Application of black carbon in sediments in paleoenvironment and paleoclimate studies
-
摘要: 黑碳是指生物质或化石燃料不完全燃烧以及岩石风化所产生的一系列含碳物质连续体的统称。其特殊的物理化学性质可对全球气候环境造成显著影响,如加剧温室效应、影响水文循环和碳封存;由于其具有较为稳定的化学性质以及燃烧前后碳同位素分馏小的特征,又使黑碳作为一种载体被应用到地质时间尺度火历史与植被演化重建工作中。通过对黑碳的特征、来源、循环、在沉积物中的提取方法及其在不同时间尺度古环境重建中的应用进行评述,提出了目前黑碳记录在古环境重建中存在的一些问题,如黑碳的降解转化过程对黑碳沉积的影响,以及黑碳年龄具有滞后性,沉积物中黑碳来源及沉积过程的复杂性,地质时间尺度黑碳参与碳循环的角色仍不明确等。另外对未来研究进行了展望:相对于陆地土壤、湖泊、河流、冰川等载体,海洋沉积物中黑碳的研究工作还非常缺乏。自1966年以来,深海钻探计划、国际大洋钻探计划、综合大洋钻探/发现计划航次及我国自主航次在全球海洋获取了大量高质量沉积岩芯,为未来利用黑碳研究新生代以来构造、气候、植被、火乃至人类活动之间的相互作用提供了可能性。Abstract: Black carbon refers to a series of continuum of carbonaceous substances from incomplete combustion of biomass or fossil fuels or weathering of rocks. Its unique physical and chemical properties have significant impacts on the global climate and environment, such as exacerbating the greenhouse effect, affecting hydrological cycling and carbon sequestration. Due to its relatively stable chemical properties and small carbon isotope fractionation before and after combustion, black carbon has been used as a reliable proxy for the reconstruction of geological time-scale fire history and vegetation evolution. We reviewed the characteristics, sources, cycles, extraction methods in sediments, and their applications in paleoenvironmental reconstruction on different time scales of black carbon, and raised some issues in the current application of black carbon records for paleoenvironmental reconstruction. For example, the impact of the degradation and transformation of black carbon on black carbon deposition, as well as the lag in black carbon age, the complexity in black carbon origination and deposition, and the role of black carbon in carbon cycling at geological time scales, are still unclear. In addition, prospects for future research are presented: Unlike terrestrial soil, lakes, rivers, glaciers, and other carriers, black carbon in marine sediments are poorly studied. For more than half a century, international and national ocean drilling expeditions have obtained a large number of high-quality sedimentary cores in the global oceans, providing a possibility of using black carbon to study the interaction among tectonics, climate, vegetation, fire, and even human activities since the Cenozoic.
-
山东半岛南岸全新世最大海侵期间,海水沿河谷(沟谷)侵入半岛陆地内部形成了若干溺谷,实际上是山溪性入海河流的河口段,因河流入海水沙有限,河道口窄肚宽,在海洋动力控制下成为具有潟湖性质的河口湾。经过其上游河流泥沙长期充填,这些海湾最迟在20世纪70年代以前就已演变成大型潮汐汊道系统[1-2],由狭窄的河口河道、树枝状潮汐汊道、宽平的潮间滩涂及潮上低地组成,低地后缘为埋藏的古海蚀崖,海湾水深除局部潮汐汊道外均不到6.0 m,若按照国际湿地公约的界定均属于湿地范畴。其中,位于青岛及烟台两市间、五龙河尾闾的丁字湾规模最大,形态最典型(图1),该海湾地区近几十年来经济发展快,人类活动影响大,这种宽阔滩涂、潮汐汊道式海湾对人类活动影响反应更为灵敏,其动力地貌演变特征对人类活动影响有着更为显著的表现。同时堆积在海湾的沉积物除了保留物源的信息外,还保留着人类活动对沉积物粒度影响的信息。
