深海黏土定年研究进展

贺湘锋, 刘建兴, 毕东杰, 高建华, 石学法

贺湘锋,刘建兴,毕东杰,等. 深海黏土定年研究进展[J]. 海洋地质与第四纪地质,2024,44(2): 183-198. DOI: 10.16562/j.cnki.0256-1492.2023090801
引用本文: 贺湘锋,刘建兴,毕东杰,等. 深海黏土定年研究进展[J]. 海洋地质与第四纪地质,2024,44(2): 183-198. DOI: 10.16562/j.cnki.0256-1492.2023090801
HE Xiangfeng,LIU Jianxing,BI Dongjie,et al. Research progress and prospects on the dating of pelagic clay[J]. Marine Geology & Quaternary Geology,2024,44(2):183-198. DOI: 10.16562/j.cnki.0256-1492.2023090801
Citation: HE Xiangfeng,LIU Jianxing,BI Dongjie,et al. Research progress and prospects on the dating of pelagic clay[J]. Marine Geology & Quaternary Geology,2024,44(2):183-198. DOI: 10.16562/j.cnki.0256-1492.2023090801

深海黏土定年研究进展

基金项目: 国家自然科学基金“西太平洋富稀土沉积大规模成矿作用研究”(91858209);中央级公益性科研院所基本科研业务费专项资金“束星北青年学者-海洋磁性地层与环境磁学”(2021S01)
详细信息
    作者简介:

    贺湘锋(1998—),男,硕士研究生,从事海洋古地磁与年代学研究,E-mail:mg21270008@smail.nju.edu.cn

    通讯作者:

    刘建兴(1987—),男,博士,副研究员,从事海洋磁性地层与环境磁学研究,E-mail:jxliu@fio.org.cn

    高建华(1973—),男,博士,教授,从事海洋沉积动力学研究,E-mail: jhgao@nju.edu.cn

  • 中图分类号: P736.2

Research progress and prospects on the dating of pelagic clay

  • 摘要:

    深海黏土广泛分布在水深超过碳酸盐补偿深度(CCD)以下的大洋盆地中,其沉积速率十分缓慢,只有少量的生物组分(主要是生物磷灰石)被保存,通常具有较高的稀土元素含量;海洋沉积物常用的磁性地层与生物地层相结合的定年手段通常不能有效使用。因此,深海黏土沉积年龄框架的建立一直存在巨大的困难和挑战,严重阻碍了对沉积环境演化和稀土超常富集机制等方面的深入研究。本文回顾总结了20世纪以来逐步发展应用的多种深海黏土定年方法,主要包括磁性地层、鱼牙87Sr/86Sr定年、鱼牙U-Pb定年、10Be测年、230Thex测年、187Os/188Os定年、鱼鳞石生物地层、恒定Co通量模型以及常用的地层对比方法。这些方法各具优缺点,单一使用以上任何一种定年方法几乎都难以获得完整可靠的年龄框架。因此,综合运用多种定年方法,对获得的年龄框架进行系统对比和验证,将会更为有效地提高深海黏土年龄框架的可靠性。

    Abstract:

    Pelagic clay, which is extensively distributed in the ocean basins below the carbonate compensation depth, exhibits slow sedimentation rate and contains only a small amount of preserved biogenic components (primarily biogenic apatite). The commonly used dating methods that combine magnetic stratigraphy with biostratigraphy in marine sediments cannot be effectively applicable. As a result, the establishment of a age framework for pelagic clay has been hindered by enormous difficulties and challenges, which seriously limits the researchers in geoscience to thoroughly investigate the evolution of sedimentation environment and the mechanisms of hyper-enrichment in rare earth elements in pelagic clay. In this article, we reviewed various dating methods for pelagic clay used since the last century, including mainly: magnetostratigraphy, fish teeth 87Sr/86Sr dating, fish teeth U-Pb dating, 10Be dating, 230Thex dating, 187Os/188Os dating, ichthyolith biostratigraphy, constant Co-flux model, and commonly used stratigraphic correlation methods. Each method has own advantages and disadvantages, and it is often difficult to acquire a complete and reliable age framework using any of the above methods alone. Consequently, systematic comparsion and validation for age framework obtained by intergrating multiple dating methods will be more efficient in improving the relability of an age framework for dating pelagic clay.

  • 图  1   研究区域图

    a:本文所涉及的部分站位分布图,b:太平洋沉积物类型分布图。海洋沉积物类型数据来自文献[11]。各站位参考信息见表1,其中GC62的数据尚未发表。

    Figure  1.   The study areas

    a: The distribution of some stations covered in this article; b: the distribution of sediment type in the Pacific Ocean Data of marine sediment type is from [11]. The reference information of each station is shown in Table 1, with unpublished data for GC62.

