The grain size gap at gravel-sand transition in beach sediments
-
摘要:
沉积物的粒度是最重要的沉积物参数之一,在河床中,表层沉积物缺乏砂–砾过渡粒级(即1~10 mm)的沉积物,被称为Grain size gap,得到广泛关注。海滩沉积物是否也是如此,是一个基本而又未知的问题。本文分析了中外228处海滩共456个表层沉积物平均粒径数据,发现海滩大概率或是平均粒径几十毫米的砾石滩,或是平均粒径几百微米的砂滩,也缺乏砂–砾过渡粒级沉积物,其粒度范围是−3.5~−1 ϕ(2~11 mm),这一结果和河床的情况基本相同。造成砂–砾过渡粒级缺乏的原因应从物源、颗粒磨损和分选以及广义的物质收支分析中去寻找。
Abstract:The grain size of sediments is one of the most crucial sedimentary parameters. In riverbeds, the surface sediments often lack the transitional grain sizes between sand and gravel (i.e., 1~10 mm), a phenomenon widely referred to as the "grain size gap." Whether this is also the case for beach sediments remains a fundamental yet unexplored question. Through the analysis of mean grain size data from 228 beach locations globally, we revealed that beaches also exhibit a grain size gap of sand-gravel transition, ranging from −3.5 ϕ to −1 ϕ (2 to 11 mm). Beaches have a high probability of being either gravel beaches with mean sediment diameters of several tens of millimeter, or sand beaches with mean sediment diameters of several hundred micrometers, mirroring the findings in riverbeds. Potential reasons for this absence include particle abrasion and selective transportation.
-
Keywords:
- beaches /
- grain size distributions /
- grain size gap /
- material source /
- transport processes /
- sediment budgeting
-
-
图 1 河床表层沉积物中值粒径的概率分布
基于Trampush等[8]论文中541条河流的数据,低概率的区域是粒度缺乏范围,−2.6~0 ϕ,这里的缺乏不是没有,而是出乎意料的、异常的少(修改自Lamb和Venditti[9])。
Figure 1. Probability distribution of mean grain size in river bed surface sediments
Based on Trampush et al.’s data from 541 rivers [8], the region of low probability is grain size gap, −2.6 ϕ to 0 ϕ, here “gap” denoting surprising and unusually low but not absence (modified from Lamb and Venditti) [9].
-
[1] Reineck H E, Singh I B. Depositional Sedimentary Environments: With Reference to Terrigenous Clastics[M]. 2nd ed. Berlin: Springer-Verlag, 1980: 549.
[2] 秦蕴珊. 中国陆棚海的地形及沉积类型的初步研究[J]. 海洋与湖沼, 1963, 5(1):71-85 QIN Yunshan. Geomorphic and sediment types of the China shelf seas: a preliminary study[J]. Oceanologia et Limnologia Sinica, 1963, 5(1):71-85.
[3] Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 1922, 30(5):377-392. doi: 10.1086/622910
[4] Dyer K R. Coastal and Estuarine Sediment Dynamics[M]. Chichester: John Wiley, 1986: 342.
[5] Komar P D. Beach Processes and Sedimentation[M]. 2nd ed. Upper Saddle River: Prentice Hall, 1998: 544.
[6] Udden J A. Mechanical composition of clastic sediments[J]. GSA Bulletin, 1914, 25(1):655-744. doi: 10.1130/GSAB-25-655
[7] Pettijohn F J. Sedimentary Rocks[M]. New York: Harper, 1949.
[8] Trampush S M, Huzurbazar S, McElroy B. Empirical assessment of theory for bankfull characteristics of alluvial channels[J]. Water Resources Research, 2014, 50(12):9211-9220. doi: 10.1002/2014WR015597
[9] Lamb M P, Venditti J G. The grain size gap and abrupt gravel‐sand transitions in rivers due to suspension fallout[J]. Geophysical Research Letters, 2016, 43(8):3777-3785. doi: 10.1002/2016GL068713
[10] Dingle E H, Kusack K M, Venditti J G. The gravel-sand transition and grain size gap in river bed sediments[J]. Earth-Science Reviews, 2021, 222:103838. doi: 10.1016/j.earscirev.2021.103838
[11] Church M, Hassan M A. The fluvial grain‐size gap: experimental confirmation of hydraulic origin[J]. Earth Surface Processes and Landforms, 2023, 48(8):1502-1511. doi: 10.1002/esp.5562
[12] Parker G, An C E, Lamb M P, et al. Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics[J]. EGUsphere, 2023.doi: 10.5194/egusphere-2023-1705.
