高温高压实验揭示俯冲带蛇纹岩熔融行为与高镁岩浆成因

胡佳森, 张国良

胡佳森,张国良. 高温高压实验揭示俯冲带蛇纹岩熔融行为与高镁岩浆成因[J]. 海洋地质与第四纪地质,2024,44(2): 157-170. DOI: 10.16562/j.cnki.0256-1492.2023091102
引用本文: 胡佳森,张国良. 高温高压实验揭示俯冲带蛇纹岩熔融行为与高镁岩浆成因[J]. 海洋地质与第四纪地质,2024,44(2): 157-170. DOI: 10.16562/j.cnki.0256-1492.2023091102
HU Jiasen,ZHANG Guoliang. High-temperature and high-pressure experiments reveal the melting behavior of serpentinites in subduction zone and the genesis of high-Mg magmas[J]. Marine Geology & Quaternary Geology,2024,44(2):157-170. DOI: 10.16562/j.cnki.0256-1492.2023091102
Citation: HU Jiasen,ZHANG Guoliang. High-temperature and high-pressure experiments reveal the melting behavior of serpentinites in subduction zone and the genesis of high-Mg magmas[J]. Marine Geology & Quaternary Geology,2024,44(2):157-170. DOI: 10.16562/j.cnki.0256-1492.2023091102

高温高压实验揭示俯冲带蛇纹岩熔融行为与高镁岩浆成因

基金项目: 中国科学院战略性先导科技专项(B类)子课题:“印太交汇区海盆岩浆过程和地幔组成”(XDB42020302); 国家自然科学基金项目“西太平洋板块俯冲体系岩浆过程中 深部碳循环研究”(91858206)
详细信息
    作者简介:

    胡佳森(1998— ),男,硕士研究生,主要从事实验岩石学研究,E-mail:hujiasen@qdio.ac.cn

    通讯作者:

    张国良(1981— ),男,研究员,主要从事大洋岩石学和地幔地球化学研究,E-mail:zhangguoliang@qdio.ac.cn

  • 中图分类号: P736.3; P589.1

High-temperature and high-pressure experiments reveal the melting behavior of serpentinites in subduction zone and the genesis of high-Mg magmas

  • 摘要:

    近年来一些研究在岛弧岩浆中发现了蛇纹岩组分,这表明俯冲至弧下的蛇纹岩不仅为地幔楔提供流体,而且可以通过部分熔融参与岛弧岩浆形成。然而,蛇纹岩在地幔楔中的熔融行为及其在俯冲带物质循环中的作用仍未进行深入研究。因此,本研究选择3种蛇纹岩样品:蚀变原岩分别为二辉橄榄岩(SE2)和方辉橄榄岩(SE3)的天然蛇纹岩,以及模拟含有大量滑石的合成蛇纹岩样品(SEQ),在700~1300 ℃和4 GPa的温度压力条件下进行了模拟实验,限定了蛇纹岩的熔融温度,分析了实验产生的熔体成分。研究发现,不同类型蛇纹岩的固相线存在显著差异,SE3、SEQ和SE2蛇纹岩的固相线分别为900~960 ℃、960~1100 ℃以及1150~1200 ℃。这3种蛇纹岩的固相线均高于俯冲板片上表面的温度,要求蛇纹岩通过底辟作用进入地幔楔以发生部分熔融。根据实验结果,本研究认为SE2和SEQ蛇纹岩可以在地幔楔底部相对较低的温度条件下(960~1100 ℃)即发生熔融,产生科马提质岩浆;而在上覆地幔楔更高温度条件下(>1200 ℃),SE2蛇纹岩可以发生更广泛、更高程度的部分熔融,产生玻安质岩浆。

    Abstract:

    Recent studies have identified serpentinite components in arc magmas, suggesting that subducted serpentinites contribute not only fluids to the mantle wedge but also participate in arc magma formation through partial melting. However, the melting behavior of serpentinites in the mantle wedge and their role in the material cycle of subduction zones remain underexplored. We selected three types of serpentinites: natural serpentinites altered from harzburgite (SE2) and lherzolite (SE3), and synthetic serpentinite (SEQ) containing talc. Experiments were conducted under 700~1300℃ and 4 GPa, to constrain the melting temperature of serpentinites and analyze the composition of the melts. Results show that the solidi among different serpentinite types vary greatly from each other. The solidi of SE3, SEQ, and SE2 are between 900~960℃, 960~1100℃, and 1150~1200℃, respectively. These solidi are higher than the surface temperatures of subducting slab, thus requiring serpentinites diapir into the mantle wedge to melt. Therefore, SE2 and SEQ serpentinites can melt at the bottom of the mantle wedge under relatively lower temperature conditions (960~1100℃), producing komatiitic magmas, whereas in the overlying mantle wedge, SE2 serpentinite undergo more extensive and higher degrees of partial melting at higher temperature conditions (>1200℃), generating boninitic magmas.