    图  2   西太平洋GC62孔中部分样品的交变退磁正交矢量图和剩磁衰减图

    实心方块代表水平面投影图,空心方块代表垂直面投影图。

    Figure  2.   Orthogonal vector projection and remanence attenuation of alternating demagnetization

    Solid squares: horizontal projections; hollow squares: vertical projections

    图  3   海水中相关元素来源示意图

    有关Sr的信息来自文献[38],Os的信息来自文献[46],10Be信息来自文献[47],Co的信息来自文献[21]。

    Figure  3.   Schematic diagram about the sources of related elements in seawater

    Data sources: Sr: from [38], Os: from [46], 10Be: from [47],Co: from [21].

    图  4   40 Ma以来的海水87Sr/86Sr参考曲线(a)和PC01、GC1901孔中鱼牙87Sr/86Sr深度变化(b)

    a中数据来自文献[43],PC01孔的鱼牙87Sr/86Sr数据来自文献[12],WP41孔的鱼牙釉质87Sr/86Sr数据来自文献[18],GC1901孔的鱼牙87Sr/86Sr数据来自文献[14]。

    Figure  4.   The 87Sr/86Sr reference curve of seawate since 40Ma (a) and the 87Sr/86Sr chang with depth of fish teeth in cores PC01 and GC1901 (b)

    Data sources: the 87Sr/86Sr reference curve: from reference [43], fish teeth 87Sr/86Sr data of core PC01: from [12], fish teeth enamel 87Sr/86Sr data of core WP41: from [18]; fish teeth 87Sr/86Sr data of core GC1901: from [14].

    图  5   鱼牙釉质U-Pb定年结果

    a:保存完整的鱼牙化石照片,b:WP41孔鱼牙釉质U-Pb定年结果,c:Site 1218孔中的鱼牙釉质U-Pb定年结果,d:Site 1218孔中的鱼牙U-Pb年龄同古地磁年龄和有孔虫年龄之间的对比。a,b, c, d均改绘自文献[18]。

    Figure  5.   Dating results of fish teeth enamel

    a: Photo of well-preserved fish teeth fossil, b: U-Pb dating results of fish teeth enamel in WP41, c: U-Pb dating results of fish teeth enamel in Site 1218, d: comparison of U-Pb ages between fish teeth in Site 1218 and paleomagnetic / foraminiferal ages.a,b, c, and d are redrawn from [18].

    图  6   北太平洋GPC3孔年龄综合

    a:古地磁年龄、10Be年龄、鱼鳞石生物地层、Co模型年龄及K—E年龄点汇总,各年龄数据来源见表1;b:古地磁年龄与10Be年龄比较。

    Figure  6.   Integrated age in core GPC3 in the North Pacific

    a: Paleomagnetic age, 10Be age, ichthyolith biostratigraphy, Co model age, and K-E age. Data sources are shown in Table1; b: comparison between paleomagnetic ages and 10Be ages.

    图  7   西太平洋core C孔和GC18孔年龄模型综合

    a: 西太平洋core C孔年龄模型图,改绘自文献[16];b: 西太平洋GC18孔11~15.5 Ma年龄模型和沉积速率图;c: GC18孔50点平滑的Ba元素含量随深度变化图;d: 11~16 Ma的轨道偏心率变化图(蓝线)和经调谐后的GC18孔Ba元素随年龄变化图(红线)。图b、c、d均改绘自文献[17]。

    Figure  7.   Integrated age model in cores C and GC18 in the Western Pacific

    a: Age model plot of core C in the Western Pacific, redrawn from [16]; b: 11~15.5 Ma age model and sedimentation rate plot of GC18 in Western Pacific; c: plot of 50 point smoothed Ba element content in GC18 varies with depth; d: plot of orbital eccentricity variation during 11~16 Ma (blue line) and plot of smoothed Ba element changes with age (red line). b, c, d are redrawn from [17].

    表  1   部分深海黏土沉积物定年研究总结

    Table  1   Summary of some pelagic clay dating studies

    区域和站位 位置 定年方法 年龄范围和或深度 平均沉积速率
    /(mm/ka)
    备注 参考文献
    北太平洋
    GPC3
    30.33˚N、
    157.82˚W
    鱼鳞石生物地层上新世—古新世0.2~0.3误差约±1~5 Ma[5]
    磁性地层布容极性期
    更新世
    2.2
    1.7
    [7]
    鱼牙87Sr/86Sr用以上两种方法来进行验证[8]
    10Be0~6 m
    6~10 m
    约1.2
    约0.5
    以1.387 Ma为半衰期重新
    进行计算
    [6]
    恒定Co通量模型晚古新世—中中新世0.2显著低于更新世时期的沉积速率[3]
    铱元素异常异常高值指示K-Pg边界(约65 Ma)[3]
    北太平洋
    PC01
    32.5˚N、
    141.2˚W
    鱼牙87Sr/86Sr0~10.7 m (0~24 Ma)0.45误差±1~3 Ma[12]
    东赤道太平洋
    PC07
    8.8˚N、
    135.4˚W
    鱼牙87Sr/86Sr0~15 m (0~19 Ma)
    0~4 m (深海黏土)
    4~16 m (硅质黏土)

