南海东北部末次冰盛期以来有机碳通量变化及驱动机制

高健祺, 周辛全, 刘传联

高健祺,周辛全,刘传联. 南海东北部末次冰盛期以来有机碳通量变化及驱动机制[J]. 海洋地质与第四纪地质,2025,45(1): 68-78. DOI: 10.16562/j.cnki.0256-1492.2023092101
引用本文: 高健祺,周辛全,刘传联. 南海东北部末次冰盛期以来有机碳通量变化及驱动机制[J]. 海洋地质与第四纪地质,2025,45(1): 68-78. DOI: 10.16562/j.cnki.0256-1492.2023092101
GAO Jianqi,ZHOU Xinquan,LIU Chuanlian. Variation of organic carbon flux in the northeastern South China Sea since the Last Glacial Maximum and the driving mechanism[J]. Marine Geology & Quaternary Geology,2025,45(1):68-78. DOI: 10.16562/j.cnki.0256-1492.2023092101
Citation: GAO Jianqi,ZHOU Xinquan,LIU Chuanlian. Variation of organic carbon flux in the northeastern South China Sea since the Last Glacial Maximum and the driving mechanism[J]. Marine Geology & Quaternary Geology,2025,45(1):68-78. DOI: 10.16562/j.cnki.0256-1492.2023092101

南海东北部末次冰盛期以来有机碳通量变化及驱动机制

基金项目: 国家自然科学基金重点项目“用南海沉积物中长链烯酮重建中新世大气二氧化碳浓度变化”(41930536);海洋碳汇与生物地球化学过程基础科学中心项目(42188102);国家自然科学基金委青年科学基金项目 “南亚降雨量轨道尺度变化机制研究”(42206060)
详细信息
    作者简介:

    高健祺(1999—),男,硕士研究生,主要从事古环境、钙质超微化石研究,E-mail:2131621@tongji.edu.cn

    通讯作者:

    刘传联(1963—),男,教授,主要从事海洋微体古生物和古海洋学研究,E-mail:liucl@tongji.edu.cn

  • 中图分类号: P736.21

Variation of organic carbon flux in the northeastern South China Sea since the Last Glacial Maximum and the driving mechanism

  • 摘要:

    通过分析南海东北部台湾西南岸外MD18-3569柱状样岩芯的总有机碳、总氮和有机碳同位素,探讨了末次冰盛期(LGM)以来南海东北部有机碳通量变化及其驱动机制。结果表明,总有机碳和总氮含量分别为0.13%~0.40%和0.017%~0.061%,均呈冰期高、全新世低的特征;C/N比值和有机碳同位素值分别为5.90~8.58和−25.15‰~−22.61‰,指示了研究站位海陆混合的有机碳来源,海源有机碳主要来自于海洋初级生产者(海洋藻类为主),陆源有机碳主要来自台湾西南部河流。海陆端元模型计算的海陆有机碳通量结果显示,海源有机碳和陆源有机碳通量分别为0.01~0.12 g·cm−2·ka−1和0.05~0.21 g·cm−2·ka−1。LGM以来,海源有机碳通量总体呈下降趋势,冰期高海源有机碳通量可能是由于冰期较强的东亚冬季风加强了海水垂向混合,导致上层海水营养物质含量升高,从而提高了海洋初级生产力;陆源有机碳通量呈自LGM以来的上升趋势,可能主要受到东亚夏季风带来的降水对台湾西南河流通量的影响,冰期以来的海平面变化通过改变河口位置也对这一过程起到了一定作用。这表明LGM以来,东亚季风系统对南海东北部有机碳埋藏过程具有非常重要的影响。

    Abstract:

    To investigate the variations of organic carbon flux and their driving mechanisms since the Last Glacial Maximum (LGM), we examined The variation of total organic carbon (TOC), total nitrogen (TN), and stable organic carbon isotope (δ13CTOC) in core MD18-3569 collected offshore of southwestern Taiwan in the northeastern part of the South China Sea. Results indicate that the values of TOC and TN ranged from 0.13% to 0.40% and 0.017% to 0.061%, which exhibit a characteristic pattern of higher values during glacial periods and lower values during the Holocene. The values of C/N ratio and δ13CTOC ranged from 5.90 to 8.58 and −25.15‰~−22.61‰, which indicate a mixed marine-terrigenous source for organic carbon at MD18-3569. Marine organic carbon mainly originates from marine primary producers, primarily marine algae, while terrigenous organic carbon primarily comes from rivers in southwestern Taiwan. According to the marine-terrigenous end-member model calculations, the values of marine organic carbon flux and terrigenous organic carbon flux ranged 0.01~0.12 g·cm−2·ka−1 and 0.05~0.21 g·cm−2·ka−1, respectively. The marine organic flux had generally been decreased since the LGM. The high marine organic carbon flux during the glacial period might be due to stronger East Asian winter monsoon that enhanced the vertical mixing of seawater, which increased the nutrient content and consequently the marine primary productivity in the upper seawater. In contrast, terrigenous organic carbon flux showed an increasing trend since the LGM duo likely to the impact of precipitation from the East Asian summer monsoon on the rivers in the southwestern Taiwan. Sea level changes since the LGM also played a certain role in this process by the shifting of river mouth. Therefore, the East Asian monsoon system resulted in significant influence on the burial of organic carbon in the northeastern South China Sea since the LGM.

  • 海洋有机碳在深海沉积物中的埋藏是全球碳循环的重要部分,是影响长时间尺度大气二氧化碳含量变化的重要过程[1-2]。边缘海是有机碳沉降与埋藏的重要区域,海洋中超过90%的有机碳埋藏发生在陆架边缘海区域。这是因为边缘海是陆地和海洋相互作用最为强烈的地区,是陆地风化剥蚀产物,包括陆源有机碳主要的堆积地[3-4]。此外,浮游植物的光合作用将大气CO2固定为颗粒有机碳,也是海洋沉积物中有机碳的重要来源[5]。热带边缘海还受季风气候与沃克环流的影响,透光带海水在大气运动的作用下发生垂直运动与混合,进而影响浮游植物的光合作用[6-7]

    南海是西太平洋最大的边缘海,是一个半封闭的海盆。南海的水文参数具有明显的季节性差异,反映了东亚季风的控制 [8]。在北半球夏季,从海洋吹向陆地的风携带了大量水汽,导致了东亚陆地和附近岛屿的强降雨[9-10];在冬季,来自西伯利亚的风吹向海洋,导致东亚陆地变得寒冷和干燥[11-12]。在南海北部,年平均初级生产力变化主要受控于东亚冬季风强度,冬季风造成表层海水温度降低,导致上层海水对流混合加强,进而提高了初级生产力[6-7]。南海东北部的台湾西南岸外是极为特殊的海域,该海域海水除了受东亚季风的直接影响外[13-14],还接受来自台湾岛的河流输入[15-16],这使得南海东北部对于研究边缘海有机碳埋藏与季风之间的联系具有重要意义。前人对南海北部有机碳物源、埋藏通量变化等开展了大量的工作,取得了一定的进展[1721],但对于南海东北部台湾西南岸外LGM以来的时间序列研究还需要进一步完善[22]