  • 图  1   天然蛇纹岩的背散射电子图像

    Figure  1.   Backscatter electron images of the natural serpentinite

    图  2   代表性实验产物的背散射电子图像

    红色虚线代表了残余矿物和熔体池的分界线,绿色虚线界定了熔体相;图2b和2c以及图2h和2i分别展示了同一实验的实验结果。

    Figure  2.   Backscatter electron images of representative experimental run products

    The red dashed line represents the boundary between the residual minerals and the melt pool, the green dashed line encircles the melt phase; Figure 2b and 2c, as well as 2h and 2i, each respectively display the results of the same experiment.

    图  3   SE3系列实验(a)和SEQ系列实验(b)矿物相比例随温度变化图

    Figure  3.   Variation in mineral phase proportion with temperature for SE3 (a) and SEQ (b) experiments

    图  4   石榴子石成分三元图

    Gro-钙铝榴石,Alm-铁铝榴石,Pyr-镁铝榴石。

    Figure  4.   Ternary composition diagram of garnet

    Gro: Grossular; Alm: Almandine; Pyr: Pyrope.

    图  5   Pearce主量元素分类图

    图中数据引自文献[49-51]。

    Figure  5.   The Pearce major element classification diagram

    Data presented here are cited from the references [49-51].

    图  6   实验相组合图(a)和俯冲带条件下的高温高压实验相图(b)

    图b中实心形状代表仅发生脱水的实验,空心形状代表熔体存在的实验;实线代表了叶蛇纹石(Atg)和绿泥石(Chl)的完全分解线;黑色粗实线代表了前人实验中的二辉橄榄岩固相线。T12数据来自文献[50],G73数据来自文献[58],K68数据来自文献[62];红色虚线和蓝色虚线分别代表了热俯冲和暖俯冲的板片温度,数据来自文献[63];灰色粗实线代表了弧下底辟的温度–压力路径,数据来自文献[51]。

    Figure  6.   Phase assemblage diagram (a) and high temperature and high pressure experimental phase diagram (b) under subduction zone conditions

    In (b), the solid symbols represent dehydrate experiments, while the hollow symbols represent experiments where melt is present. The solid lines represent the complete decomposition curve of antigorite (Atg) and chlorite (Chl). The black thick solid lines represent the solidus of Iherzolite peridotite from previous experiments. T12 data from reference [50], G73 data from reference [58], K68 data from reference [62]. The red dashed line and blue dashed line represent the slab temperature of hot and warm subduction, respectively, based on data from reference [63]. The grey thick solid line represent the temperature-pressure path of diapir at subarc, data form reference [51].

    图  7   熔融程度–温度变化(a)和熔体等压生产率–温度变化图(b)

    图a中实线为通过线性回归的方法拟合得到, 虚线仅为示意曲线; K15数据引自文献[49],Wang20数据引自文献[51]。

    Figure  7.   Diagram of melting degree vs temperature (a) and isobaric melt production rate vs temperature (b)

    In (a), the solid line is obtained through linear regression fitting, while the dashed line is an illustrative curve. K15 data are cited from[49], Wang20 data from reference[51].

    图  8   蛇纹岩参与地幔楔熔融过程示意图

    Figure  8.   Schematic diagram of serpentinite participating in the mantle wedge melting process

    表  1   蛇纹岩初始物组成

    Table  1   The initial components of serpentinite %

    主量元素 SE2 SE3 SEQ
    SiO2 39.92 39.05 42.00
    TiO2 <0.01 <0.01 <0.01
    Al2O3 0.61 3.40 3.24
    FeOT 9.05 9.02 8.59
    MnO 0.12 0.17 0.16
    MgO 33.62 33.00 31.43
    CaO 0.40 2.38 2.27
    Na2O 0.35 0.16 0.15
    K2O 0.03 0.02 0.02
    LOI 15.20 12.60 12.00
    总计 99.44 99.92 100.12
    下载: 导出CSV