    0.3
    2.0
    误差<±2 Ma[13]
    东赤道太平洋
    GC1901
    9.78˚N、
    154.97˚W
    鱼牙87Sr/86Sr21~32 Ma2.3误差约±0.8~3 Ma[14]
    西太平洋
    WPPC1902-08
    18.29˚N、
    149.84˚E
    磁性地层0~6 m (0~2.59 Ma)2.3棕黄色深海黏土[15]
    西太平洋
    core C
    20.22˚N、
    161.48˚E
    230Thex
    自生10Be/9Be
    磁性地层
    0~3.1 m (0~11.6 Ma)
    0~1.2 Ma
    1.2~11.6 Ma

    1.67
    0.125
    多种测年方法获得的沉积
    速率一致
    [16]
    西太平洋
    GC18
    16.90˚N、
    162.18˚E
    自生10Be/9Be
    磁性地层
    轨道调谐
    1.8~5.4 m
    (11~15.4 Ma)
    0.1~2.5[17]
    西太平洋
    WP41
    23°N、
    158°E
    鱼牙U-Pb定年2.2~6.5 Ma1.4误差±1~2 Ma[18]
    西太平洋
    PC11
    22.98˚N、
    154.02˚E
    187Os/188Os
    磁性地层
    9~12 m0.43~1.02假设187Os/188Os识别的E2-E3边界位于磁性地层内某一极性时期[19-20]
    南太平洋
    U1365
    22.85˚S、
    165.65˚W
    磁性地层
    Co通量模型
    0~6 m
    10~18 m
    约1
    <0.2
    [21-22]
    下载: 导出CSV
  • [1]

    Leinen M. The pelagic clay province of the North Pacific Ocean[M]//Winterer E L, Hussong D M, Decker R W. The Eastern Pacific Ocean and Hawaii. Boulder: The Geology of North America, 1989.

    [2]

    Kadko D. Late Cenozoic sedimentation and metal deposition in the North Pacific[J]. Geochimica et Cosmochimica Acta, 1985, 49(3):651-661. doi: 10.1016/0016-7037(85)90160-7

    [3]

    Kyte F T, Leinen M, Heath G R, et al. Cenozoic sedimentation history of the central North Pacific: Inferences from the elemental geochemistry of core LL44-GPC3[J]. Geochimica et Cosmochimica Acta, 1993, 57(8):1719-1740. doi: 10.1016/0016-7037(93)90109-A

    [4]

    Doh S J, King J W, Leinen M. A rock-magnetic study of giant piston core LL44-GPC3 from the central North Pacific and its paleoceanographic implications[J]. Paleoceanography, 1988, 3(1):89-111. doi: 10.1029/PA003i001p00089

    [5]

    Doyle P S, Riedel W R. Cretaceous to neogene ichthyoliths in a giant piston core from the central North Pacific[J]. Micropaleontology, 1979, 25(4):337-364. doi: 10.2307/1485427

    [6]

    Mangini A, Segl M, Bonani G, et al. Mass-spectrometric 10Be dating of deep-sea sediments applying the Zürich tandem accelerator[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2):353-358.

    [7]

    Prince R A, Heath G R, Kominz M. Paleomagnetic studies of central North Pacific sediment cores: stratigraphy, sedimentation rates, and the origin of magnetic instability[J]. GSA Bulletin, 1980, 91(8):1789-1835.

    [8]

    Staudigel H, Doyle P, Zindler A. Sr and Nd isotope systematics in fish teeth[J]. Earth and Planetary Science Letters, 1985, 76(1-2):45-56. doi: 10.1016/0012-821X(85)90147-5

    [9] 石学法, 毕东杰, 黄牧, 等. 深海稀土分布规律与成矿作用[J]. 地质通报, 2021, 40(2-3):195-208

    SHI Xuefa, BI Dongjie, HUANG Mu, et al. Distribution and metallogenesis of deep-sea rare earth elements[J]. Geological Bulletin of China, 2021, 40(2-3):195-208.]

    [10]

    Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8):535-539. doi: 10.1038/ngeo1185

    [11]

    Dutkiewicz A, Müller R D, O’callaghan S, et al. Census of seafloor sediments in the world’s ocean[J]. Geology, 2015, 43(9):795-798. doi: 10.1130/G36883.1

    [12]

    Gleason J D, Moore T C, Rea D K, et al. Ichthyolith strontium isotope stratigraphy of a Neogene red clay sequence: calibrating eolian dust accumulation rates in the central North Pacific[J]. Earth and Planetary Science Letters, 2002, 202(3-4):625-636. doi: 10.1016/S0012-821X(02)00827-0

    [13]

    Gleason J D, Moore Jr T, Johnson T M, et al. Age calibration of piston core EW9709-07 (equatorial central Pacific) using fish teeth Sr isotope stratigraphy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3-4):355-366. doi: 10.1016/S0031-0182(04)00366-9