近些年来,前人对丁字湾的入海径流泥沙、动力、地貌特征、滩涂开发活动及其演变已有较多研究[1-6],取得了一系列的成果。然而由于研究侧重方向不同,在沉积物粒度参数特征、粒径大小变化等方面,研究内容较少,精度较低;在沉积物同位素地质学方面的研究,例如沉积物中210Pb放射性比活度的垂直分布、沉积速率等方面也缺乏相关成果;同时在研究区也缺乏将沉积物粒度与沉积年代学相结合分析沉积环境变化的相关研究。因此通过分析海湾沉积物的粒度参数特征及粒度时空分布,一方面能够直观有效地反演该时期沉积物所处的沉积环境和沉积动力等条件,揭示沉积演变规律[7-10],同时可以了解在历史沉积时期围海养殖、航道疏浚等人类工程建设活动对沉积地貌、粒度变化的影响[3,11-16]。
本文对丁字湾口外近岸浅海区域11站柱状沉积物样品进行粒度分析,并对其中2站柱状样进行210Pb比活度测试,计算粒度参数、沉积速率,划分沉积物类型,分析粒度参数空间分布,并通过与历史资料相结合,探讨丁字湾口外滨浅海海域海底沉积环境、沉积物侵蚀淤积演变规律以及流域人类活动在沉积物粒度记录中的响应,其结果可深化在全球变化背景下,暖温带山地河流、河口海岸沉积环境与地貌演变研究。
1. 研究区概况
丁字湾位于山东半岛南部,是半岛最大最典型的溺谷河口-潮汐汊道海湾,高潮时面积143.75 km2、潮间带面积119.01 km2、湾口宽度6.0 km,呈口小肚大的形状,潮汐类型为正规半日潮,最高潮位4.27 m,最低潮位−0.5 m。潮流的主要运动形式为北西-南东向往复式流,湾内流速大于湾外。海浪浪向南东,夏季受台风影响在湾口外常形成大浪,波高一般大于1.5 m,最高可达3.5 m[2,4,17]。汇入丁字湾的河流有五龙河、白沙河等,沉积物来源除了河流输入以外,还有海岸侵蚀来沙和人工来沙,沉积物类型多样,沉积环境复杂。入该湾的五龙河在各入湾河流中规模也最大(长度128 km,流域面积2806.3 km2),且从1952年开始设有各入湾河流中唯一的水文观测站—团旺水文站,拥有最近60年的河流水文连续观测记录资料。研究区域位于丁字湾的湾口以外,为五龙河河口的口外滨海段,发育了以湾口为顶端的落潮三角洲,其地形以轴部高两翼低、上下游低中部高为特征,最高处高出上游潮汐汊道底部约10 m,实际上为落潮流控制下形成于口门以外的五龙河河口大型拦门沙体。人工地貌类型则主要有养殖池、水田、盐田等。
丁字湾海岸类型、地貌过程和海湾开发利用在各个同类海湾中颇具代表性。丁字湾是著名的古金口港所在,该港在青岛、烟台开埠以前是胶东半岛最重要的商港,直到20世纪上半叶才因为淤积严重而遭废弃。近50年来,丁字湾潮间滩涂和潮上湿地普遍被围垦,湾内5个岛屿中的4个因自然淤积和人工建坝而与陆地相连,海湾潮流运动的边界条件因而相应改变,尤其以1980年麻姑岛连岛大坝修建前后变化最为剧烈。与此同时,入湾河流五龙河流域内气候以及土地利用/土地覆被变化显著,各级河道上建设了大量水库(塘)、拦河坝和人工水源地,大量地面径流及地下水被开发利用,河流下游及河口水文水动力条件也相应改变。以上种种人类活动,必然会深刻影响到河口拦门沙及落潮三角洲的动力、沉积条件,进而改变其动力沉积与动力地貌过程。
2. 样品采集与测试
根据丁字湾口外落潮三角洲(拦门沙)轴部高两翼低、上下游低中部高的特征,考虑到不同水深的地貌部位其动力、沉积速率也不同,于2017年5月在丁字湾口外浅海区平行海岸线和垂直海岸线方向上,采用震动活塞式柱状取样器进行取样,共采集11站柱状沉积物样品,相邻样品间距约2.5 km,柱状样长度均大于2 m。丁字湾周边相邻海域的沉积速率数值[18-20]均小于1 cm/a,多分布于4~8 mm/a,为了解研究区的沉积速率以及三角洲不同部位的沉积差异,对分别位于三角洲顶端和前缘的HZ20及HZ24开展210Pb的分布模式及沉积速率研究。对HZ20、HZ24两柱状样,按照4 cm间距分段切割,进行210Pb放射性比活度测试,对11站柱状样,按照4 cm间距分段切割,进行沉积物粒度测试,结合计算获得的HZ20、HZ24两站沉积速率值,研究丁字湾近半个世纪的沉积变化,具体采样站位见图2。
沉积物粒度分析由山东省第四地质矿产勘查院实验测试中心采用济南微纳颗粒仪器股份有限公司生产的Winner2008激光粒度分析仪进行,误差精度为0.01%,分析流程按照海洋地质地球物理调查规范[21]进行。测试结果按照Folk等[22-23]的方法进行沉积物的分类、定名。采用矩法公式[24-26]对沉积物进行粒度参数计算,用粒度参数分级进行定性描述(表1)。
表 1 沉积物粒度参数分级[27]Table 1. Classification of grain size parameters分选系数 定性描述 偏态系数 定性描述 峰态系数 定性描述 <0.35 分选极好 0.35~0.50 分选好 >1.30 极正偏 <1.70 很平坦 0.50~0.71 分选较好 0.43~1.30 正偏 1.70~2.55 平坦 0.71~1.00 分选中等 −0.43~0.43 近对称 2.55~3.70 中等(正态) 1.00~2.00 分选较差 −0.43~−1.30 负偏 3.70~7.40 尖锐 2.00~4.00 分选差 <−1.30 极负偏 >7.40 很尖锐 >4.00 分选极差 210Pb放射性比活度测试由南京师范大学同位素实验室完成,分析步骤如下:称取样品50~80 g,放入烘箱中,在100℃下恒温24小时。烘干的样品准确称重后装入测量盒中,密封15天,再置入仪器的测量室中测量。测量仪器分别为欧洲Canberra公司生产的BE3830型高纯锗探测器和DSC1000数字分析器组成的γ能谱仪,用来测量210Pb、226Ra。226Ra测量所用射线为214Bi的609.3keV γ射线;210Pb测量所用射线为46.5keV γ射线。流程按照土壤中放射性核素的γ能谱分析方法[28]进行。测试结果采用恒定初始放射性浓度模式(CIC模式),利用放射性衰变方程,通过作图得到深度H和lnN拟合线,其斜率即为S/λ,然后根据斜率获得沉积速率S [18-20,29]。
3. 结果
3.1 沉积物类型与层序
根据研究区内11站柱状沉积物样品粒度分析结果,分别沿垂直海岸线方向(A-B剖面)和平行海岸线方向(C-D剖面)(图2)绘制柱状沉积物类型剖面分布图(图3、图4)。从图中可以看出海底柱状沉积物类型可划分为含砾砂、砂、粉砂质砂、砂质粉砂、粉砂、黏土和泥等7种类型。
丁字湾口外滨海不同的海域受控于不同的沉积水动力环境,各站位沉积物类型不同,从A-B剖面图中可以看出,除HZ20以外,由HZ21至HZ26在远离海岸水平方向上沉积物颗粒逐渐变细。同样在C-D剖面图中,以中央潮汐汊道为界,沿两侧水平方向上沉积物颗粒逐渐变细。可以看出在平面上沉积物向四周边缘粒度逐渐变细,这一特征与此处发育的水下扇形三角洲海底地貌相吻合,指示了由湾口向四周水动力环境逐渐减弱的现象。