    表  2   实验条件及质量平衡计算

    Table  2   Experiment conditions and mass balance calculation

    实验编号 温度/℃ 压力/GPa 时间/h 相比例/% Σr2
    Ol Opx Cpx Sp Grt Chl Melt
    SE2-1 700 4 48 57.6 41.9 * 0.5 0.30
    SE2-2 960 4 50 48.0 51.3 0.1 0.21
    SE2-3 1100 4 14 50.7 49.1 0.2 0.31
    SE2-4 1150 4 15 45.7 54.2 0.1 0.25
    SE2-5 1200 4 17 nd nd nd nd
    SE2-6 1300 4 23 55.6 44.4 0.63
    SE3-1 700 4 67 59.6 18.4 3.7 18.3 * 0.08
    SE3-2 900 4 57 57.9 17.7 7.1 17.4 0.10
    SE3-3 960 4 47 55.2 23.6 8.7 12.5 0.04
    SE3-4 1100 4 15 54.5 17.3 3.8 24.4 0.07
    SE3-5 1150 4 14 48.6 23.9 27.5 0.06
    SE3-6 1200 4 14 54.0 16.8 * 29.1 0.05
    SEQ-1 960 4 50 33.0 45.4 5.6 16.0 0.04
    SEQ-2 1100 4 17 33.5 43.4 5.4 17.7 0.03
    SEQ-3 1150 4 38 nd nd nd nd nd
    SEQ-4 1200 4 17 31.2 38.5 30.3 0.03
    注:Σr2代表了残差的平方和;*代表了质量平衡计算无法检测到的相;nd代表了无法进行质量平衡计算的相;Ol-橄榄石,Opx-斜方辉石,Cpx-单斜辉石,Sp-尖晶石,Grt-石榴子石,Chl-绿泥石,Melt-熔体。
    下载: 导出CSV

    表  3   熔体组成

    Table  3   Melt compositions %

    主量元素SE3-3SE3-4SE3-5SE3-6SEQ-2SEQ-4SE2-5SE2-6
    SiO249.26(2.06)46.83(1.00)45.90(1.58)47.10(1.01)50.48(1.56)43.32(1.76)49.51(0.43)57.05(0.52)
    TiO20.29(0.14)0.25(0.11)0.19(0.14)0.23(0.13)0.40(0.13)0.25(0.16)0.14(0.08)0.02(0.00)
    Al2O315.95(2.11)11.79(1.19)13.04(2.14)12.33(1.85)12.43(0.60)10.10(0.97)8.68(0.32)3.39(0.23)
    FeO9.64(0.69)12.57(0.55)12.95(0.71)12.43(0.61)9.05(0.89)13.57(1.36)10.24(0.65)7.77(0.34)
    MnO0.18(0.11)0.30(0.16)0.21(0.12)0.24(0.15)0.09(0.09)0.28(0.20)0.36(0.16)0.10(0.05)
    MgO19.65(1.71)20.71(0.93)22.76(1.80)20.63(1.80)25.29(1.23)24.19(1.26)28.02(1.05)29.34(0.54)
    CaO4.16(2.29)7.00(0.99)4.18(1.50)6.50(1.78)1.88(1.38)7.79(1.79)1.71(0.14)0.87(0.15)
    Na2O0.61(0.18)0.38(0.13)0.55(0.19)0.41(0.13)0.34(0.16)0.44(0.13)1.41(0.23)1.35(0.17)
    K2O0.25(0.11)0.18(0.14)0.22(0.13)0.13(0.10)0.04(0.06)0.07(0.07)0.07(0.03)0.14(0.03)
    $ {\mathrm{K}\mathrm{d}}_{\mathrm{F}\mathrm{e}-\mathrm{M}\mathrm{g}}^{\mathrm{O}\mathrm{l}/\mathrm{M}\mathrm{e}\mathrm{l}\mathrm{t}} $0.39(0.05)0.30(0.02)0.26(0.03)0.28(0.03)0.46(0.05)0.28(0.03)0.27(0.02)0.32(0.03)
    总计100100100100100100100100
    注:熔体成分分析基于电子探针能量色散模式,所有的氧化物均为质量百分比,括号中表示为±1σ的误差。
    下载: 导出CSV
  • [1]