[13] McLean R F. Variations in grain‐size and sorting on two Kaikoura beaches[J]. New Zealand Journal of Marine and Freshwater Research, 1970, 4(2):141-164. doi: 10.1080/00288330.1970.9515334
[14] Jennings R, Shulmeister J. A field based classification scheme for gravel beaches[J]. Marine Geology, 2002, 186(3-4):211-228. doi: 10.1016/S0025-3227(02)00314-6
[15] 龚照辉. 浙江省不同季节海滩地形地貌特征及其影响因素[D]. 南京大学硕士学位论文, 2023 GONG Zhaohui. Characteristics of beach geomorphology in different seasons and its influencing factors in Zhejiang province[D]. Master Dissertation of Nanjing University, 2023.
[16] 任明达, 梁绍霖. 秦皇岛地区砾石质沿岸堤的成因[J]. 地质论评, 1965, 23(3):200-210, 237 doi: 10.3321/j.issn:0371-5736.1965.03.006 REN Mingda, LIANG Shaolin. Causes of gravel beach ridge in the Qinhuangdao area[J]. Geological Review, 1965, 23(3):200-210, 237. doi: 10.3321/j.issn:0371-5736.1965.03.006
[17] 王爱军, 高抒, 杨旸. 浙江朱家尖岛砾石海滩沉积物分布及形态特征[J]. 南京大学学报:自然科学, 2004, 40(6):747-759 WANG Aijun, GAO Shu, YANG Yang. Sediment distribution and shape characteristics of gravel beaches, Zhujiajian Island, Zhejiang province[J]. Journal of Nanjing University:Natural Sciences, 2004, 40(6):747-759.
[18] 邢秀臣, 杜国云, 魏新华, 等. 芝罘岛北岸海湾砾滩侵蚀研究[J]. 海洋湖沼通报, 2009(1):73-78 doi: 10.3969/j.issn.1003-6482.2009.01.012 XING Xiuchen, DU Guoyun, WEI Xinhua, et al. The erosion of gravel beaches in northern coast of Zhifu Island[J]. Transactions of Oceanology and Limnology, 2009(1):73-78. doi: 10.3969/j.issn.1003-6482.2009.01.012
[19] 周在明, 杨燕明, 陈本清. 东山乌礁湾海滩表层沉积物粒度时空变化分析[J]. 海洋科学, 2016, 40(10):82-90 doi: 10.11759//hykx20150313001 ZHOU Zaiming, YANG Yanming, CHEN Benqing. Spatial and temporal characteristics of surface sediment grain size in Wujiao Bay, Dongshan Island[J]. Marine Sciences, 2016, 40(10):82-90. doi: 10.11759//hykx20150313001
[20] 孙家文, 董祥科, 于永海, 等. 砾石海滩剖面设计及其稳定性模型试验研究[J]. 海洋通报, 2019, 38(4):422-428, 454 SUN Jiawen, DONG Xiangke, YU Yonghai, et al. Study on profile design and stability physical model experimental of gravel beach[J]. Marine Science Bulletin, 2019, 38(4):422-428, 454.
[21] 王兴, 王永红, 徐杨杨, 等. 基于数字图像的山东长山岛砾石海滩表层砾石形貌特征研究[J]. 海洋学报, 2021, 43(1):110-121 WANG Xing, WANG Yonghong, XU Yangyang, et al. Morphological characteristics based on digital images of gravels from gravels beaches in the Changshan Island, Shandong province[J]. Haiyang Xuebao, 2021, 43(1):110-121.
[22] Flemming B W. Process and pattern of sediment mixing in a microtidal coastal lagoon along the west coast of South Africa[M]//de Boer P L, van Gelder A, Nio S D. Tide-influenced Sedimentary Environments and Facies. Dordrecht: D. Reidel Publ. Co, 1988: 275-288.
[23] Hoskin C M, Sundeen D A. Grain size of granite and derived grus, Enchanted Rock pluton, Texas[J]. Sedimentary Geology, 1985, 42(1-2):25-40. doi: 10.1016/0037-0738(85)90071-5
[24] Kodama Y. Experimental study of abrasion and its role in producing downstream fining in gravel-bed rivers[J]. Journal of Sedimentary Research, 1994, 64(1a):76-85. doi: 10.2110/jsr.64.76
[25] Jerolmack D J, Brzinski III T A. Equivalence of abrupt grain-size transitions in alluvial rivers and Eolian sand seas: a hypothesis[J]. Geology, 2010, 38(8):719-722. doi: 10.1130/G30922.1
[26] Devereux R. John Loudon McAdam: Chapters in the History of Highways[M]. London: Oxford University Press, 1936.
[27] Agredo Montealegre A. A global history of the road: road construction, maintenance and use in Colombia, Argentina, French West Africa, and the Algerian Sahara, 1930-1970[D]. Doctor Dissertation of University of London, King's College, 2020.