同样,在不同的历史沉积时期,各柱状样在垂向上亦形成不同的沉积组合(韵律),A-B剖面中,HZ20柱状样下部为砂,上部为粉砂质砂-黏土(泥)沉积韵律组合;HZ21柱状样下部为含砾砂,上部为砂;HZ22柱状样下部为含砾砂,上部为砂夹粉砂质砂;HZ23柱状样沉积物类型单一,以砂为主,夹砂质粉砂;HZ24柱状样主要为粉砂-黏土(泥)的沉积韵律组合,顶部发育少量砂;HZ25柱状样上部为粉砂,下部为黏土(泥)。HZ26柱状样上部为粉砂夹黏土,下部为黏土(泥)。C-D剖面中,HZ27柱状样上部为粉砂-泥(黏土)沉积韵律组合,下部为粉砂质砂;HZ22柱状样下部为含砾砂,上部为砂夹粉砂质砂;HZ12柱状样沉积物类型单一,主要为含砾砂;HZ5和HZ8柱状样沉积物类型一致,为黏土。
由以上沉积组合(韵律)可以发现,垂直海岸方向上,HZ23所处的海域沉积环境动力相对稳定,并以此为界,两侧海域具有不同的沉积动力环境,近岸的HZ20-HZ22海域早期沉积环境动力强于晚期,远岸的HZ24-HZ26所处海域则相反,早期沉积环境动力弱于晚期。平行海岸方向上,潮汐汊道西南海域处于早期强、晚期弱的水动力环境;潮汐汊道东北沉积动力环境变化不大,靠近潮汐汊道处于较强的动力环境,远离潮汐汊道处于较弱的沉积环境。
3.2 沉积物粒度参数
粒度参数分析结果见图5、图6。平均粒径表示粒度分布的集中趋势,能指示源区物质的远近程度和搬运介质的动力大小[23-24,30-31]。A-B剖面各站位平均粒径变化范围不同,其中,HZ21、HZ22和HZ23平均粒径及变化范围幅度均较小,分别为0.71~1.89Φ(平均值1.23Φ)、1.30~3.24Φ(平均值2.32Φ)、2.55~3.48Φ(平均值2.92Φ);HZ25、HZ26平均粒径Φ值较大,但变化范围幅度小,分别为6.57~8.61Φ(平均值7.38Φ)、7.02~8.74Φ(平均值7.98Φ);HZ24平均粒径及变化幅度大,为2.54~8.37Φ(平均值6.35Φ),由下至上整体表现为逐渐减小;HZ20下部平均粒径及变化幅度均较小,为1.53~2.22Φ(平均值1.74Φ),上部变化范围大,为2.22~8.35Φ(平均值5.85Φ),表现为粒径大小交替分布的特征。水平方向上除了HZ20异常外,由HZ21至HZ26方向平均粒径平均值逐渐增大,颗粒逐渐变细,反映了远离海岸方向搬运介质动力逐渐降低。垂直方向上HZ20早期沉积动力环境相对较强且稳定,后期在相对强和弱的沉积动力环境中交替变化,HZ24沉积动力环境整体呈现强弱交替变化特征。其余各站位,HZ21-HZ23沉积动力环境相对较强且较稳定,HZ25-HZ26沉积动力环境整体相对较弱,后期较前期略强。
C-D剖面中各站位平均粒径Φ值及变化范围也各不相同,分别为HZ27平均粒径3.55~8.36Φ(平均值5.99Φ),HZ22平均粒径1.30~3.24Φ(平均值2.32Φ),HZ12平均粒径1.00~2.30Φ(平均值1.76Φ),HZ8平均粒径8.83~9.70Φ(平均值9.41Φ),HZ5平均粒径9.79~10.48Φ(平均值10.18Φ),水平方向表现为由潮汐汊道向两侧平均粒径Φ值逐渐增大的趋势,指示了搬运介质动力向两侧逐渐降低。垂直方向上表现为HZ27水动力环境明显减弱外,其余站位水动力环境变化不大,HZ12、HZ22沉积动力环境相对较强且稳定,HZ5、HZ8沉积动力环境相对较弱且稳定。
沉积物的分选系数代表着沉积物颗粒大小的均匀程度[23-24,30-31],反映了水环境动力对颗粒的分选程度,A-B剖面中HZ20-HZ24分选系数范围值较大,分别为0.17~1.75(平均值0.87)、0.19~1.33(平均值1.00)、0.13~1.72(平均值0.78)、0.21~1.40(平均值0.51)、0.21~1.26(平均值0.79)。HZ25和HZ26分选系数范围较小,分别为0.44~0.91(平均值0.73)、0.45~0.78(平均值0.61)。根据表1中分选系数分级及定性描述,A-B剖面分选性属于较好—中等级别,表明从物源区到沉积区,搬运路径的增大导致分选系数变小、分选性变好。
C-D剖面中各站位分选系数变化也不尽相同,HZ5和HZ8分选系数范围小,分别为0.14~0.50(平均值0.39)、0.32~0.51(平均值0.40);HZ12、HZ22和HZ27分选系数范围较大,分别为0.55~1.10(平均值0.85)、0.13~1.72(平均值0.78)和0.22~1.15(平均值0.68)。根据表1中分选系数分级及定性描述可知,C-D剖面分选性属于好—中等级别,并表现为由剖面中间向两侧分选系数逐渐变小、分选性变好的趋势。
偏态能够判别粒度曲线的对称程度,反映颗粒被改造程度。偏态为正时,沉积物粒径偏向粗粒,偏态为负时,沉积物粒径偏向细粒[23-24,30-31]。A-B剖面中除HZ20下部和HZ22上部偏态异常外,各柱状样整体偏态值上下较为一致,范围为−0.90~4.46,剔除异常后总体平均值为0.79,偏态定性描述为正偏,颗粒粒径集中在粗粒的一侧。C-D剖面中偏态值范围为−6.86~6.80,平均值0.11,偏态定性描述为0值两侧近对称分布,粗、细颗粒含量近似一致。
峰态是衡量粒度分布曲线的宽窄尖锐程度[23-24,30-31],峰态规律同偏态相近,A-B剖面中HZ20下部和HZ22上部峰态值异常,其余各柱状样峰态变化范围不大。整体峰态范围为1.91~55.76,剔除异常后总体平均值为3.93,峰态定性描述为尖锐。C-D剖面中HZ22和HZ27上部峰态值异常,整体范围为1.03~55.76,剔除异常后总体平均值为4.13,峰态定性描述为尖锐。
3.3 沉积速率
结合丁字湾历史水深资料[17]和2015年10月中国航海图书出版社出版发行的海阳港区及附近海图,研究区等深线位置自1950年以来尚未发生明显变化,可认为选取的两个站位是连续性沉积,选用210Pb测年方法计算沉积年龄是合适的。HZ20柱状样中210Pbex随深度分布变化如图7所示,38 cm以上层位210Pbex随深度有明显的指数衰减趋势,该深度内为210Pb的衰变段,38~54 cm层位210Pbex有随深度增加趋势,54 cm以下层位210Pbex又呈降低趋势。由此可知本次采集的沉积物柱样长度未达到210Pb本底层。因此选取38 cm以浅的10个样品,根据线性拟合结果,计算该柱状样2~38 cm层位的平均沉积速率为0.51 cm/a。这一计算层位沉积历时75年左右,年代跨度为1940—2017年。