    [14]

    Wang T Y, Dong Y H, Chu F Y, et al. In situ Strontium isotope stratigraphy of fish teeth in deep-sea sediments from the western Clarion-Clipperton Fracture Zone, eastern Pacific Ocean[J]. Chemical Geology, 2023, 636:121624. doi: 10.1016/j.chemgeo.2023.121624

    [15]

    Shin J Y, Kim W, Seong Y B, et al. Quaternary magnetic stratigraphy of deep-sea sediments in the Western North Pacific: influences of paleomagnetic recording efficiency and lock-in delay[J]. Journal of Geophysical Research:Solid Earth, 2023, 128(4):e2022JB025490. doi: 10.1029/2022JB025490

    [16]

    Bi D J, Shi X F, Huang M, et al. Dating pelagic sediments from the Northwestern Pacific Ocean by integration of multi-geochronologic approaches[J]. Ore Geology Reviews, 2023, 161:105614. doi: 10.1016/j.oregeorev.2023.105614

    [17]

    Wang H F, Deng X G, Yi L, et al. Dominant eccentricity cycles in paleoenvironmental variabilities recorded by pelagic sediments in the western Pacific during 15-11 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 628:111776. doi: 10.1016/j.palaeo.2023.111776

    [18]

    Li D F, Peng J Z, Chew D, et al. Dating rare earth element enrichment in deep-sea sediments using U-Pb geochronology of bioapatite[J]. Geology, 2023, 51(5):428-433. doi: 10.1130/G50938.1

    [19]

    Nozaki Y, Yang H S, Yamada M. Scavenging of thorium in the ocean[J]. Journal of Geophysical Research:Oceans, 1987, 92(C1):772-778. doi: 10.1029/JC092iC01p00772

    [20]

    Usui Y, Yamazaki T. Magnetostratigraphic evidence for post-depositional distortion of osmium isotopic records in pelagic clay and its implications for mineral flux estimates[J]. Earth, Planets and Space, 2021, 73(1):2. doi: 10.1186/s40623-020-01338-4

    [21]

    Dunlea A G, Murray R W, Sauvage J, et al. Cobalt‐based age models of pelagic clay in the South Pacific Gyre[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(8):2694-2710. doi: 10.1002/2015GC005892

    [22]

    Shimono T, Yamazaki T. Environmental rock‐magnetism of Cenozoic red clay in the South Pacific Gyre[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(4):1296-1311. doi: 10.1002/2015GC006062

    [23]

    Roberts A P, Winklhofer M. Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling[J]. Earth and Planetary Science Letters, 2004, 227(3-4):345-359. doi: 10.1016/j.jpgl.2004.07.040

    [24]

    Valet J P, Meynadier L, Simon Q, et al. When and why sediments fail to record the geomagnetic field during polarity reversals[J]. Earth and Planetary Science Letters, 2016, 453:96-107. doi: 10.1016/j.jpgl.2016.07.055

    [25]

    Opdyke N D, Foster J H. Paleomagnetism of cores from the North Pacific[M]//Hays J D. Geological Investigations of the North Pacific. Boulder: Geological Society of America, 1970: 83-119.

    [26]

    Kent D V, Lowrie W. Origin of magnetic instability in sediment cores from the central North Pacific[J]. Journal of Geophysical Research, 1974, 79(20):2987-3000. doi: 10.1029/JB079i020p02987

    [27]

    Yamazaki T, Ioka N. Environmental rock‐magnetism of pelagic clay: Implications for Asian eolian input to the North Pacific since the Pliocene[J]. Paleoceanography, 1997, 12(1):111-124. doi: 10.1029/96PA02757

    [28]

    Yi L, Hu B Q, Zhao J T, et al. Magnetostratigraphy of abyssal deposits in the central Philippine sea and regional sedimentary dynamics during the quaternary[J]. Paleoceanography and Paleoclimatology, 2022, 37(5):e2021PA004365. doi: 10.1029/2021PA004365

    [29]

    Lyle M, Wilson P, Janacek T. Leg 199[J]. Proceedings of the Ocean Drilling Program, Initial Reports, 2002, 199:1-87.

    [30]

    Johnson H P, Kinoshita H, Merrill R T. Rock magnetism and paleomagnetism of some North Pacific deep-sea sediments[J]. GSA Bulletin, 1975, 86(3):412-420. doi: 10.1130/0016-7606(1975)86<412:RMAPOS>2.0.CO;2

    [31]

    Yamazaki T. Secondary remanent magnetization of pelagic clay in the South Pacific: Application of thermal demagnetization[J]. Geophysical Research Letters, 1986, 13(13):1438-1441. doi: 10.1029/GL013i013p01438

    [32]

    Yamazaki T, Katsura I. Magnetic grain size and viscous remanent magnetization of pelagic clay[J]. Journal of Geophysical Research:Solid Earth, 1990, 95(B4):4373-4382. doi: 10.1029/JB095iB04p04373

    [33]

    Dunlop D J. Viscous magnetization of 0.04-100 μm magnetites[J]. Geophysical Journal International, 1983, 74(3):667-687.