    本文旨在通过对南海东北部台湾西南岸外MD18-3569柱状样岩芯的有机碳(TOC)、氮含量(TN)和C/N比值以及有机碳同位素(δ13CTOC)的分析,重建LGM以来MD18-3569站位有机碳来源和通量变化,通过海陆端元模型初步估算沉积物中海源、陆源有机碳的比重,并将结果与前人研究中的同时段东亚夏季、冬季风等其他记录对比,以探讨南海东北部台湾西南岸外有机碳来源、通量变化及其驱动机制。

    研究材料来自2018年中法合作HYDROSED-1航次Marion Dufresne科考船采集的MD18-3569(22°09.30'N 、119°49.24'E,图1)柱状岩芯。钻孔位于南海东北、台湾西南岸外,水深1320 m,发育海底峡谷,以澎湖海底峡谷和高坪海底峡谷为主,与山区河流、狭窄陆架一同构成了陆源沉积物的快速运输系统[23]。钻孔位于澎湖峡谷东南岸,主要以半远洋沉积为主。岩芯总长度为40.08 m,为颜色均一的深灰色软泥,没有明显的沉积扰动,富含微体生物化石。本研究主要对12.39 m以上的岩芯做了取样研究,取样间隔为8 cm,共155个样品,对样品进行干密度、有机碳含量、有机氮含量和有机碳同位素测试。

    图  1  MD18-3569及其他研究涉及的站位(a)和南海海底地形(b)
    红点为MD18-3569,黑点为其他站位。高程数据来自ETOPO(https://www.ncei.noaa.gov/products/etopo-global-relief-model),黑色实线为130 m等深线。
    Figure  1.  MD18-3569 and other sites involved in this study (a) and submarine topography of the South China Sea (b)
    The red dot is MD18-3569, and the black dots are other sites. The elevation data are taken from the ETOPO (https://www.ncei.noaa.gov/products/etopo-global-relief-model), and the solid black line is the 130 m isobath.

    取研磨后的样品1 g左右于烧杯中,加入4 mol·L−1 的HCl至过量,反应24 h。用去离子水洗酸至中性,将样品置于烘箱内60 ℃烘干约2天,恒重后称量,研磨成粉末,过60目的筛子,密封备用。用百万分之一天平准确称取适量固体样品,放入锡箔杯中并紧密包裹成小球状,按样品编号依次放进96孔板内,准备上机测试。用Falash 1112-Delta V plus型(Thermo Finnigan)元素分析-稳定同位素比值质谱联用仪进行测试,样品前设置3个空白,每12个样品插两个标样,使用的标样分别为IAEA-600:δ13C=−27.71‰,δ15N=1‰;Acetanilide#1:δ13C=−26.85‰, δ15N=−4.21‰;USGS-40:δ13C=−26.39‰,δ15N=−4.52‰。δ13CTOC、δ15NTN测试结果参照国际Pee Dee Belemnite (PDB)标准,标准测量误差<0.2‰。碳氮同位素及含量测试在自然资源部第三海洋研究所完成。

    干密度(Dry bulk density,DBD)测量实验对研究深度以上的岩芯按大约 24.8 cm 间距共选取50个样品, 用容积为5.8 mL的定容器将样品烘干称重, 减去容器质量以获得样品净重, 除以容器体积计算得到沉积物干密度。干密度测量在同济大学海洋地质国家重点实验室完成。线性沉积速率(Sedimentation rate,SR)通过年龄深度模式计算得到。因此,可以通过干密度乘以线性沉积速率的方法计算出总物质堆积速率(Mass accumulation rate,MAR),进而有机碳通量可以通过有机碳含量的分析结果乘以总物质堆积速率得到:

    $$\rm MAR = DBD\times SR $$ (1)
    $$ F_{\rm{TOC}} =\rm TOC{\text{%}}\times MAR $$ (2)

    式中,MAR、DBD、SR、FTOC和TOC%分别表示总物质堆积速率、干密度、线性沉积速率、有机碳通量和有机碳含量。

    本文年龄深度模式参考前人浮游有孔虫壳体AMS14C测年结果[24]图2a),通过MD18-3569站位年龄深度模式可以得到各控制点间的线性沉积速率(图2b)为34.91~72.93 cm·ka−1,沉积速率较高。本研究主要对12.39 m(日历年龄为26519±354 aBP)以上的岩芯做了取样研究,共155个样品,采样分辨率约167 a。

    图  2  MD18-3569站位年龄深度模式(a) 、线性沉积速率(b)、沉积物干密度(c)及总物质堆积速率(d)
    年龄模式根据文献 [24]。
    Figure  2.  The age-depth model (a), sedimentation rate (b), dry bulk density (c) and mass accumulation rate (d) in core MD18-3569
    Age model is based on reference [24].

    MD18-3569柱状岩芯干密度变化范围为1.08~1.55 g·cm−3,平均值为1.36 g·cm−3图2c),因此可以得到MD18-3569站位总物质堆积速率变化范围为48.99~105.77 g·cm−2·ka−1,平均值为68.51 g·cm−2·ka−1图2d)。

    26 ka以来,MD18-3569柱状岩芯TOC含量变化范围为0.13%~0.40%,平均值为0.24%(图3a)。TOC含量总体呈下降趋势,在26~11.7 ka期间,TOC含量有明显千年尺度波动,低值出现在Heinrich Stadial 1冷期(HS1,17.5~15 ka)和Younger Dryas(YD,12.9~11.7 ka)冷期,高值出现在Bølling-Allerød暖期(B-A,14.7~12.9 ka)。TOC含量在YD之后有短暂小幅升高,之后在早全新世(11~8.2 ka)下降,并在中—晚全新世(8.2~0 ka)趋于平稳。总体而言,全新世(11~0 ka)的TOC含量(0.13%~0.29%)要低于LGM(23~19 ka)的TOC含量(0.24%~0.37%)。

    图  3  MD18-3569站位LGM以来TOC(a)、TOC通量(b)、TN(c)、C/N比值(d)和δ13CTOC(e)
    Figure  3.  Total organic carbon (TOC) (a), total organic carbon flux(b), total nitrogen (c), C/N ratio (d), and stable carbon isotope of TOC (e) in core MD18-3569 since the LGM