HZ24柱状样中210Pbex随深度分布变化如图7所示,210Pbex在表层6 cm内活度异常,表明扰动层发育,可能由于底栖生物扰动作用所致。6~42 cm层位210Pbex随深度有明显的指数衰减趋势,该深度内为210Pb的衰变段,42 cm以下层位210Pbex活度值分布规律性差,同样采集的本沉积物柱样长度未达到210Pb本底层。因此选取6~42 cm层位的10个样品,根据线性拟合结果,计算该柱状样6~42 cm层位的平均沉积速率为1.19 cm/a。这一计算层位沉积历时37年左右,年代跨度为1980—2017年。
两站位沉积相同厚度的沉积物,沉积历时不同,与分别处于不同的沉积水动力环境密切相关,HZ20整体处于相对高能水动力环境,易侵蚀冲刷,而HZ24站位相反,整体处于相对较弱水动力环境,易接受沉积。
4. 讨论
对丁字湾口外滨海而言,在丁字湾落潮流控制下发育了大型落潮三角洲(拦门沙),落潮流强弱及其携带泥沙数量、沉积物粒度粗细受丁字湾纳潮量和五龙河入湾水沙制约,此外还受人类活动尤其是工程建设活动的深刻影响。
历史资料表明,1980年以前,五龙河流域降雨充沛,且人类工程活动建设(水库)主要集中于五龙河上游,植被破坏,大量山地来源沉积物进入五龙河,入海径流、泥沙量明显增大,尤其是粗颗粒泥沙比例较大。1980年以后,五龙河流域降水量显著减少,受到水库等水利设施的围截,入海径流、泥沙量也相应显著减少[3]。同时,80年代初人类开始对湾内滩涂进行围垦,1970年前后丁字湾沿岸有少量的盐田,1981—2000年,养殖池面积剧增,以新修建养殖池或其他类型地貌向养殖池转换为主[5],尤其是盐田和潮滩等从80年代开始显著减少。2000年以后,养殖池面积增速放缓,人类活动的影响逐渐减弱,海湾地貌格局趋于稳定,变化不大,这在不同年份的海湾地貌资料上有着很好的反映(图8)。
这些诸多人类活动深刻影响着原有的地貌边界条件、动力过程及其演化趋势,进一步影响着丁字湾沉积过程及沉积物粒度变化情况。1980年以前,丁字湾总体受人类活动影响较小,五龙河径流量、输沙量较大,海湾处于由落潮不对称向涨潮不对称转换[3,5-6],海湾地貌属于潮汐汊道窄深、两侧潮间滩涂宽广的空间分布格局,纳潮量较大,涨潮历时长于落潮历时,涨潮流速小于落潮流速,沉积物主要表现自然沉积。在强劲落潮流冲刷、五龙河携带的泥沙搬运距离较短以及外海传来的波浪在此变形及破碎、水流能动性强等因素共同作用下,落潮三角洲范围成为高能水动力沉积环境,近岸湾口处三角洲顶端的HZ20下部(图3中该站位24 cm以下)砂、粉砂质砂等较粗粒沉积物是这一沉积时期很好的响应。向三角洲前缘方向外海海域水深增大,五龙河携带的泥沙搬运至此处距离增大,落潮流能量降低,且潮流流速随水深递增而明显减小,HZ24底部(图3中该站位44 cm以下)的泥质沉积物相对较细。
1980年以后,沉积物在自然条件沉积的前提下,受到了人类活动的深刻影响。丁字湾滩涂围垦导致海湾纳潮空间显著减小,细颗粒泥沙的淤积空间变小,海湾涨潮历时变短,落潮历时变长,涨潮流流速加大,落潮流流速变小[32],水动力作用受限,再加上此时五龙河入湾径流、泥沙量都迅速减少[7],近岸湾口处三角洲顶端的HZ20上部(图3中该站位24 cm以上)沉积物较下部明显变细,垂直方向上呈粗细交替变化,位于三角洲前缘海域的HZ24则受涨潮流及波浪作用,其中上部(图3中该站位44 cm以上)沉积物较底部略粗,垂直方向上也呈粗细交替变化。
5. 结论
(1)丁字湾口外浅海区海底48 cm深度内发育含砾砂、砂、粉砂质砂、砂质粉砂、粉砂、黏土和泥等7种沉积物类型。平均粒径Φ值由三角洲顶端向前缘、潮汐汊道向两侧方向逐渐增大,分选性属于较好—中等级别,偏态为正偏或近对称分布,峰态为尖锐型。沉积环境水动力强度由湾口向湾外、由中央潮汐汊道向两侧海域逐渐降低。历史沉积时期三角洲东北翼及前缘以外的海域为较弱且稳定的沉积动力环境,三角洲内潮汐汊道周边海域为较强且稳定的沉积动力环境,三角洲顶端、前缘及西南翼海域为强弱交替不稳定沉积动力环境。
(2)对位于落潮三角洲顶端及前缘的HZ20和HZ24柱状样进行210Pb放射性比活度分析,HZ20样品最近80年以来的沉积速率为0.51 cm/a,揭示三角洲顶端(潮汐汊道)发育于高能水动力环境,易遭受侵蚀冲刷;HZ24样品最近40年以来的沉积速率为1.19 cm/a,揭示三角洲前缘发育于相对低能水动力环境,易接受沉积。
(3)最近40年以来的流域气候和海湾滩涂围垦深刻影响丁字湾动力地貌、沉积动力及沉积物粒度演化模式。1980年以前,人类活动影响有限,海湾沉积物以自然沉积为主,在落潮流主导下潮汐汊道及周围海域沉积颗粒较粗,三角洲前缘外海域沉积颗粒较细。1980年以后,丁字湾滩涂遭围垦严重,海湾纳潮空间显著减小,五龙河入湾径流、泥沙量也都迅速减少,潮汐汊道及上游其水动力影响降低,潮汐汊道及相邻两侧海域沉积物明显变细,三角洲前缘及外海域受波浪作用叠加影响沉积物略微变粗,垂直方向上均呈粗细交替变化。
-
图 5 冰期间冰期火历史重建
a:全球深海底栖有孔虫氧同位素曲线[63]; b:热带大西洋晚更新世海洋沉积物中黑碳含量,数据来自文献[64];c:黄土高原沉积物中的黑碳沉积速率,数据来自文献[60];d:玻利维亚的喀喀湖沉积物中的黑碳含量,数据来自文献[62];e.全球海平面变化[65]。
Figure 5. Reconstruction of fire history during glacial-interglacial cycles
a: Oxygen isotope curve of global deep-sea benthic foraminifera[63]; b: black carbon content in late Pleistocene marine sediments of tropical Atlantic Ocean (data are from reference [64]); c: the deposition rate of black carbon in sediments of the Loess Plateau (data from reference[60]); d: black carbon content in sediments of Lake Titicaca in Bolivia (data from reference [62]); e: global sea-level change[65].