    [34]

    Yamazaki T, Katsura I, Marumo K. Origin of stable remanent magnetization of siliceous sediments in the central equatorial Pacific[J]. Earth and Planetary Science Letters, 1991, 105(1-3):81-93. doi: 10.1016/0012-821X(91)90122-X

    [35]

    Deng X G, Yi L, Paterson G A, et al. Magnetostratigraphic evidence for deep-sea erosion on the Pacific Plate, south of Mariana Trench, since the middle Pleistocene: potential constraints for Antarctic bottom water circulation[J]. International Geology Review, 2016, 58(1):49-57. doi: 10.1080/00206814.2015.1055597

    [36]

    Liu J X, Shi X F, Liu Y G, et al. A thick negative polarity anomaly in a sediment core from the central arctic ocean: geomagnetic excursion versus reversal[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(11):10687-10703. doi: 10.1029/2019JB018073

    [37]

    Yi L, Xu D, Jiang X Y, et al. Magnetostratigraphy and authigenic 10Be/9Be dating of Plio-Pleistocene abyssal surficial sediments on the southern slope of Mariana Trench and sedimentary processes during the Mid-Pleistocene transition[J]. Journal of Geophysical Research:Oceans, 2020, 125(8):e2020JC016250. doi: 10.1029/2020JC016250

    [38]

    Banner J L. Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy[J]. Earth-Science Reviews, 2004, 65(3-4):141-194. doi: 10.1016/S0012-8252(03)00086-2

    [39]

    Burke W H, Denison R E, Hetherington E A, et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time[J]. Geology, 1982, 10(10):516-519. doi: 10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2

    [40]

    Barrat J A, Taylor R N, André J P, et al. Strontium isotopes in biogenic phosphates from a Neogene marine formation: implications for palaeoseawater studies[J]. Chemical Geology, 2000, 168(3-4):325-332. doi: 10.1016/S0009-2541(00)00200-X

    [41]

    Palmer M R, Elderfield H. Sr isotope composition of sea water over the past 75 Myr[J]. Nature, 1985, 314(6011):526-628. doi: 10.1038/314526a0

    [42]

    Depaolo D J, Ingram B L. High-resolution stratigraphy with strontium isotopes[J]. Science, 1985, 227(4689):938-941. doi: 10.1126/science.227.4689.938

    [43]

    McArthur J M, Howarth R J, Shields G A, et al. Strontium isotope stratigraphy[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 211-238.

    [44]

    Martin E E, Haley B A. Fossil fish teeth as proxies for seawater Sr and Nd isotopes[J]. Geochimica et Cosmochimica Acta, 2000, 64(5):835-847. doi: 10.1016/S0016-7037(99)00376-2

    [45]

    Martin E E, Macdougall J D. Sr and Nd isotopes at the prmian/triassic boundary: A record of climate change[J]. Chemical Geology, 1995, 125(1-2):73-99. doi: 10.1016/0009-2541(95)00081-V

    [46]

    Peucker‐Ehrenbrink B, Ravizza G. The marine osmium isotope record[J]. Terra Nova, 2000, 12(5):205-219. doi: 10.1046/j.1365-3121.2000.00295.x

    [47]

    Mchargue L R, Damon P E. The global beryllium 10 cycle[J]. Reviews of Geophysics, 1991, 29(2):141-158. doi: 10.1029/91RG00072

    [48]

    Ingram B L, Coccioni R, Montanari A, et al. Strontium isotopic composition of mid-cretaceous seawater[J]. Science, 1994, 264(5158):546-550. doi: 10.1126/science.264.5158.546

    [49]

    Ingram B L. High-resolution dating of deep-sea clays using Sr isotopes in fossil fish teeth[J]. Earth and Planetary Science Letters, 1995, 134(3-4):545-555. doi: 10.1016/0012-821X(95)00151-2

    [50]

    Wang F L, He G W, Deng X G, et al. Fish teeth Sr isotope stratigraphy and Nd isotope variations: New insights on REY enrichments in deep-Sea sediments in the Pacific[J]. Journal of Marine Science and Engineering, 2021, 9(12):1379. doi: 10.3390/jmse9121379

    [51]

    Bertram C J, Elderfield H, Aldridge R J, et al. 87Sr/86Sr, 143Nd/144Nd and REEs in Silurian phosphatic fossils[J]. Earth and Planetary Science Letters, 1992, 113(1-2):239-249. doi: 10.1016/0012-821X(92)90222-H

    [52]

    Holmden C, Creaser R A, Muehlenbachs K, et al. Isotopic and elemental systematics of Sr and Nd in 454 Ma biogenic apatites: implications for paleoseawater studies[J]. Earth and Planetary Science Letters, 1996, 142(3-4):425-437. doi: 10.1016/0012-821X(96)00119-7

    [53]