    LGM以来研究站位的TOC通量变化范围为0.07~0.27 g·cm−2·ka−1图3b),平均值0.16 g·cm−2·ka−1。LGM期间,TOC通量相对稳定,在LGM晚期短暂升高;末次冰消期(19~11.7 ka),TOC通量在19~13.4 ka呈上升趋势并达到峰值;在早全新世,TOC通量回落至与LGM类似的水平;在中—晚全新世,TOC通量明显上升。

    MD18-3569柱状岩芯的TN含量变化范围为0.017%~0.061%,平均值为0.036%(图3c)。TN含量的变化趋势与TOC含量变化趋势类似,呈相对较弱的下降趋势,冷事件结束后伴随高值,同样也在晚全新世出现波动;全新世TN含量相对较低,为0.017%~0.044%。

    MD18-3569柱状岩芯的C/N比值变化范围为5.90~8.58,平均值为6.72(图3d)。26 ka以来,研究站位C/N比值呈缓慢下降趋势,波动较小。

    MD18-3569柱状岩芯的δ13CTOC值的变化范围为−25.15‰~−22.61‰,平均值为−23.70‰(图3e),总体呈负偏趋势。26~11.7 ka,δ13CTOC值基本为负偏状态;早全新世早期δ13CTOC值回到相对偏正的状态,然后逐渐负偏;中全新世(8.2~4.2 ka) δ13CTOC值整体呈正偏状态;晚全新世时期,在2.1 ka,δ13CTOC值开始由正偏转为负偏。

    沉积物有机质中稳定碳同位素反映的是光合作用、碳同化作用和碳源同位素的组成,因此陆源有机碳和海源有机碳在13C方面的差异可以用于区分有机碳来源[25]。通常通过有机质C/N和δ13CTOC一同判断有机质来源。TN分析中需要考虑无机氮(沉积物中黏土矿物对NH4+的吸附)的影响[26-27],MD18-3569站位TOC与TN相关性如图4所示,存在良好线性相关关系(R2=0.85),表明TOC与TN基本上具有相同的来源,能够排除选择性降解对有机质组成的影响[28];截距估计的无机氮含量大约为0.0074%,占TN的20.56%,因此认为无机氮对于C/N比值影响较小。

    图  4  MD18-3569站位TOC-TN相关图
    Figure  4.  Cross plot of TOC (total organic carbon) versus TN (total nitrogen) in core MD18-3569

    前人研究指出,南海东北部陆源沉积物物源主要来自于台湾、珠江流域和吕宋岛弧 [15]。风尘沉积在南海沉积物贡献中的占比较小,仅占陆源通量的10%左右[18-20]。研究区域靠近台湾西南部,主要接受来自台湾岛的河流输入,包括河流淡水、河流溶解物和碎屑物质。台湾岛的暴雨、陡坡、软弱的基岩和活跃的地震可以产生大量泥沙并由河流进行搬运[29],河流碎屑物质的大量搬运,使得有机质快速沉降,得以在大陆边缘保存。台湾西南部大陆边缘陆架狭窄,陆源碎屑与有机质可以快速堆积在陆坡半深海区[17]。台湾西南海源有机碳C/N 平均值为5.9,δ13CTOC 平均值为−21.5‰;台湾西南河流悬浮体C/N 平均值为7.3,δ13CTOC 平均值为−25.0‰;台湾沉积岩和变质岩的C/N 平均值分别为7和8.5;δ13CTOC平均值分别为−24.7‰和−22.2‰[17,30]

    MD18-3569柱状岩芯C/N比值变化范围为5.90~8.58,反映了沉积物有机碳海陆混合的物源(图3d);C/N比值在冰期相对较高,指示冰期海源有机碳的占比较高,全新世C/N比值开始下降,可能是由于海源有机碳贡献的降低而导致;仅通过C/N比值判断有机碳来源变化存在一定局限性,需要与δ13CTOC协同判断。δ13CTOC值变化范围为−25.15‰~−22.61‰(图3e),总体呈负偏状态,也表明海源与陆源有机碳的混合贡献,且海源有机碳贡献逐渐减小;26~11.7 ka,δ13CTOC值负偏,海源有机碳贡献持续减弱;早全新世初期δ13CTOC值短暂偏正后继续负偏,海源有机碳贡献可能进一步减小;中晚全新世,δ13CTOC值轻微正偏后又在2.1 ka开始负偏,指示了有机质物源供给变化的复杂性。

    综合C/N比值与δ13CTOC的结果,如图5所示,珠江河流悬浮体C/N比值和δ13CTOC值分别为12.9和−23.3‰[32],吕宋岛河流沉积物C/N比值和δ13CTOC值分别为13.5和−23.3‰[33], 台湾西南河流悬浮体C/N 平均值为7.3, δ13CTOC 平均值为−23.9‰;台湾沉积岩和变质岩的C/N 平均值分别为7和8.5;δ13CTOC平均值分别为−24.7‰和−22.2‰[30,34-35]。可以看出MD18-3569站位的有机碳具有明显的台湾西南物源特征,受珠江、吕宋岛弧物源影响较小,这与南海东北部珠江、台湾和吕宋岛弧沉积物通量贡献相一致[16,36-37]。所有数据δ13CTOC值基本处于台西南陆源端元(−25.0‰[17])和台西南海源端元之间(−21.5‰[17]),进一步说明台湾陆源和海源端元的混合贡献,这与前人[17,22,38]对南海东北部的研究一致。其中,陆源有机碳主要来自于台湾西南河流的输入,而海源有机碳作为透光带浮游植物(初级生产者)光合固碳的产物(初级生产力),主要由海洋藻类贡献[5]。在时间尺度上,全新世数据较冰期数据出现了向陆源端元的轻微偏移,可能表示了LGM以来海源有机碳贡献的减少,有关海陆有机碳通量的变化将通过海陆端元模型进一步分析。

    图  5  MD18-3569站位C/N比值-δ13CTOC关系图
    不同潜在有机碳来源的δ13C和C/N值范围[17,31]
    Figure  5.  Cross plot of C/N versus δ13CTOC in core MD18-3569
    The range of δ13C and C/N values[17,31] for different potential organic carbon sources is shown.