    Ulmer P, Trommsdorff V. Serpentine stability to mantle depths and subduction-related magmatism[J]. Science, 1995, 268(5212):858-861. doi: 10.1126/science.268.5212.858

    [2]

    Scambelluri M, Bebout G E, Belmonte D, et al. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling[J]. Earth and Planetary Science Letters, 2016, 441:155-166. doi: 10.1016/j.jpgl.2016.02.034

    [3]

    Allen D E, Seyfried W E Jr. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400℃, 500 bars[J]. Geochimica et Cosmochimica Acta, 2003, 67(8):1531-1542. doi: 10.1016/S0016-7037(02)01173-0

    [4]

    Deschamps F, Godard M, Guillot S, et al. Geochemistry of subduction zone serpentinites: a review[J]. Lithos, 2013, 178:96-127. doi: 10.1016/j.lithos.2013.05.019

    [5]

    Zheng Y F, Chen R X, Xu Z, et al. The transport of water in subduction zones[J]. Science China Earth Sciences, 2016, 59(4):651-682. doi: 10.1007/s11430-015-5258-4

    [6]

    Cooperdock E H G, Raia N H, Barnes J D, et al. Tectonic origin of serpentinites on Syros, Greece: geochemical signatures of abyssal origin preserved in a HP/LT subduction complex[J]. Lithos, 2018, 296-299:352-364. doi: 10.1016/j.lithos.2017.10.020

    [7]

    Savov I P, Ryan J G, D'antonio M, et al. Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(4):Q04J15.

    [8]

    Scambelluri M, Tonarini S. Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle[J]. Geology, 2012, 40(10):907-910. doi: 10.1130/G33233.1

    [9]

    Straub S M, Layne G D. The systematics of boron isotopes in Izu arc front volcanic rocks[J]. Earth and Planetary Science Letters, 2002, 198(1-2):25-39. doi: 10.1016/S0012-821X(02)00517-4

    [10]

    Tomanikova L, Savov I P, Harvey J, et al. A limited role for metasomatized subarc mantle in the generation of boron isotope signatures of arc volcanic rocks[J]. Geology, 2019, 47(6):517-521. doi: 10.1130/G46092.1

    [11]

    Zhang Y X, Gazel E, Gaetani G A, et al. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle[J]. Science Advances, 2021, 7(48):eabj2515. doi: 10.1126/sciadv.abj2515

    [12]

    Hattori K H, Guillot S. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge[J]. Geology, 2003, 31(6):525-528. doi: 10.1130/0091-7613(2003)031<0525:VFFAAC>2.0.CO;2

    [13]

    Cooper G F, Macpherson C G, Blundy J D, et al. Variable water input controls evolution of the Lesser Antilles volcanic arc[J]. Nature, 2020, 582(7813):525-529. doi: 10.1038/s41586-020-2407-5

    [14]

    Teng F Z, Hu Y, Chauvel C. Magnesium isotope geochemistry in arc volcanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26):7082-7087.

    [15]

    Hao L L, Nan X Y, Kerr A C, et al. Mg-Ba-Sr-Nd isotopic evidence for a mélange origin of early Paleozoic arc magmatism[J]. Earth and Planetary Science Letters, 2022, 577:117263. doi: 10.1016/j.jpgl.2021.117263

    [16]

    Yuan S, Li H, Arculus R J, et al. Heavy magnesium isotopic compositions of basalts erupted during arc inception: implications for the mantle source underlying the nascent Izu-Bonin-Mariana arc[J]. Geochimica et Cosmochimica Acta, 2023, 352:14-23. doi: 10.1016/j.gca.2023.04.017

    [17]

    Beinlich A, Mavromatis V, Austrheim H, et al. Inter-mineral Mg isotope fractionation during hydrothermal ultramafic rock alteration – Implications for the global Mg-cycle[J]. Earth and Planetary Science Letters, 2014, 392:166-176. doi: 10.1016/j.jpgl.2014.02.028

    [18]

    Wang W Z, Zhou C, Liu Y, et al. Equilibrium Mg isotope fractionation among aqueous Mg2+, carbonates, brucite and lizardite: Insights from first-principles molecular dynamics simulations[J]. Geochimica et Cosmochimica Acta, 2019, 250:117-129. doi: 10.1016/j.gca.2019.01.042

    [19]

    Kelemen P B, Hanghøj K, Greene A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[J]. Treatise on Geochemistry, 2007, 3:1-70.