    Martin E E, Scher H D. Preservation of seawater Sr and Nd isotopes in fossil fish teeth: bad news and good news[J]. Earth and Planetary Science Letters, 2004, 220(1-2):25-39. doi: 10.1016/S0012-821X(04)00030-5

    [54]

    Matton O, Cloutier R, Stevenson R. Apatite for destruction: Isotopic and geochemical analyses of bioapatites and sediments from the Upper Devonian Escuminac Formation (Miguasha, Québec)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 361-362:73-83. doi: 10.1016/j.palaeo.2012.08.004

    [55]

    Nelson B K, Deniro M J, Schoeninger M J, et al. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone[J]. Geochimica et Cosmochimica Acta, 1986, 50(9):1941-1949. doi: 10.1016/0016-7037(86)90250-4

    [56]

    Bosio G, Bianucci G, Collareta A, et al. Ultrastructure, composition, and 87Sr/86Sr dating of shark teeth from lower Miocene sediments of southwestern Peru[J]. Journal of South American Earth Sciences, 2022, 118:103909. doi: 10.1016/j.jsames.2022.103909

    [57]

    Sano Y, Terada K. Direct ion microprobe U-Pb dating of fossil tooth of a Permian shark[J]. Earth and Planetary Science Letters, 1999, 174(1-2):75-80. doi: 10.1016/S0012-821X(99)00253-8

    [58]

    Sano Y, Terada K. In situ ion microprobe U-Pb dating and REE abundances of a carboniferous conodont[J]. Geophysical Research Letters, 2001, 28(5):831-834. doi: 10.1029/2000GL008467

    [59]

    Sano Y, Terada K, Ly C V, et al. Ion microprobe U-Pb dating of a dinosaur tooth[J]. Geochemical Journal, 2006, 40(2):171-179. doi: 10.2343/geochemj.40.171

    [60]

    Ueki S, Sano Y. In situ ion microprobe Th-Pb dating of Silurian conodonts[J]. Geochemical Journal, 2001, 35(5):307-314. doi: 10.2343/geochemj.35.307

    [61]

    Fassett J E, Heaman L M, Simonetti A. Direct U-Pb dating of cretaceous and paleocene dinosaur bones, San Juan Basin, New Mexico[J]. Geology, 2011, 39(2):159-162. doi: 10.1130/G31466.1

    [62]

    Rochín-Bañaga H, Davis D W, Schwennicke T. First U-Pb dating of fossilized soft tissue using a new approach to paleontological chronometry[J]. Geology, 2021, 49(9):1027-1031. doi: 10.1130/G48386.1

    [63]

    Kohn M J, Schoeninger M J, Barker W W. Altered states: effects of diagenesis on fossil tooth chemistry[J]. Geochimica et Cosmochimica Acta, 1999, 63(18):2737-2747. doi: 10.1016/S0016-7037(99)00208-2

    [64]

    Greene S, Heaman L M, Dufrane S A, et al. Introducing a geochemical screen to identify geologically meaningful U-Pb dates in fossil teeth[J]. Chemical Geology, 2018, 493:1-15. doi: 10.1016/j.chemgeo.2018.04.022

    [65]

    Keenan S W. From bone to fossil: A review of the diagenesis of bioapatite[J]. American Mineralogist, 2016, 101(9):1943-1951. doi: 10.2138/am-2016-5737

    [66]

    Reynard B, Balter V. Trace elements and their isotopes in bones and teeth: Diet, environments, diagenesis, and dating of archeological and paleontological samples[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 416:4-16. doi: 10.1016/j.palaeo.2014.07.038

    [67]

    Romer R L. Isotopically heterogeneous initial Pb and continuous 222Rn loss in fossils: The U-Pb systematics of Brachiosaurus brancai[J]. Geochimica et Cosmochimica Acta, 2001, 65(22):4201-4213. doi: 10.1016/S0016-7037(01)00716-5

    [68]

    Balter V, Blichert-Toft J, Braga J, et al. U-Pb dating of fossil enamel from the Swartkrans Pleistocene hominid site, South Africa[J]. Earth and Planetary Science Letters, 2008, 267(1-2):236-246. doi: 10.1016/j.jpgl.2007.11.039

    [69]

    Grün R, Eggins S, Kinsley L, et al. Laser ablation U-series analysis of fossil bones and teeth[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 416:150-167. doi: 10.1016/j.palaeo.2014.07.023

    [70]

    Rochín-Bañaga H, Davis D W. Insights into U-Th-Pb mobility during diagenesis from laser ablation U-Pb dating of apatite fossils[J]. Chemical Geology, 2023, 618:121290. doi: 10.1016/j.chemgeo.2022.121290

    [71]

    Grün R, Mcdermott F. Open system modelling for U-series and ESR dating of teeth[J]. Quaternary Science Reviews, 1994, 13(2):121-125. doi: 10.1016/0277-3791(94)90037-X

    [72]