    对于沉积物有机碳中海源与陆源有机碳比例的定量研究,前人提出了根据沉积物有机质碳同位素计算海源陆源有机碳比例的海陆端元模型[39]

    $$\delta^{13}{\rm C}_{\rm{TOC}} = f_{\rm m}\times \delta^{13}{\rm C}_{\rm m} + f_{\rm t}\times \delta^{13}{\rm C}_{\rm t} $$ (3)
    $$ f_{\rm m}+ f_{\rm t} = 1 $$ (4)

    式中,ftfm分别表示陆源有机碳和海源有机碳占总有机碳的比例,δ13Ct、δ13Cm分别代表了陆源和海源有机碳的碳同位素值。根据前文分析,研究区域沉积物有机质受海源与陆源的混合贡献,其中陆源有机碳主要来自台湾,而海源有机碳主要来自海洋初级生产者(藻类为主)。因此参考前人工作,本研究选取陆源端元δ13Ct值为−25.0‰,海源端元δ13Cm值为−21.5‰[17]。由此可以根据海陆端元模型粗略地计算MD18-3569站位LGM以来海陆有机碳相对含量,并通过以下公式进一步计算海源、陆源有机碳的通量:

    $$ F_{\rm m}= f_{\rm m}\times F_{\rm{TOC}} $$ (5)
    $$ F_{\rm t} = f_{\rm t}\times F_{\rm{TOC}} $$ (6)

    式中,FtFm分别表示陆源有机碳和海源有机碳通量,计算结果如图6所示。MD18-3569站位海源有机碳的相对含量(图6a)变化范围为17.36%~66.01%,平均值为37.13%, LGM以来呈逐渐下降趋势,与前文分析结果一致;海源有机碳通量(图6c)变化范围为0.01~0.12 g·cm−2·ka−1,平均值为0.06 g·cm−2·ka−1,冰期海源有机碳通量大于全新世海源有机质通量。MD18-3569站位陆源有机碳相对含量变化范围为33.99%~62.87%(图6b),平均值为62.87%, LGM以来逐渐升高;陆源有机碳通量(图6d)变化范围为0.05~0.21 g·cm−2·ka−1,平均值为0.10 g·cm−2·ka−1,与陆源有机碳百分含量类似呈升高趋势。

    图  6  MD18-3569站位LGM以来海源有机碳相对含量(a)、陆源有机碳相对含量(b)、海源有机碳通量(c)和陆源有机碳通量(d)
    Figure  6.  Relative abundance of marine organic carbon (a), relative abundance of terrigenous organic carbon (b), marine organic carbon flux (c), and terrigenous organic carbon flux (d) in core MD18-3569 since the LGM

    LGM以来,MD18-3569站位海源有机碳通量在冰期和全新世存在较大差异,表现为冰期高、全新世相对较低。海源有机碳作为海洋初级生产者光合固碳的产物,其通量变化应与海洋初级生产力变化存在密切联系。颗石藻是海洋透光带的单细胞浮游植物,海洋中最重要的初级生产者之一[40]。利用颗石藻下透光带属种Florisphaera profunda的相对含量重建初级生产力的方法已经在中低纬大洋取得了可靠的成果[40-43],南海北部初级生产力重建结果[42]显示(图7c),LGM以来南海北部初级生产力呈下降趋势,与研究站位海源有机碳通量变化类似(图7j)。颗石藻的生物标志物长链烯酮含量变化同样可以表示颗石藻的初级生产力情况[44-45]。南海东北部岩芯长链烯酮含量分析结果[46]F. profunda重建结果相类似(图7b),LGM以来也呈持续下降趋势,与研究站位海源有机碳通量变化趋势基本一致。海洋初级生产力主要受光照、营养物质和温度等环境因素影响。在南海北部,初级生产力的变化主要受控于东亚冬季风强度变化。在夏季,温润的东亚夏季风使得表层海水升温,且降水增强带来大量淡水注入,这两者都会导致上层海水密度梯度增大、分层增强,并进一步造成营养物质含量与初级生产力降低。而在冬季,干冷的东亚冬季风吹向海洋,使得表层海水温度降低,进而加强了海水垂向的混合,这导致上层海水的营养物质含量升高,从而使初级生产力升高[6-7,42],这种冬季风控制机制在其他季风区海域也同样存在[41,47]。因此,南海北部海洋初级生产力与东亚冬季风密切相关,相关重建结果也与前人利用古浪黄土平均粒度重建的东亚冬季风记录[48]有着基本一致的变化趋势(图7a-c)。这意味着研究站位的海源有机碳通量很可能是受东亚冬季风强度变化控制的。冰期东亚冬季风较强时,更强的表层海水降温造成海水垂向混合作用增强,使得上层海水营养物质含量升高,并进一步导致南海东北部海洋初级生产力升高,且伴随更高的海源有机碳通量。随着全新世东亚冬季风逐渐减弱,上层海水的垂向混合变弱,上层海水营养物质含量相对下降,从而使得南海东北部海洋初级生产力下降,海源有机碳通量也呈现下降趋势。LGM以来研究区域的初级生产力变化与海源有机碳通量变化基本一致,而在全新世,海源有机碳通量下降趋势并不明显,并且在晚全新世略有升高,这可能反映了海源有机碳埋藏效率的变化[49],影响因素主要是该段时期沉积速率的升高(图2b)。沉积速率升高会造成海水向缺氧环境转变,有机碳再矿化速率降低,更易埋藏[50-52]

    图  7  MD18-3569站位LGM以来海源、陆源有机碳通量与研究区域海平面、表层海水温度、中国石笋δ18O、东亚季风降水记录、南海北部初级生产力和古浪黄土平均粒度对比
    a:古浪黄土平均粒度[48],b:17937站位长链烯酮浓度[46],c:MD12-3428站位初级生产力[42],d:大坪泥沼孢粉记录[65],e:水竹洋泥沼常绿阔叶孢粉生物群落-落叶阔叶孢粉生物群落分数[63],f:葫芦洞和董哥洞石笋氧同位素记录[56-57],g:MD18-3569站位表层海水温度[24],h:MD178-10-3291站位相对海平面[66],i:MD18-3569站位陆源有机碳通量,j:MD18-3569站位海源有机碳通量。
    Figure  7.  Marine and terrestrial organic carbon fluxes in core MD18-3569 since the LGM and comparison with sea level, surface seawater temperature in the study area, records of Chinese stalagmite δ18O, records of East Asian monsoon precipitation, primary productivity in the northern South China Sea and the mean grain size of the Gulang Loess
    a: The mean grain size of Gulang loess[48], b: abundance of C37 long chain alkenones in core 17937[46], c: primary productivity in core MD12-3428[42], d: pollen records in Daping swamp[65], e: the Biome score (difference between evergreen broad-leaved and deciduous broad-leaved biome) of Shuizhuyang swamp[63], f: oxygen isotope records of stalagmites in the Hulu Cave and Dongge Cave[56-57], g: Surface seawater temperature in core MD18-3569[24], h: relative sea level in core MD178-10-3291[66], i: terrigenous organic carbon flux in core MD18-3569, j: marine organic carbon flux in core MD18-3569.