图 6 全新世东亚火活动演变历史
a:65°N夏季太阳辐射曲线;b:秦岭大冶湖地区黑碳沉积速率,数据来自文献[71];c:内蒙古岱海湖地区火灾发生频率,数据来自文献[69];d:珠江入海口沉积物中黑碳含量变化,数据来自文献[72]; e:东海大陆架ECMZ岩心记录的黑碳含量变化,数据来自文献[73]。
Figure 6. Evolution of East Asian fire activity in the Holocene
a: 65°N summer solar radiation curve; b: the deposition rate of black carbon in the Daye Lake area of the Qinling Mountains (data from reference[71]); c: The frequency of fires in the Daihai Lake area of Inner Mongolia (data from reference [69]); d: changes of black carbon content in sediments from the the Pearl River estuary (data from reference [72]); e: changes in black carbon content recorded by the ECMZ core of the East China Sea continental shelf (data from reference [73]).
图 7 构造尺度全球不同区域植被演化历史重建记录
a:南海IODP U1501站沉积物黑碳重建的东亚南部植被演化历史[86],b:中国北方食草动物牙釉质碳同位素记录的植被演化历史[81], c:日本海IODP U1430站沉积物黑碳重建的中亚北部植被演化历史[85],d:中亚南部食草动物牙釉质碳同位素记录的植被演化历史[78],e:植物叶蜡碳同位素记录的非洲植被演化历史[83];f:南美食草动物牙釉质碳同位素记录的植被演化历史[78],g:北美食草动物牙釉质碳同位素记录的植被演化历史[78],h:大气二氧化碳浓度变化[89]。
Figure 7. Reconstruction records of global vegetation evolution history on tectonic scale.
a: The evolution history of vegetation in southern East Asia recorded by black carbon from sediments at IODP U1501 station in the South China Sea [86],b: Vegetation evolution history recorded by tooth enamel carbon isotope of herbivores in northern China [81], c: Vegetation evolution history of northern central Asia for sediment black carbon reconstruction at IODP U1430 station in the Japan Sea [85], d: Vegetation evolution history recorded by tooth enamel carbon isotope of herbivores in southern central Asia [78], e: The evolution history of African vegetation recorded by carbon isotopes of plant leaf wax [89], f: Vegetation evolution history recorded by carbon isotopes of tooth enamel of South America [78]gg: Vegetation evolution history recorded by carbon isotopes of tooth enamel of North America [78], h: Changes in atmospheric carbon dioxide concentration [90].
图 8 轨道-千年时间尺度植被演化历史重建
a:深海底栖有孔虫氧同位素曲线,数据来自于文献[63];b:低纬度地区孟加拉湾沉积扇总有机质和正构烷烃单体δ13C记录,数据来自于文献[94];c:中纬度地区麦地那河沉积物δ13C记录,数据来自于文献[100];d:高纬度地区莱茵河谷黄土剖面的土壤有机碳δ13C记录,数据来自于文献[103]。
Figure 8. Reconstruction of vegetation evolution history on the orbital-millennial time scales
a: Oxygen isotope curve of global deep-sea benthic foraminifera (data from reference [63]); b: Total organic matter and n-alkane monomer of Bay of Bengal sedimentary fan in low latitude area δ13C record (data from reference [94]), c: sediments of Medina River in mid latitude area δ13C record (data from reference [100]), d: soil organic carbon in the Loess Profile of the Rhine Valley in high latitude regions δ13C record (data from reference [103]).
-
[1] Masiello C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92(1-4):201-213. doi: 10.1016/j.marchem.2004.06.043
[2] Dickens A F, Gélinas Y, Masiello C A, et al. Reburial of fossil organic carbon in marine sediments[J]. Nature, 2004, 427(6972):336-339. doi: 10.1038/nature02299
[3] Coppola A I, Wagner S, Lennartz S T, et al. The black carbon cycle and its role in the Earth system[J]. Nature Reviews Earth & Environment, 2022, 3(8):516-532.
[4] Cope M J, Chaloner W G. Fossil charcoal as evidence of past atmospheric composition[J]. Nature, 1980, 283(5748):647-649. doi: 10.1038/283647a0
[5] Shrestha G, Traina S J, Swanston C W. Black carbon’s properties and role in the environment: A comprehensive review[J]. Sustainability, 2010, 2(1):294-320. doi: 10.3390/su2010294
[6] Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos[J]. Proceedings of the national academy of sciences, 2004, 101(2):423-428. doi: 10.1073/pnas.2237157100
[7] Clarke A D, Noone K J. Soot in the Arctic snowpack: A cause for perturbations in radiative transfer[J]. Atmospheric Environment, 2007, 41:64-72. doi: 10.1016/j.atmosenv.2007.10.059
[8] 穆燕, 秦小光, 刘嘉麒, 等. 黑碳的研究历史与现状[J]. 海洋地质与第四纪地质, 2011, 31(1):143-155 MU Yan, QIN Xiaoguang, LIU Jiaqi, et al. A review of black carbon study: history and current status[J]. Marine Geology & Quaternary Geology, 2011, 31(1):143-155.