    Eggins S, Grün R, Pike A W G, et al. 238U, 232Th profiling and U-series isotope analysis of fossil teeth by laser ablation-ICPMS[J]. Quaternary Science Reviews, 2003, 22(10-13):1373-1382. doi: 10.1016/S0277-3791(03)00064-7

    [73]

    Grün R, Aubert M, Joannes-Boyau R, et al. High resolution analysis of uranium and thorium concentration as well as U-series isotope distributions in a Neanderthal tooth from Payre (Ardèche, France) using laser ablation ICP-MS[J]. Geochimica et Cosmochimica Acta, 2008, 72(21):5278-5290. doi: 10.1016/j.gca.2008.08.007

    [74]

    Geibert W, Stimac I, Van Der Loeff M M R, et al. Dating deep-sea sediments with 230Th excess using a constant rate of supply model[J]. Paleoceanography and Paleoclimatology, 2019, 34(12):1895-1912. doi: 10.1029/2019PA003663

    [75]

    Scholten J C, Botz R, Paetsch H, et al. High-resolution uranium-series dating of Norwegian-Greenland Sea sediments: 230Th vs. δ18O stratigraphy[J]. Marine Geology, 1994, 121(1-2):77-85. doi: 10.1016/0025-3227(94)90158-9

    [76]

    Scholten J C, Botz R, Mangini A, et al. High resolution 230Thex stratigraphy of sediments from high-latitude areas (Norwegian Sea, Fram Strait)[J]. Earth and Planetary Science Letters, 1990, 101(1):54-62. doi: 10.1016/0012-821X(90)90123-F

    [77]

    Ku T L, Broecker W S, Opdyke N. Comparison of sedimentation rates measured by paleomagnetic and the ionium methods of age determination[J]. Earth and Planetary Science Letters, 1968, 4(1):1-16. doi: 10.1016/0012-821X(68)90046-0

    [78]

    Zhou T C, Shi X F, Huang M, et al. Genesis of REY-rich deep-sea sediments in the Tiki Basin, eastern South Pacific Ocean: Evidence from geochemistry, mineralogy and isotope systematics[J]. Ore Geology Reviews, 2021, 138:104330. doi: 10.1016/j.oregeorev.2021.104330

    [79]

    Yang Z F, Qian Q K, Chen M, et al. Enhanced but highly variable bioturbation around seamounts in the northwest Pacific[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2020, 156:103190. doi: 10.1016/j.dsr.2019.103190

    [80]

    Yi L, Wang H F, Deng X G, et al. Geochronology and geochemical properties of Mid-Pleistocene sediments on the Caiwei Guyot in the Northwest Pacific imply a surface-to-deep linkage[J]. Journal of Marine Science and Engineering, 2021, 9(3):253. doi: 10.3390/jmse9030253

    [81]

    Li W P, Li X X, Mei X, et al. A review of current and emerging approaches for Quaternary marine sediment dating[J]. Science of the Total Environment, 2021, 780:146522. doi: 10.1016/j.scitotenv.2021.146522

    [82]

    Lebatard A E, Bourlès D L, Braucher R, et al. Application of the authigenic 10Be/9Be dating method to continental sediments: reconstruction of the Mio-Pleistocene sedimentary sequence in the early hominid fossiliferous areas of the northern Chad Basin[J]. Earth and Planetary Science Letters, 2010, 297(1-2):57-70. doi: 10.1016/j.jpgl.2010.06.003

    [83]

    Willenbring J K, Von Blanckenburg F. Meteoric cosmogenic Beryllium-10 adsorbed to river sediment and soil: applications for Earth-surface dynamics[J]. Earth-Science Reviews, 2010, 98(1-2):105-122. doi: 10.1016/j.earscirev.2009.10.008

    [84]

    Tanaka S, Inoue T. 10Be dating of North Pacific sediment cores up to 2.5 million years B. P.[J]. Earth and Planetary Science Letters, 1979, 45(1):181-187. doi: 10.1016/0012-821X(79)90119-5

    [85]

    Tanaka S, Inoue T, Imamura M. The 10Be method of dating marine sediments—comparison with the paleomagnetic method[J]. Earth and Planetary Science Letters, 1977, 37(1):55-60. doi: 10.1016/0012-821X(77)90145-5

    [86]

    Bourles D, Raisbeck G M, Yiou F. 10Be and 9Be in marine sediments and their potential for dating[J]. Geochimica et Cosmochimica Acta, 1989, 53(2):443-452. doi: 10.1016/0016-7037(89)90395-5

    [87]

    Somayajulu B L K. Analysis of causes for the beryllium-10 variations in deep sea sediments[J]. Geochimica et Cosmochimica Acta, 1977, 41(7):909-913. doi: 10.1016/0016-7037(77)90150-8

    [88]

    Inoue T, Tanaka S. 10Be in marine sediments[J]. Earth and Planetary Science Letters, 1976, 29(1):155-160. doi: 10.1016/0012-821X(76)90035-2

    [89]

    Tanaka S, Inoue T. 10Be evidence for geochemical events in the North Pacific during the Pliocene[J]. Earth and Planetary Science Letters, 1980, 49(1):34-38. doi: 10.1016/0012-821X(80)90147-8

    [90]

    Peucker-Ehrenbrink B, Ravizza G E. Osmium isotope stratigraphy[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 239-257.