    [20]

    Tatsumi Y. Formation of the volcanic front in subduction zones[J]. Geophysical Research Letters, 1986, 13(8):717-720. doi: 10.1029/GL013i008p00717

    [21]

    Hall P S, Kincaid C. Diapiric flow at subduction zones: a recipe for rapid transport[J]. Science, 2001, 292(5526):2472-2475. doi: 10.1126/science.1060488

    [22]

    Nielsen S G, Marschall H R. Geochemical evidence for mélange melting in global arcs[J]. Science Advances, 2017, 3(4):e1602402. doi: 10.1126/sciadv.1602402

    [23]

    Mottl M J, Komor S C, Fryer P, et al. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(11):9009.

    [24]

    Castro A, Gerya T V. Magmatic implications of mantle wedge plumes: experimental study[J]. Lithos, 2008, 103(1-2):138-148. doi: 10.1016/j.lithos.2007.09.012

    [25]

    Codillo E A, Le Roux V, Marschall H R. Arc-like magmas generated by mélange-peridotite interaction in the mantle wedge[J]. Nature Communications, 2018, 9(1):2864. doi: 10.1038/s41467-018-05313-2

    [26]

    Gerya T V, Yuen D A. Rayleigh–Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones[J]. Earth and Planetary Science Letters, 2003, 212(1-2):47-62. doi: 10.1016/S0012-821X(03)00265-6

    [27]

    Marschall H R, Schumacher J C. Arc magmas sourced from mélange diapirs in subduction zones[J]. Nature Geoscience, 2012, 5(12):862-867. doi: 10.1038/ngeo1634

    [28]

    Stern R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4):3-1-3-13.

    [29]

    Gill J B. Orogenic Andesites and Plate Tectonics[M]. New York: Springer Science, 1981.

    [30]

    Syracuse E M, van Keken P E, Abers G A. The global range of subduction zone thermal models[J]. Physics of the Earth and Planetary Interiors, 2010, 183(1-2):73-90. doi: 10.1016/j.pepi.2010.02.004

    [31]

    Boschi C, Dini A, Dallai L, et al. Enhanced CO2-mineral sequestration by cyclic hydraulic fracturing and Si-rich fluid infiltration into serpentinites at Malentrata (Tuscany, Italy)[J]. Chemical Geology, 2009, 265(1-2):209-226. doi: 10.1016/j.chemgeo.2009.03.016

    [32]

    Iyer K, Austrheim H, John T, et al. Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka Ophiolite Complex, Norway[J]. Chemical Geology, 2008, 249(1-2):66-90. doi: 10.1016/j.chemgeo.2007.12.005

    [33]

    Palandri J L, Reed M H. Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation[J]. Geochimica et Cosmochimica Acta, 2004, 68(5):1115-1133. doi: 10.1016/j.gca.2003.08.006

    [34]

    Snow J E, Dick H J B. Pervasive magnesium loss by marine weathering of peridotite[J]. Geochimica et Cosmochimica Acta, 1995, 59(20):4219-4235. doi: 10.1016/0016-7037(95)00239-V

    [35]

    Boschi C, Früh-Green G L, Escartín J. Occurrence and significance of serpentinite-hosted, talc-and AMPHIBOLE-RICH fault rocks in modern oceanic settings and ophiolite complexes: an overview[J]. Ofioliti, 2006, 31(2):129-140.

    [36]

    Paulick H, Bach W, Godard M, et al. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments[J]. Chemical Geology, 2006, 234(3-4):179-210. doi: 10.1016/j.chemgeo.2006.04.011

    [37]

    Ali-Bik M W, Taman Z, El Kalioubi B, et al. Serpentinite-hosted talc–magnesite deposits of Wadi Barramiya area, Eastern Desert, Egypt: characteristics, petrogenesis and evolution[J]. Journal of African Earth Sciences, 2012, 64:77-89. doi: 10.1016/j.jafrearsci.2011.11.002

    [38]

    O'Hanley D S. Serpentinites: Records of Tectonic and Petrological History[M]. New York: Oxford University Press, 1996: 1-277.