[9] 刘恋, 周鑫, 葛俊逸. 元素碳碳同位素在古环境研究中的应用[J]. 地质论评, 2012, 58(3):526-532 doi: 10.3969/j.issn.0371-5736.2012.03.013 LIU Lian, ZHOU Xin, GE Junyi. The application of carbon lsotope of element carbon in the research of paleoenvironment[J]. Geological Review, 2012, 58(3):526-532. doi: 10.3969/j.issn.0371-5736.2012.03.013
[10] Kang S C, Zhang Y L, Chen P F, et al. Black carbon and organic carbon dataset over the Third Pole[J]. Earth System Science Data, 2022, 14(2):683-707. doi: 10.5194/essd-14-683-2022
[11] 汪青. 土壤和沉积物中黑碳的环境行为及效应研究进展[J]. 生态学报, 2012, 32(1):293-310 doi: 10.5846/stxb201011091604 WANG Qing. A review of the environmental behavior and effects of black carbon in soils and sediments[J]. Acta Ecologica Sinica, 2012, 32(1):293-310. doi: 10.5846/stxb201011091604
[12] 吴建育, 吴海斌, 沈佳恒, 等. 全球不同植被类型的C3/C4植物δ13C变化特征[R]. 北京,2054 WU Jianyu, WU Haibin, SHEN Jiaheng, et al. C3/C4 plants of different vegetation types worldwide δ13C variation characteristics[R]. Beijing, 2015.
[13] 刘一兰, 张恩楼, 刘恩峰, 等. 人类活动影响下的云南阳宗海近百年有机碳与黑炭湖泊沉积记录[J]. 湖泊科学, 2017, 29(4):1018-1028 doi: 10.18307/2017.0426 LIU Yilan, ZHANG Enlou, LIU Enfeng, et al. TOC and black carbon records in sediment of Lake yangzong, Yunnan Province under the influence of humaan activities during the past century[J]. Journal of Lake Sciences, 2017, 29(4):1018-1028. doi: 10.18307/2017.0426
[14] Vaezzadeh V, Zhong G C, Gligorovski S, et al. Characteristics of dissolved black carbon in riverine surface microlayer[J]. Marine Pollution Bulletin, 2023, 194:115301. doi: 10.1016/j.marpolbul.2023.115301
[15] Dickens A F, Gélinas Y, Hedges J I. Physical separation of combustion and rock sources of graphitic black carbon in sediments[J]. Marine Chemistry, 2004, 92(1-4):215-223. doi: 10.1016/j.marchem.2004.06.027
[16] Brodowski S, Amelung W, Haumaier L, et al. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy[J]. Geoderma, 2005, 128(1-2):116-129. doi: 10.1016/j.geoderma.2004.12.019
[17] Ali M U, Siyi L, Yousaf B, et al. Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: a review[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(9):857-896. doi: 10.1080/10643389.2020.1738854
[18] Gao C Y, Liu H X, Cong J X, et al. Historical sources of black carbon identified by PAHs and δ13C in Sanjiang Plain of Northeastern China[J]. Atmospheric Environment, 2018, 181:61-69. doi: 10.1016/j.atmosenv.2018.03.026
[19] Zhan C L, Wan D J, Han Y M, et al. Historical variation of black carbon and PAHs over the last~ 200 years in central North China: Evidence from lake sediment records[J]. Science of the Total Environment, 2019, 690:891-899. doi: 10.1016/j.scitotenv.2019.07.008
[20] Zhan C L, Cao J J, Han Y M, et al. Spatial distributions and sequestrations of organic carbon and black carbon in soils from the Chinese loess plateau[J]. Science of the Total Environment, 2013, 465:255-266. doi: 10.1016/j.scitotenv.2012.10.113
[21] Pauraitė J, Mordas G, Byčenkienė S, et al. Spatial and temporal analysis of organic and black carbon mass concentrations in Lithuania[J]. Atmosphere, 2015, 6(8):1229-1242. doi: 10.3390/atmos6081229
[22] Horvath H. Size segregated light absorption coefficient of the atmospheric aerosol[J]. Atmospheric Environment, 1995, 29(8):875-83. doi: 10.1016/1352-2310(95)00025-T
[23] Jacobson M Z. Control of fossil‐fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D19): ACH 16-1-ACH 16-22.
[24] Fierce L, Riemer N, Bond T. Explaining variance in black carbon’s aging timescale[J]. Atmospheric Chemistry and Physics Discussions, 2014, 14(13):18703-18737.
[25] Jurado E, Dachs J, Duarte C M, et al. Atmospheric deposition of organic and black carbon to the global oceans[J]. Atmospheric Environment, 2008, 42(34):7931-7939. doi: 10.1016/j.atmosenv.2008.07.029
[26] Nakane M, Ajioka T, Yamashita Y. Distribution and sources of dissolved black carbon in surface waters of the Chukchi Sea, Bering Sea, and the North Pacific Ocean[J]. Frontiers in Earth Science, 2017, 5:34. doi: 10.3389/feart.2017.00034
[27] Reisser M, Purves R S, Schmidt M W I, et al. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks[J]. Frontiers in Earth Science, 2016, 4:80.
[28] Bellè S L, Berhe A A, Hagedorn F, et al. Key drivers of pyrogenic carbon redistribution during a simulated rainfall event[J]. Biogeosciences, 2021, 18(3):1105-1126. doi: 10.5194/bg-18-1105-2021
[29] Masiello C A, Berhe A A. First interactions with the hydrologic cycle determine pyrogenic carbon's fate in the Earth system[J]. Earth Surface Processes and Landforms, 2020, 45(10):2394-2398. doi: 10.1002/esp.4925
[30] Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37(11):1477-1488. doi: 10.1016/j.orggeochem.2006.06.022
[31] Abiven S, Hengartner P, Schneider M P W, et al. Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal[J]. Soil Biology and Biochemistry, 2011, 43(7):1615-1617. doi: 10.1016/j.soilbio.2011.03.027
[32] Jaffé R, Ding Y, Niggemann J, et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans[J]. Science, 2013, 340(6130):345-347. doi: 10.1126/science.1231476
[33] Hanke U M, Reddy C M, Braun A L L, et al. What on earth have we been burning? Deciphering sedimentary records of pyrogenic carbon[J]. Environmental Science & Technology, 2017, 51(21):12972-12980.