    [91]

    Peucker-Ehrenbrink B, Ravizza G E. Osmium isotope stratigraphy[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. The Geologic Time Scale. Amsterdam: Elsevier, 2012: 145-166.

    [92]

    Fu Y Z, Peng J T, Qu W J, et al. Os isotopic compositions of a cobalt-rich ferromanganese crust profile in Central Pacific[J]. Chinese Science Bulletin, 2005, 50(18):2106-2112. doi: 10.1360/982004-348

    [93]

    Nozaki T, Ohta J, Noguchi T, et al. A Miocene impact ejecta layer in the pelagic Pacific Ocean[J]. Scientific Reports, 2019, 9(1):16111. doi: 10.1038/s41598-019-52709-1

    [94]

    Ohta J, Yasukawa K, Nozaki T, et al. Fish proliferation and rare-earth deposition by topographically induced upwelling at the late Eocene cooling event[J]. Scientific Reports, 2020, 10(1):9896. doi: 10.1038/s41598-020-66835-8

    [95]

    Helms P B, Riedel W R. Skeletal debris of fishes[M]//Initial Reports of the Deep Sea Drilling Project. 1971, 7: 1709-1720.

    [96]

    Sibert E C, Cramer K L, Hastings P A, et al. Methods for isolation and quantification of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) from marine sediments[J]. Palaeontologia Electronica, 2017, 20(1):1-14.

    [97]

    Doyle P, Kennedy G G, Riedel W. Stratignathy[M]//Davies T A, Luyendyk B P. Initial Reports of the Deep Sea Drilling Project. Washington: U. S. Goverment Printing Office, 1974, 26: 825-905.

    [98]

    Doyle P S, Riedel W R. Ichthyolith biostratigraphy of western north pacific pelagic clays, deep sea drilling project leg 86[M]//Heath G R, Burckle L H. Initial Reports of the Deep Sea Drilling Project. Washington: U. S. Goverment Printing Office, 1985, 86: 349-366.

    [99]

    Edgerton C C, Doyle P S, Riedel W R. Ichthyolith age determinations of otherwise unfossiliferous Deep Sea Drilling Project cores[J]. Micropaleontology, 1977, 23(2):194-205. doi: 10.2307/1485332

    [100]

    Gottfried M D, Doyle P S, Riedel W R. Advances in ichthyolith stratigraphy of the Pacific Neogene and Oligocene[J]. Micropaleontology, 1984, 30(1):71-85. doi: 10.2307/1485457

    [101]

    Tway L E, Doyle P S, Riedel W R. Correlation of dated and undated Pacific samples based on ichthyoliths and clustering techniques[J]. Micropaleontology, 1985, 31(4):295-319. doi: 10.2307/1485590

    [102]

    Krishnaswami S. Authigenic transition elements in Pacific pelagic clays[J]. Geochimica et Cosmochimica Acta, 1976, 40(4):425-434. doi: 10.1016/0016-7037(76)90007-7

    [103]

    Zhou L, Kyte F T. Sedimentation history of the South Pacific pelagic clay province over the last 85 million years inferred from the geochemistry of Deep Sea Drilling Project Hole 596[J]. Paleoceanography, 1992, 7(4):441-465. doi: 10.1029/92PA01063

    [104]

    Opdyke N D, Channell J E T. Rock magnetic stratigraphy and paleointensities[J]. International Geophysics, 1996, 64:250-276.

    [105]

    Yamazaki T. Relative paleointensity of the geomagnetic field during Brunhes Chron recorded in North Pacific deep-sea sediment cores: orbital influence?[J]. Earth and Planetary Science Letters, 1999, 169(1-2):23-35. doi: 10.1016/S0012-821X(99)00064-3

    [106]

    Tanaka E, Nakamura K, Yasukawa K, et al. Chemostratigraphy of deep-sea sediments in the western North Pacific Ocean: Implications for genesis of mud highly enriched in rare-earth elements and yttrium[J]. Ore Geology Reviews, 2020, 119:103392. doi: 10.1016/j.oregeorev.2020.103392

    [107]

    Yamazaki T, Fu W, Shimono T, et al. Unmixing biogenic and terrigenous magnetic mineral components in red clay of the Pacific Ocean using principal component analyses of first-order reversal curve diagrams and paleoenvironmental implications[J]. Earth, Planets and Space, 2020, 72(1):120. doi: 10.1186/s40623-020-01248-5

图(7)  /  表(1)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  3
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 修回日期:  2023-11-22
  • 网络出版日期:  2024-04-24
  • 刊出日期:  2024-04-23

目录

    /

    返回文章
    返回