    [39]

    Bose K, Ganguly J. Quartz-coesite transition revisited: reversed experimental determination at 500-1200℃ and retrieved thermochemical properties[J]. American Mineralogist, 1995, 80(3-4):231-238. doi: 10.2138/am-1995-3-404

    [40]

    Ono S, Kikegawa T, Higo Y. In situ observation of a garnet/perovskite transition in CaGeO3[J]. Physics and Chemistry of Minerals, 2011, 38(9):735-740. doi: 10.1007/s00269-011-0446-z

    [41]

    Hernlund J, Leinenweber K, Locke D, et al. A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies[J]. American Mineralogist, 2006, 91(2-3):295-305. doi: 10.2138/am.2006.1938

    [42]

    Falloon T J, Danyushevsky L V. Melting of refractory mantle at 1·5, 2 and 2·5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting[J]. Journal of Petrology, 2000, 41(2):257-283. doi: 10.1093/petrology/41.2.257

    [43]

    Klemme S, O'Neill H S. The near-solidus transition from garnet lherzolite to spinel lherzolite[J]. Contributions to Mineralogy and Petrology, 2000, 138(3):237-248. doi: 10.1007/s004100050560

    [44]

    Renna M R, Tribuzio R. Olivine-rich troctolites from Ligurian ophiolites (Italy): evidence for impregnation of replacive mantle conduits by MORB-type melts[J]. Journal of Petrology, 2011, 52(9):1763-1790. doi: 10.1093/petrology/egr029

    [45]

    Hayden L A, Manning C E. Rutile solubility in supercritical NaAlSi3O8–H2O fluids[J]. Chemical Geology, 2011, 284(1-2):74-81. doi: 10.1016/j.chemgeo.2011.02.008

    [46]

    Adam J, Green T H, Sie S H, et al. Trace element partitioning between aqueous fluids, silicate melts and minerals[J]. European Journal of Mineralogy, 1997, 9(3):569-584. doi: 10.1127/ejm/9/3/0569

    [47]

    Le Bas M J. IUGS reclassification of the high-Mg and picritic volcanic rocks[J]. Journal of Petrology, 2000, 41(10):1467-1470. doi: 10.1093/petrology/41.10.1467

    [48]

    Pearce J A, Reagan M K. Identification, classification, and interpretation of boninites from Anthropocene to Eoarchean using Si-Mg-Ti systematics[J]. Geosphere, 2019, 15(4):1008-1037. doi: 10.1130/GES01661.1

    [49]

    Kessel R, Pettke T, Fumagalli P. Melting of metasomatized peridotite at 4–6 GPa and up to 1200℃: an experimental approach[J]. Contributions to Mineralogy and Petrology, 2015, 169(4):37. doi: 10.1007/s00410-015-1132-9

    [50]

    Till C B, Grove T L, Withers A C. The beginnings of hydrous mantle wedge melting[J]. Contributions to Mineralogy and Petrology, 2012, 163(4):669-688. doi: 10.1007/s00410-011-0692-6

    [51]

    Wang J T, Takahashi E, Xiong X L, et al. The water-saturated solidus and second critical endpoint of peridotite: implications for magma genesis within the mantle wedge[J]. Journal of Geophysical Research:Solid Earth, 2020, 125(8):e2020JB019452. doi: 10.1029/2020JB019452

    [52]

    Zhang Y F, Liang X R, Wang C, et al. Experimental constraints on the partial melting of sediment-metasomatized lithospheric mantle in subduction zones[J]. American Mineralogist, 2020, 105(8):1191-1203. doi: 10.2138/am-2020-7403

    [53]

    Chen W, Keshav S, Peng W G, et al. Coupled cycling of carbon and water in the form of hydrous carbonatitic liquids in the subarc region[J]. Journal of Geophysical Research:Solid Earth, 2023, 128(10):e2023JB026681. doi: 10.1029/2023JB026681

    [54]

    Kawamoto T, Holloway J R. Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 gigapascals[J]. Science, 1997, 276(5310):240-243. doi: 10.1126/science.276.5310.240

    [55]

    Roedder E. Fluid inclusion evidence for immiscibility in magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 1992, 56(1):5-20. doi: 10.1016/0016-7037(92)90113-W

    [56]

    Adam J, Locmelis M, Afonso J C, et al. The capacity of hydrous fluids to transport and fractionate incompatible elements and metals within the Earth's mantle[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(6):2241-2253. doi: 10.1002/2013GC005199

    [57]

    Mibe K, Kanzaki M, Kawamoto T, et al. Second critical endpoint in the peridotite-H2O system[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B3):B03201.