[34] Coppola A I, Wiedemeier D B, Galy V, et al. Global-scale evidence for the refractory nature of riverine black carbon[J]. Nature Geoscience, 2018, 11(8):584-588. doi: 10.1038/s41561-018-0159-8
[35] Wagner S, Jaffé R. Effect of photodegradation on molecular size distribution and quality of dissolved black carbon[J]. Organic Geochemistry, 2015, 86:1-4. doi: 10.1016/j.orggeochem.2015.05.005
[36] Ohlson M, Kasin I, Wist A N, et al. Size and spatial structure of the soil and lacustrine charcoal pool across a boreal forest watershed[J]. Quaternary Research, 2013, 80(3):417-424. doi: 10.1016/j.yqres.2013.08.009
[37] 陈颖颖, 贺梦晴, 周倩, 等. 鄂东南湖泊水体中颗粒态黑碳分布特征与来源分析: 以磁湖为例[J]. 环境化学, 2024, 43(2):1-10 CHEN Yingying, HE Mengqing, ZHOU Qian, et al. Spatial variation and sources of particulate black carbon in Cihu Lake in Southeast Hubei province[J]. Environmental Chemistry, 2024, 43(2):1-10.
[38] Matsui H, Mori T, Ohata S, et al. Contrasting source contributions of Arctic black carbon to atmospheric concentrations, deposition flux, and atmospheric and snow radiative effects[J]. Atmospheric Chemistry and Physics, 2022, 22(13):8989-9009. doi: 10.5194/acp-22-8989-2022
[39] Ziolkowski L A, Druffel E R M. Aged black carbon identified in marine dissolved organic carbon[J]. Geophysical Research Letters, 2010, 37(16):L16601.
[40] Wang X C, Xu C L, Druffel E M, et al. Two black carbon pools transported by the Changjiang and Huanghe Rivers in China[J]. Global Biogeochemical Cycles, 2016, 30(12):1778-1790. doi: 10.1002/2016GB005509
[41] Stubbins A, Niggemann J, Dittmar T. Photo-lability of deep ocean dissolved black carbon[J]. Biogeosciences, 2012, 9(5):1661-1670. doi: 10.5194/bg-9-1661-2012
[42] Yamashita Y, Nakane M, Mori Y, et al. Fate of dissolved black carbon in the deep Pacific Ocean[J]. Nature Communications, 2022, 13(1):307. doi: 10.1038/s41467-022-27954-0
[43] Hammes K, Schmidt M W I, Smernik R J, et al. Comparison of quantification methods to measure fire‐derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere[J]. Global Biogeochemical Cycles, 2007, 21(3):GB3016.
[44] 邱敬, 高人, 杨玉盛, 等. 土壤黑碳的研究进展[J]. 亚热带资源与环境学报, 2009, 4(1):88-94 doi: 10.3969/j.issn.1673-7105.2009.01.012 QIU Jing, GAO Ren, YAGN Yusheng, et al. Advances on research of black carbon in soil[J]. Journal of Subtropical Resources and Environment, 2009, 4(1):88-94. doi: 10.3969/j.issn.1673-7105.2009.01.012
[45] 王旭, 于赤灵, 彭平安, 等. 沉积物中黑碳的提取和测定方法: 误差分析和回收率实验[J]. 地球化学, 2001, 30(5):439-444 WANG Xu, YU Chiling, PENG Ping’an, et al. Extraction and determination of black carbon in sediments: Error analysis and recovery ratio experiment[J]. Geochimica, 2001, 30(5):439-444.
[46] Elmquist M, Gustafsson Ö, Andersson P. Quantification of sedimentary black carbon using the chemothermal oxidation method: an evaluation of ex situ pretreatments and standard additions approaches[J]. Limnology and Oceanography:Methods, 2004, 2(12):417-427. doi: 10.4319/lom.2004.2.417
[47] Simpson M J, Hatcher P G. Overestimates of black carbon in soils and sediments[J]. Naturwissenschaften, 2004, 91(9):436-440.
[48] Nguyen T H, Brown R A, Ball W P. An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment[J]. Organic Geochemistry, 2004, 35(3):217-234. doi: 10.1016/j.orggeochem.2003.09.005
[49] Poot A, Quik J T K, Veld H, et al. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods[J]. Journal of Chromatography A, 2009, 1216(3):613-622. doi: 10.1016/j.chroma.2008.08.011
[50] Bornemann L, Welp G, Brodowski S, et al. Rapid assessment of black carbon in soil organic matter using mid-infrared spectroscopy[J]. Organic Geochemistry, 2008, 39(11):1537-1544. doi: 10.1016/j.orggeochem.2008.07.012
[51] Han Y M, Cao J J, Chow J C, et al. Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-EC[J]. Chemosphere, 2007, 69(4):569-574. doi: 10.1016/j.chemosphere.2007.03.024
[52] 魏科, 陈文, 徐路扬, 等. 平流层放大火灾的全球气候影响[J]. 中国科学: 地球科学, 2020, 50(2): 318-320 WEI Ke, CHEN Wen, XU Luyang, et al. Stratosphere amplifies the global climate effect of wildfires[J]. Science China Earth Sciences, 2020, 63(2): 309-311.
[53] 韩建军, 曾前. 我国气候异常对森林火灾发生的影响[J]. 森林防火, 2003(1):15-16 doi: 10.3969/j.issn.1002-2511.2003.01.009 HAN Jianjun, ZENG Qian. The effect of unusual climate in our country on forest fire[J]. Forest Fire Prevention, 2003(1):15-16. doi: 10.3969/j.issn.1002-2511.2003.01.009
[54] 裴文强. 中国边缘海黑碳记录的长江、珠江流域火历史[D]. 中国科学院大学博士学位论文, 2020 PEI Wenqiang. Fire history in the Yangtze River and Pearl River Basins: black arbon records from the China seas[D]. Doctor Dissertation of University of Chinese Academy of Sciences, 2020.
[55] Ren G Y. Changes in forest cover in China during the Holocene[J]. Vegetation History and Archaeobotany, 2007, 16(2):119-126.