    综上所述,东亚冬季风通过控制南海东北部上层海水垂向混合作用强度进而控制海洋初级生产力,海源有机碳通量与海洋初级生产力密切相关,沉积速率可能在一定程度上影响了海源有机碳的埋藏效率。因此,研究认为东亚冬季风强度的变化是影响MD18-3569站位海源有机碳通量的主要因素。

    MD18-3569站位的陆源有机碳通量在冰期呈缓慢上升趋势,在B-A暖期达到高值,全新世以来呈上升趋势,整体高于冰期的平均通量。通过上文对研究站位陆源物质来源的分析,可以认为陆源物质基本来自台湾西南河流输入,风尘沉积占比很小,因此降水很可能是通过影响台湾西南河流物质输入,进而影响陆源有机碳通量的重要因素。现代观测和模拟均表明,台湾西南地区降水有着明显的季节性特征,东亚夏季风使得夏季温暖湿润,降水量高,而东亚冬季风使得冬季寒冷干燥,降水量低[53-55]。因此,东亚夏季风强度通过调控台湾西南地区降水量来控制台湾西南河流的输入,从而控制陆源有机质通量。东亚石笋氧同位素被用于指示大空间尺度上东亚夏季风强度的变化[56-57],葫芦洞和董哥洞的石笋氧同位素记录显示(图7f),LGM以来,东亚夏季风强度在冰期相对较低,在B-A暖期有一个小的高值,而后在全新世达到了一个高于冰期东亚夏季风强度的水平,与MD18-3569站位的表层海水温度重建结果[24]类似(图7g),但石笋氧同位素结果显示早全新世东亚夏季风强度大于晚全新世,这与研究站位陆源有机碳通量并不一致(图7i),研究认为这是由于氧同位素记录可能与降水记录存在差异[58],所以石笋氧同位素并不能很好地指示东亚夏季风的降水强度,因此需要进一步与其他季风降水记录进行对比。LGM以来,东亚亚热带地区常绿阔叶生物群落逐渐取代落叶阔叶生物群落而占据主导地位[59-61],东亚亚热带森林格局的变化被认为与东亚夏季风密切相关[62]。中国东南地区水竹洋泥沼区的孢粉研究发现,常绿阔叶群落与落叶阔叶群落孢粉记录的生物群落分数差异能够指示湿度变化,进而可以反映季风降水的变化[63]。生物群落分数差异记录显示,全新世华南地区季风降水强度大于LGM时期,且在全新世以来,华南地区降水量呈升高趋势(图7e)。因此,生物群落分数差异所指示的季风降水强度变化与研究区域陆源有机碳通量有着较好的对应关系,表明东亚夏季风对南海东北部陆源有机碳通量变化起到了明显的控制作用。壳斗科植物是温带、亚热带最重要的森林树种,其中Fagus属的孢粉含量可以指示环境的干湿程度[64],中国南方大坪泥沼Fagus孢粉记录显示的15 ka以来华南地区季风降水变化趋势[65]能够与研究站位陆源有机碳通量很好地对应(图7d),这再次表明东亚夏季风很可能是控制南海东北部陆源有机碳通量变化的主要因素。

    LGM以来南海海平面的变化明显[66],前人研究认为低海平面时期陆架裸露,物理剥蚀作用增强,会使陆源物质供应增大[18];此外,低海平面状态下发生海退,河口位置向海移动,从而加大陆源物质向研究站位的供应[21,67-68],因此海平面变化对陆源有机碳通量的影响不容忽视。LGM以来,台湾西南海平面升高了约130 m(图7h),这表明了LGM以来海平面存在明显的变化,因此河口位置也会随之发生变化。南海古河流研究表明,晚更新世低海平面时期,南海北部主要出现的是珠江古河道的向海延伸[69],从海岸线变化也可以看出,LGM以来海平面的变化对台湾西南河流河口位置的影响并不大,另外上文指出,研究站位的陆源物质主要来自于台湾西南河流,因此,虽然海平面变化可以改变河口位置来影响台湾西南岸外的陆源有机碳通量,但并不是主要影响因素,东亚夏季风降水更应为主要控制因素。观察研究站位陆源有机碳通量变化可以发现全新世陆源有机碳通量相对于冰期的差异并没有季风降水所显示的那么明显(图7i),这可能反映了海平面变化的影响。冰期低海平面时期,河口距离研究站位较近,一定程度上利于陆源物质的输入,抵消了部分由较弱季风降水造成的陆源有机碳低通量。反之,全新世时期海平面升高,河口与研究站位之间距离增大,一定程度上抵消了这一时期由较强季风降水造成的陆源有机碳高通量。这种海平面变化与季风降水对陆源有机质通量的共同影响,也能够解释在B-A暖期出现的陆源有机碳通量高值。在这一时期,海平面相对较低,利于河口陆源物质的输入,且季风降水也相对较强,二者共同造成B-A暖期研究站位的陆源有机碳通量高值。

    综上所述,东亚夏季风降水变化主导着MD18-3569站位的陆源有机碳通量变化,而海平面变化作为次要因素影响较小,通过改变台湾西南河流河口相对位置对陆源有机碳通量变化起到一定的调节作用。

    (1)沉积物的有机碳受到海源有机碳与陆源有机碳的混合供应,冰期以海源有机碳供应为主,在全新世则主要受陆源有机碳供应;海源有机碳主要来自于海洋初级生产者(海洋藻类为主),陆源有机碳主要来自台湾西南部河流。

    (2)LGM以来,研究站位的海源有机碳通量基本呈下降趋势,表现为冰期海源有机碳通量大于全新世海源有机碳通量,主要受到东亚冬季风的驱动。

    (3)LGM以来,研究站位陆源有机碳通量整体呈上涨趋势,冰期陆源有机碳通量低于全新世陆源有机碳通量,主要受东亚夏季风驱动,海平面变化对这一过程起到一定的调节作用。

    致谢:感谢2018年HYDROSED-1航次全体科研技术人员。

  • 图  1   MD18-3569及其他研究涉及的站位(a)和南海海底地形(b)

    红点为MD18-3569,黑点为其他站位。高程数据来自ETOPO(https://www.ncei.noaa.gov/products/etopo-global-relief-model),黑色实线为130 m等深线。

    Figure  1.   MD18-3569 and other sites involved in this study (a) and submarine topography of the South China Sea (b)

    The red dot is MD18-3569, and the black dots are other sites. The elevation data are taken from the ETOPO (https://www.ncei.noaa.gov/products/etopo-global-relief-model), and the solid black line is the 130 m isobath.

    图  2   MD18-3569站位年龄深度模式(a) 、线性沉积速率(b)、沉积物干密度(c)及总物质堆积速率(d)

    年龄模式根据文献 [24]。

    Figure  2.   The age-depth model (a), sedimentation rate (b), dry bulk density (c) and mass accumulation rate (d) in core MD18-3569

    Age model is based on reference [24].