    [58]

    Green D H. Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions[J]. Earth and Planetary Science Letters, 1973, 19(1):37-53. doi: 10.1016/0012-821X(73)90176-3

    [59]

    Kushiro I. Effect of water on the composition of magmas formed at high pressures[J]. Journal of Petrology, 1972, 13(2):311-334. doi: 10.1093/petrology/13.2.311

    [60]

    Mookherjee M, Karato S I. Solubility of water in pyrope-rich garnet at high pressures and temperature[J]. Geophysical Research Letters, 2010, 37(3):L03310.

    [61]

    Manning C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters, 2004, 223(1-2):1-16. doi: 10.1016/j.jpgl.2004.04.030

    [62]

    Kushiro I, Syono Y, Akimoto S I. Melting of a peridotite nodule at high pressures and high water pressures[J]. Journal of Geophysical Research, 1968, 73(18):6023-6029. doi: 10.1029/JB073i018p06023

    [63]

    Litasov K D, Shatskiy A. Carbon-bearing magmas in the Earth's deep interior[M]//Kono Y, Sanloup C. Magmas Under Pressure. Amsterdam: Elsevier, 2018: 43-82.

    [64]

    Gaetani G A, Grove T L. The influence of water on melting of mantle peridotite[J]. Contributions to Mineralogy and Petrology, 1998, 131(4):323-346. doi: 10.1007/s004100050396

    [65]

    Hirschmann M M, Asimow P D, Ghiorso M S, et al. Calculation of peridotite partial melting from thermodynamic models of minerals and melts. III. Controls on isobaric melt production and the effect of water on melt production[J]. Journal of Petrology, 1999, 40(5):831-851. doi: 10.1093/petroj/40.5.831

    [66]

    Grove T L, Till C B, Krawczynski M J. The role of H2O in subduction zone magmatism[J]. Annual Review of Earth and Planetary Sciences, 2012, 40:413-439. doi: 10.1146/annurev-earth-042711-105310

    [67]

    Parman S W, Grove T L. Harzburgite melting with and without H2O: experimental data and predictive modeling[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B2):B02201.

    [68]

    Chen M, Zheng J P, Dai H K, et al. Boninitic melt percolation makes depleted mantle wedges rich in silica[J]. Geology, 2023, 51(8):791-795. doi: 10.1130/G51050.1

    [69]

    Arndt N. Komatiites, kimberlites, and boninites[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B6):2293.

    [70]

    Parman S W, Grove T L, Dann J C. The production of Barberton komatiites in an Archean subduction zone[J]. Geophysical Research Letters, 2001, 28(13):2513-2516. doi: 10.1029/2000GL012713

    [71]

    Parman S W, Grove T L, Dann J C, et al. A subduction origin for komatiites and cratonic lithospheric mantle[J]. South African Journal of Geology, 2004, 107(1-2):107-118. doi: 10.2113/107.1-2.107

    [72]

    Parman S W, Dann J C, Grove T L, et al. Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South Africa[J]. Earth and Planetary Science Letters, 1997, 150(3-4):303-323. doi: 10.1016/S0012-821X(97)00104-0

    [73]

    Brooks C, Hart S R. On the significance of komatiite[J]. Geology, 1974, 2(2):107-110. doi: 10.1130/0091-7613(1974)2<107:OTSOK>2.0.CO;2

    [74]

    Cameron W E, Nisbet E G, Dietrich V J. Boninites, komatiites and ophiolitic basalts[J]. Nature, 1979, 280(5723):550-553. doi: 10.1038/280550a0

    [75]

    Hollings P, Wyman D, Kerrich R. Komatiite–basalt–rhyolite volcanic associations in Northern Superior Province greenstone belts: significance of plume-arc interaction in the generation of the proto continental Superior Province[J]. Lithos, 1999, 46(1):137-161. doi: 10.1016/S0024-4937(98)00058-9

    [76]

    Wilson A H, Versfeld J A. The early Archaean Nondweni greenstone belt, southern Kaapvaal Craton, South Africa, Part II. Characteristics of the volcanic rocks and constraints on magma genesis[J]. Precambrian Research, 1994, 67(3-4):277-320. doi: 10.1016/0301-9268(94)90013-2

图(8)  /  表(3)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  1
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-10
  • 修回日期:  2023-10-31
  • 录用日期:  2023-10-31
  • 网络出版日期:  2024-04-24
  • 刊出日期:  2024-04-23

目录

    /

    返回文章
    返回