]
[31] 张玉枝, 张家武, 毛春晖, 等. 湖泊沉积物含水量和结构对XRF扫描结果影响的评估及校正: 以西藏阿翁错为例[J]. 第四纪研究, 2020, 40(5):1145-1153 ZHANG Yuzhi, ZHANG Jiawu, MAO Chunhui, et al. Accuracy assessment and calibration of the impact of water content and structure of lake sediments on the XRF scanning data: a case study of Aweng Co in the Tibetan Plateau[J]. Quaternary Sciences, 2020, 40(5):1145-1153.]
[32] 张喜林, 范德江, 王亮, 等. X-射线岩心扫描系统对海洋沉积物成分测定质量的综合评价和校正[J]. 海洋学报, 2013, 35(6):86-95 ZHANG Xilin, FAN Dejiang, WANG Liang, et al. The calibration and quality evaluation of elemental analysis results of marine sediment measured by an X-ray fluorescence core scanner[J]. Acta Oceanologica Sinica, 2013, 35(6):86-95.]
[33] Xu F J, Hu B Q, Wang C, et al. Comparison and calibration of elemental measurements in sediments using X-Ray Fluorescence core scanning with ICP methods: a case study of the South China Sea deep Basin[J]. Journal of Ocean University of China, 2021, 20(4):848-856. doi: 10.1007/s11802-021-4554-1
[34] Yan D D, Wünnemann B, Hu Y B, et al. Wetland evolution in the Qinghai Lake area, China, in response to hydrodynamic and eolian processes during the past 1100 years[J]. Quaternary Science Reviews, 2017, 162:42-59. doi: 10.1016/j.quascirev.2017.02.027
[35] 金章东, 张飞, 王红丽, 等. 2005年以来青海湖水位持续回升的原因分析[J]. 地球环境学报, 2013, 4(3):1355-1362 JIN Zhangdong, ZHANG Fei, WANG Hongli, et al. The reasons of rising water level in Lake Qinghai since 2005[J]. Journal of Earth Environment, 2013, 4(3):1355-1362.]
[36] Lin P L, Du Z H, Wang L, et al. Hotspots of riverine greenhouse gas (CH4, CO2, N2O) emissions from Qinghai Lake Basin on the northeast Tibetan Plateau[J]. Science of the Total Environment, 2023, 857:159373. doi: 10.1016/j.scitotenv.2022.159373
[37] 徐海, 刘晓燕, 安芷生, 等. 青海湖现代沉积速率空间分布及沉积通量初步研究[J]. 科学通报, 2010, 55(4-5): 384-390 XU Hai, LIU Xiaoyan, AN Zhisheng, et al. Spatial pattern of modern sedimentation rate of Qinghai lake and a preliminary estimate of the sediment flux[J]. Chinese Science Bulletin, 2010, 55(7): 621-627.]
[38] 韩艳莉, 于德永, 陈克龙, 等. 2000—2018年青海湖流域气温和降水量变化趋势空间分布特征[J]. 干旱区地理, 2022, 45(4):999-1009 HAN Yanli, YU Deyong, CHEN Kelong, et al. Spatial distribution characteristics of temperature and precipitation trend in Qinghai Lake Basin from 2000 to 2018[J]. Arid Land Geography, 2022, 45(4):999-1009.]
[39] 李新新, 宋友桂. 伊犁尼勒克剖面烧失量变化特征及影响因素[J]. 海洋地质与第四纪地质, 2014, 34(5):127-135 LI Xinxin, SONG Yougui. Variation in loss on ignition of the Nilka loess section in the Yili Basin and its impact factors[J]. Marine Geology & Quaternary Geology, 2014, 34(5):127-135.]
[40] 王夏青, 彭保发, 李福春, 等. 黄土高原聚湫沉积旋回特征及地球化学划分[J]. 土壤, 2018, 50(5):1046-1054 WANG Xiaqing, PENG Baofa, LI Fuchun, et al. Features and geochemical identification index of deposition couplets in landslide-dammed reservoirs on Loess Plateau of China[J]. Soils, 2018, 50(5):1046-1054.]
[41] Jones A F, Macklin M G, Brewer P A. A geochemical record of flooding on the Upper River Severn, UK, during the last 3750 years[J]. Geomorphology, 2012, 179:89-105. doi: 10.1016/j.geomorph.2012.08.003
[42] MacLachlan S E, Hunt J E, Croudace I W. An empirical assessment of variable water content and grain-size on X-ray fluorescence core-scanning measurements of deep sea sediments[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht, The Netherlands: Springer, 2015: 173-185.
-
期刊类型引用(1)
1. 牛成民,于海波,单玄龙,王冰洁,郭景震,邹玉洁,庞赫,衣健. 渤海海域锦州25-A构造区中生界火山岩有利储层成因. 吉林大学学报(地球科学版). 2024(06): 1788-1800 . 百度学术
其他类型引用(1)