    图  3   MD18-3569站位LGM以来TOC(a)、TOC通量(b)、TN(c)、C/N比值(d)和δ13CTOC(e)

    Figure  3.   Total organic carbon (TOC) (a), total organic carbon flux(b), total nitrogen (c), C/N ratio (d), and stable carbon isotope of TOC (e) in core MD18-3569 since the LGM

    图  4   MD18-3569站位TOC-TN相关图

    Figure  4.   Cross plot of TOC (total organic carbon) versus TN (total nitrogen) in core MD18-3569

    图  5   MD18-3569站位C/N比值-δ13CTOC关系图

    不同潜在有机碳来源的δ13C和C/N值范围[17,31]

    Figure  5.   Cross plot of C/N versus δ13CTOC in core MD18-3569

    The range of δ13C and C/N values[17,31] for different potential organic carbon sources is shown.

    图  6   MD18-3569站位LGM以来海源有机碳相对含量(a)、陆源有机碳相对含量(b)、海源有机碳通量(c)和陆源有机碳通量(d)

    Figure  6.   Relative abundance of marine organic carbon (a), relative abundance of terrigenous organic carbon (b), marine organic carbon flux (c), and terrigenous organic carbon flux (d) in core MD18-3569 since the LGM

    图  7   MD18-3569站位LGM以来海源、陆源有机碳通量与研究区域海平面、表层海水温度、中国石笋δ18O、东亚季风降水记录、南海北部初级生产力和古浪黄土平均粒度对比

    a:古浪黄土平均粒度[48],b:17937站位长链烯酮浓度[46],c:MD12-3428站位初级生产力[42],d:大坪泥沼孢粉记录[65],e:水竹洋泥沼常绿阔叶孢粉生物群落-落叶阔叶孢粉生物群落分数[63],f:葫芦洞和董哥洞石笋氧同位素记录[56-57],g:MD18-3569站位表层海水温度[24],h:MD178-10-3291站位相对海平面[66],i:MD18-3569站位陆源有机碳通量,j:MD18-3569站位海源有机碳通量。

    Figure  7.   Marine and terrestrial organic carbon fluxes in core MD18-3569 since the LGM and comparison with sea level, surface seawater temperature in the study area, records of Chinese stalagmite δ18O, records of East Asian monsoon precipitation, primary productivity in the northern South China Sea and the mean grain size of the Gulang Loess

    a: The mean grain size of Gulang loess[48], b: abundance of C37 long chain alkenones in core 17937[46], c: primary productivity in core MD12-3428[42], d: pollen records in Daping swamp[65], e: the Biome score (difference between evergreen broad-leaved and deciduous broad-leaved biome) of Shuizhuyang swamp[63], f: oxygen isotope records of stalagmites in the Hulu Cave and Dongge Cave[56-57], g: Surface seawater temperature in core MD18-3569[24], h: relative sea level in core MD178-10-3291[66], i: terrigenous organic carbon flux in core MD18-3569, j: marine organic carbon flux in core MD18-3569.

  • [1]

    Berner R A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time[J]. Global and Planetary Change, 1989, 1(1-2):97-122. doi: 10.1016/0921-8181(89)90018-0

    [2]

    Honjo S, Manganini S J, Krishfield R A, et al. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983[J]. Progress in Oceanography, 2008, 76(3):217-285. doi: 10.1016/j.pocean.2007.11.003

    [3]

    McKee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes[J]. Continental Shelf Research, 2004, 24(7-8):899-926. doi: 10.1016/j.csr.2004.02.009

    [4]

    Bianchi T S, Allison M A. Large-river delta-front estuaries as natural “recorders” of global environmental change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20):8085-8092.

    [5]

    Canuel E A, Cammer S S, McIntosh H A, et al. Climate change impacts on the organic carbon cycle at the land-ocean interface[J]. Annual Review of Earth and Planetary Sciences, 2012, 40:685-711. doi: 10.1146/annurev-earth-042711-105511

    [6]

    Liu K K, Chao S Y, Shaw P T, et al. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2002, 49(8):1387-1412. doi: 10.1016/S0967-0637(02)00035-3

    [7]

    Chen Y L L. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2005, 52(2):319-340. doi: 10.1016/j.dsr.2004.11.001

    [8]

    Shaw P T, Chao S Y. Surface circulation in the South China sea[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1994, 41(11-12):1663-1683. doi: 10.1016/0967-0637(94)90067-1

    [9]

    Ding Y, Chan J C L. The East Asian summer monsoon: an overview[J]. Meteorology and Atmospheric Physics, 2005, 89(1-4):117-142. doi: 10.1007/s00703-005-0125-z

    [10]

    Loo Y Y, Billa L, Singh A. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia[J]. Geoscience Frontiers, 2015, 6(6):817-823. doi: 10.1016/j.gsf.2014.02.009

    [11]

    Wu B Y, Wang J. Winter Arctic oscillation, Siberian high and East Asian winter monsoon[J]. Geophysical Research Letters, 2002, 29(19):1897.

    [12]

    Wang L, Li J J, Lu H Y, et al. The East Asian winter monsoon over the last 15, 000 years: its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon[J]. Quaternary Science Reviews, 2012, 32:131-142. doi: 10.1016/j.quascirev.2011.11.003

    [13]

    Ding X D, Zheng L W, Li D W, et al. Lacustrine record of centennial-and millennial-scale rainfall variability of the East Asian summer monsoon during the last deglaciation: multi-proxy evidence from Taiwan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 450:38-49. doi: 10.1016/j.palaeo.2016.02.048

    [14]

    Ding X D, Zheng L W, Zheng X F, et al. Holocene East Asian summer monsoon rainfall variability in Taiwan[J]. Frontiers in Earth Science, 2020, 8:234. doi: 10.3389/feart.2020.00234

    [15]

    Liu Z F, Colin C, Li X J, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport[J]. Marine Geology, 2010, 277(1-4):48-60. doi: 10.1016/j.margeo.2010.08.010

    [16]

    Liu J G, Yan W, Chen Z, et al. Sediment sources and their contribution along northern coast of the South China Sea: evidence from clay minerals of surface sediments[J]. Continental Shelf Research, 2012, 47:156-164. doi: 10.1016/j.csr.2012.07.013

    [17]

    Kao S J, Shiah F K, Wang C H, et al. Efficient trapping of organic carbon in sediments on the continental margin with high fluvial sediment input off southwestern Taiwan[J]. Continental Shelf Research, 2006, 26(20):2520-2537. doi: 10.1016/j.csr.2006.07.030

    [18]

    Hu D K, Böning P, Köhler C M, et al. Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14 ka in the South China Sea[J]. Chemical Geology, 2012, 326-327:1-18. doi: 10.1016/j.chemgeo.2012.07.024

    [19]

    Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153:238-273. doi: 10.1016/j.earscirev.2015.08.005

    [20]

    Liu J G, Steinke S, Vogt C, et al. Temporal and spatial patterns of sediment deposition in the northern South China Sea over the last 50, 000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465:212-224. doi: 10.1016/j.palaeo.2016.10.033

    [21]

    Wang B, Lei H Y, Huang F F, et al. Effect of sea-level change on deep-sea sedimentary records in the northeastern South China Sea over the past 42 kyr[J]. Geofluids, 2020, 2020:8814545.

    [22] 秦琳, 万世明. 末次冰期以来南海东北部陆源有机碳埋藏通量演变: 海平面和季风驱动[J]. 海洋与湖沼, 2020, 51(4):875-888

    QIN Lin, WAN Shiming. Sea level change and monsoon dominated evolution of terrigenous organic carbon burial flux in the northeastern South China Sea since the last glacial[J]. Oceanologia et Limnologia Sinica, 2020, 51(4):875-888.]

    [23]

    Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012, 4:401-423. doi: 10.1146/annurev-marine-120709-142717

    [24] 陈越, 王跃, 党皓文, 等. 南海东北部末次冰盛期以来的水文气候变化[J]. 第四纪研究, 2021, 41(4):1031-1043

    CHEN Yue, WANG Yue, DANG Haowen, et al. Hydroclimatic changes in the northeastern South China Sea since the last glacial maximum[J]. Quaternary Sciences, 2021, 41(4):1031-1043.]

    [25]

    Hayes J M. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence[J]. Marine Geology, 1993, 113(1-2):111-125. doi: 10.1016/0025-3227(93)90153-M

    [26]

    Müller P J. CN ratios in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays[J]. Geochimica et Cosmochimica Acta, 1977, 41(6):765-776. doi: 10.1016/0016-7037(77)90047-3

    [27]

    Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5-6):213-250. doi: 10.1016/S0146-6380(97)00049-1

    [28]

    Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2-3):81-115. doi: 10.1016/0304-4203(95)00008-F

    [29]

    Milliman J D, Kao S J. Hyperpycnal discharge of fluvial sediment to the ocean: impact of super-typhoon Herb (1996) on Taiwanese rivers[J]. The Journal of Geology, 2005, 113(5):503-516. doi: 10.1086/431906

    [30]

    Lin B Z, Liu Z F, Eglinton T I, et al. Island-wide variation in provenance of riverine sedimentary organic carbon: a case study from Taiwan[J]. Earth and Planetary Science Letters, 2020, 539:116238. doi: 10.1016/j.jpgl.2020.116238

    [31]

    Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1-4):29-57. doi: 10.1016/j.earscirev.2005.10.003

    [32]

    Lin B Z, Liu Z F, Eglinton T I, et al. Perspectives on provenance and alteration of suspended and sedimentary organic matter in the subtropical Pearl River system, South China[J]. Geochimica et Cosmochimica Acta, 2019, 259:270-287. doi: 10.1016/j.gca.2019.06.018

    [33]

    Lin B Z, Liu Z F, Eglinton T I, et al. Organic matter compositions and loadings in river sediments from humid tropical volcanic Luzon Island of the Philippines[J]. Journal of Geophysical Research:Biogeosciences, 2021, 126(7):e2020JG006192. doi: 10.1029/2020JG006192

    [34]

    Kao S J, Liu K K. Stable carbon and nitrogen isotope systematics in a human‐disturbed watershed (Lanyang‐Hsi) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes[J]. Global Biogeochemical Cycles, 2000, 14(1):189-198. doi: 10.1029/1999GB900079

    [35]

    Hilton R G, Galy A, Hovius N, et al. The isotopic composition of particulate organic carbon in mountain rivers of Taiwan[J]. Geochimica et Cosmochimica Acta, 2010, 74(11):3164-3181. doi: 10.1016/j.gca.2010.03.004

    [36]

    Dadson S J, Hovius N, Chen H, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen[J]. Nature, 2003, 426(6967):648-651. doi: 10.1038/nature02150

    [37]

    Liu J T, Hsu R T, Hung J J, et al. From the highest to the deepest: the Gaoping River–Gaoping Submarine Canyon dispersal system[J]. Earth-Science Reviews, 2016, 153:274-300. doi: 10.1016/j.earscirev.2015.10.012

    [38] 李丽, 王慧, 罗布次仁, 等. 南海北部4万年以来有机碳和碳酸盐含量变化及古海洋学意义[J]. 海洋地质与第四纪地质, 2008, 28(6):79-85

    LI Li, WANG Hui, LUO Buchiren, et al. The characterizations and paleoceanographic significances of organic and inorganic carbon in northern South China Sea during past 40 ka[J]. Marine Geology & Quaternary Geology, 2008, 28(6):79-85.]

    [39]

    Shultz D J, Calder J A. Organic carbon 13C12C variations in estuarine sediments[J]. Geochimica et Cosmochimica Acta, 1976, 40(4):381-385. doi: 10.1016/0016-7037(76)90002-8

    [40]

    Beaufort L, Lancelot Y, Camberlin P, et al. Insolation cycles as a major control of equatorial Indian Ocean primary production[J]. Science, 1997, 278(5342):1451-1454. doi: 10.1126/science.278.5342.1451

    [41]

    de Garidel‐Thoron T, Beaufort L, Linsley B K, et al. Millennial‐scale dynamics of the east Asian winter monsoon during the last 200, 000 years[J]. Paleoceanography, 2001, 16(5):491-502. doi: 10.1029/2000PA000557

    [42]

    Zhang H R, Liu C L, Jin X B, et al. Dynamics of primary productivity in the northern South China Sea over the past 24, 000 years[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(12):4878-4891. doi: 10.1002/2016GC006602

    [43]

    Hernández-Almeida I, Ausín B, Saavedra-Pellitero M, et al. Quantitative reconstruction of primary productivity in low latitudes during the last glacial maximum and the mid-to-late Holocene from a global Florisphaera profunda calibration dataset[J]. Quaternary Science Reviews, 2019, 205:166-181. doi: 10.1016/j.quascirev.2018.12.016

    [44]

    Schubert C J, Villanueva J, Calvert S E, et al. Stable phytoplankton community structure in the Arabian Sea over the past 200, 000 years[J]. Nature, 1998, 394(6693):563-566. doi: 10.1038/29047

    [45]

    Sicre M A, Ternois Y, Paterne M, et al. Biomarker stratigraphic records over the last 150 kyears off the NW African coast at 25°N[J]. Organic Geochemistry, 2000, 31(6):577-588. doi: 10.1016/S0146-6380(00)00021-8

    [46] 李丽, 王慧, 汪品先. 南海北部17937岩心四万年来古环境变化的分子有机地球化学记录[J]. 地球科学-中国地质大学学报, 2008, 33(6):793-799 doi: 10.3799/dqkx.2008.095

    LI Li, WANG Hui, WANG Pinxian. Molecular organic geochemical record of paleoenvironmental changes of core 17937 in northern South China sea since 40 ka[J]. Earth Science-Journal of China University of Geosciences, 2008, 33(6):793-799.] doi: 10.3799/dqkx.2008.095

    [47]

    Zhou X Q, Duchamp‐Alphonse S, Kageyama M, et al. Variations of primary productivity in the northwestern Arabian Sea during the last23 000 years and their paleoclimatological implications[J]. Paleoceanography and Paleoclimatology, 2022, 37(10):e2022PA004453. doi: 10.1029/2022PA004453

    [48]

    Sun Y B, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1):46-49. doi: 10.1038/ngeo1326

    [49]

    Zhao M X, Wang P X, Tian J, et al. Biogeochemistry and the carbon reservoir[M]//Wang P X, Li Q Y. The South China Sea: Paleoceanography and Sedimentology. Dordrecht: Springer, 2009: 439-483.

    [50]

    Moodley L, Middelburg J J, Herman P M J, et al. Oxygenation and organic-matter preservation in marine sediments: direct experimental evidence from ancient organic carbon–rich deposits[J]. Geology, 2005, 33(11):889-892. doi: 10.1130/G21731.1

    [51]

    Burdige D J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007, 107(2):467-485. doi: 10.1021/cr050347q

    [52]

    Zonneveld K A F, Versteegh G J M, Kasten S, et al. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record[J]. Biogeosciences, 2010, 7(2):483-511. doi: 10.5194/bg-7-483-2010

    [53]

    Chen C S, Chen Y L, Liu C L, et al. Statistics of heavy rainfall occurrences in Taiwan[J]. Weather and Forecasting, 2007, 22(5):981-1002. doi: 10.1175/WAF1033.1

    [54]

    Tung Y S, Wang S Y S, Chu J L, et al. Projected increase of the East Asian summer monsoon (Meiyu) in Taiwan by climate models with variable performance[J]. Meteorological Applications, 2020, 27(1):e1886. doi: 10.1002/met.1886

    [55]

    Henny L, Thorncroft C D, Hsu H H, et al. Extreme rainfall in Taiwan: seasonal statistics and trends[J]. Journal of Climate, 2021, 34(12):4711-4731. doi: 10.1175/JCLI-D-20-0999.1

    [56]

    Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550):2345-2348. doi: 10.1126/science.1064618

    [57]

    Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1-2):71-86. doi: 10.1016/j.jpgl.2005.01.036

    [58]

    Zhang H W, Zhang X, Cai Y J, et al. A data-model comparison pinpoints Holocene spatiotemporal pattern of East Asian summer monsoon[J]. Quaternary Science Reviews, 2021, 261:106911. doi: 10.1016/j.quascirev.2021.106911

    [59]

    Ni J, Yu G, Harrison S P, et al. Palaeovegetation in China during the late Quaternary: biome reconstructions based on a global scheme of plant functional types[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 289(1-4):44-61. doi: 10.1016/j.palaeo.2010.02.008

    [60]

    Yue Y F, Zheng Z, Huang K Y, et al. A continuous record of vegetation and climate change over the past 50, 000 years in the Fujian Province of eastern subtropical China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366:115-123. doi: 10.1016/j.palaeo.2012.09.018

    [61]

    Yu S H, Zheng Z, Chen F, et al. A last glacial and deglacial pollen record from the northern South China Sea: new insight into coastal-shelf paleoenvironment[J]. Quaternary Science Reviews, 2017, 157:114-128. doi: 10.1016/j.quascirev.2016.12.012

    [62]

    Zhou X, Sun L G, Zhan T, et al. Time-transgressive onset of the Holocene Optimum in the East Asian monsoon region[J]. Earth and Planetary Science Letters, 2016, 456:39-46. doi: 10.1016/j.jpgl.2016.09.052

    [63]

    Cheddadi R. How the Asian subtropical area became evergreen since the Last Glacial Maximum[J]. Past Global Changes Magazine, 2020, 28(1):6-7.

    [64] 刘茂松, 洪必恭. 中国壳斗科的地理分布及其与气候条件的关系[J]. 植物生态学报, 1998, 22(1):41-50 doi: 10.3321/j.issn:1005-264X.1998.01.005

    LIU Maosong, HONG Bigong. The distribution of Fagaceae in China and its relationship with climatic and geographic characters[J]. Acta Phytoecologica Sinica, 1998, 22(1):41-50.] doi: 10.3321/j.issn:1005-264X.1998.01.005

    [65]

    Zhong W, Cao J Y, Xue J B, et al. A 15, 400-year record of climate variation from a subalpine lacustrine sedimentary sequence in the western Nanling Mountains in South China[J]. Quaternary Research, 2015, 84(2):246-254. doi: 10.1016/j.yqres.2015.06.002

    [66]

    Yu S W, Tsai L L, Talling P J, et al. Sea level and climatic controls on turbidite occurrence for the past 26 kyr on the flank of the Gaoping Canyon off SW Taiwan[J]. Marine Geology, 2017, 392:140-150. doi: 10.1016/j.margeo.2017.08.011

    [67]

    Jiwarungrueangkul T, Liu Z F, Zhao Y L. Terrigenous sediment input responding to sea level change and East Asian monsoon evolution since the last deglaciation in the southern South China Sea[J]. Global and Planetary Change, 2019, 174:127-137. doi: 10.1016/j.gloplacha.2019.01.011

    [68]

    Xu Z K, Wan S M, Colin C, et al. Enhanced terrigenous organic matter input and productivity on the western margin of the Western Pacific Warm Pool during the Quaternary sea-level lowstands: forcing mechanisms and implications for the global carbon cycle[J]. Quaternary Science Reviews, 2020, 232:106211. doi: 10.1016/j.quascirev.2020.106211

    [69] 鲍才旺. 珠江口陆架区埋藏古河道与古三角洲[J]. 海洋地质与第四纪地质, 1995, 15(2):25-34

    BAO Caiwang. Buried ancient channels and deltas in the Zhujiang River mouth shelf area[J]. Marine Geology & Quaternary Geology, 1995, 15(2):25-34.]

图(7)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  10
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2023-12-01
  • 录用日期:  2023-12-01
  • 网络出版日期:  2024-05-22
  • 刊出日期:  2025-02-27

目录

/

返回文章
返回