[56] 邱扬. 森林植被的自然火干扰[J]. 生态学杂志, 1998, 17(1):54-60 doi: 10.3321/j.issn:1000-4890.1998.01.009 QIU Yang. Natural fire disturbance of forest vegetation[J]. Chinese Journal of Ecology, 1998, 17(1):54-60. doi: 10.3321/j.issn:1000-4890.1998.01.009
[57] Jiao S L, Zhang H, Cai Y F, et al. Collapse of tropical rainforest ecosystems caused by high-temperature wildfires during the end-Permian mass extinction[J]. Earth and Planetary Science Letters, 2023, 614:118193. doi: 10.1016/j.jpgl.2023.118193
[58] Duffin K I. The representation of rainfall and fire intensity in fossil pollen and charcoal records from a South African savanna[J]. Review of Palaeobotany and Palynology, 2008, 151(1-2):59-71. doi: 10.1016/j.revpalbo.2008.02.004
[59] Bird M I, Cali J A. A million-year record of fire in sub-Saharan Africa[J]. Nature, 1998, 394(6695):767-769. doi: 10.1038/29507
[60] Wang X, Peng P A, Ding Z L. Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1-2):9-19. doi: 10.1016/j.palaeo.2005.03.023
[61] Verardo D J, Ruddiman W F. Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: Climatic and geochemical significance[J]. Geology, 1996, 24(9):855-857. doi: 10.1130/0091-7613(1996)024<0855:LPCITA>2.3.CO;2
[62] Hanselman J A, Bush M B, Gosling W D, et al. A 370, 000-year record of vegetation and fire history around Lake Titicaca (Bolivia/Peru)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305(1-4):201-214. doi: 10.1016/j.palaeo.2011.03.002
[63] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003.
[64] Driese S G, Li Z H, Horn S P. Late Pleistocene and Holocene climate and geomorphic histories as interpreted from a 23, 000 14C yr B. P. paleosol and floodplain soils, southeastern West Virginia, USA[J]. Quaternary Research, 2005, 63(2):136-149. doi: 10.1016/j.yqres.2004.10.005
[65] Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past Discussions, 2015, 11(4):3699-3728.
[66] Glikson A. Fire and human evolution: The deep-time blueprints of the Anthropocene[J]. Anthropocene, 2013, 3:89-92. doi: 10.1016/j.ancene.2014.02.002
[67] 方引, 陈颖军, 林田, 等. 黑碳在渤海泥质区的百年沉积记录[J]. 海洋学报, 2014, 36(5):98-106 FANG Yin, CHEN Yingjun, LIN Tian, et al. One hundred year sedimentary record of black carbon from mud area in Bohai Sea, China[J]. Acta Oceanologica Sinica, 2014, 36(5):98-106.
[68] Neupane B, Kang S C, Chen P F, et al. Historical black carbon reconstruction from the lake sediments of the Himalayan - Tibetan Plateau[J]. Environmental Science & Technology, 2019, 53(10):5641-5651.
[69] Wang X, Xiao J L, Cui L L, et al. Holocene changes in fire frequency in the Daihai Lake region (north-central China): Indications and implications for an important role of human activity[J]. Quaternary Science Reviews, 2013, 59:18-29. doi: 10.1016/j.quascirev.2012.10.033
[70] 裴文强, 万世明, 谭扬, 等. 过去5万年来珠江流域火历史的南海沉积记录[J]. 海洋地质与第四纪地质, 2017, 37(3):47-57 doi: 10.16562/j.cnki.0256-1492.2017.03.005 PEI Wenqiang, WAN Shiming, TAN Yang, et al. Fire history in pearl river basin since 50 kaBP: sediment records from the south China sea[J]. Marine Geology & Quaternary Geology, 2017, 37(3):47-57. doi: 10.16562/j.cnki.0256-1492.2017.03.005
[71] Zhang Y, Cui Q Y, Blockley S, et al. Fire history in the qinling mountains of east‐central china since the last Glacial Maximum[J]. Geophysical Research Letters, 2023, 50(10):e2023GL102848. doi: 10.1029/2023GL102848
[72] Pei W Q, Wan S M, Clift P D, et al. Farming stimulated stronger chemical weathering in South China since 3.0 ka BP[J]. Quaternary Science Reviews, 2023, 307:108065. doi: 10.1016/j.quascirev.2023.108065
[73] Pei W Q, Wan S M, Clift P D, et al. Human impact overwhelms long-term climate control of fire in the Yangtze River Basin since 3.0 ka BP[J]. Quaternary Science Reviews, 2020, 230:106165. doi: 10.1016/j.quascirev.2020.106165
[74] 饶志国, 朱照宇, 贾国东, 等. 环北太平洋地区现代植被中C3/C4植物相对丰度与气候条件关系研究[J]. 科学通报, 2010, 55(12): 1134-1140 RAO Zhiguo, ZHU Zhaoyu, JIA Guodong, et al. Relationship between climatic conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific[J]. Chinese Science Bulletin, 2010, 55(18): 1931-1936.
[75] Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan[J]. Nature, 1989, 342(6246):163-166. doi: 10.1038/342163a0
[76] Quade J, Cerling T E. Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 115(1-4):91-116. doi: 10.1016/0031-0182(94)00108-K
[77] Morgan M E, Kingston J D, Marino B D. Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya[J]. Nature, 1994, 367(6459):162-165. doi: 10.1038/367162a0
[78] Cerling T E, Harris J M, MacFadden B J, et al. Global vegetation change through the Miocene/Pliocene boundary[J]. Nature, 1997, 389(6647):153-158. doi: 10.1038/38229
[79] Freeman K H, Colarusso L A. Molecular and isotopic records of C4 grassland expansion in the late miocene[J]. Geochimica et Cosmochimica Acta, 2001, 65(9):1439-1454. doi: 10.1016/S0016-7037(00)00573-1
[80] Huang Y S, Clemens S C, Liu W G, et al. Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula[J]. Geology, 2007, 35(6):531-534. doi: 10.1130/G23666A.1
[81] Wang Y, Deng T. A 25 m. y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2005, 236(1-2):322-338. doi: 10.1016/j.jpgl.2005.05.006
[82] Ségalen L, Renard M, Lee-Thorp J A, et al. Neogene climate change and emergence of C4 grasses in the Namib, southwestern Africa, as reflected in ratite 13C and 18O[J]. Earth and Planetary Science Letters, 2006, 244(3-4):725-734. doi: 10.1016/j.jpgl.2005.12.012
[83] Polissar P J, Rose C, Uno K T, et al. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification[J]. Nature Geoscience, 2019, 12(8):657-660. doi: 10.1038/s41561-019-0399-2
[84] Peppe D J, Cote S M, Deino A L, et al. Oldest evidence of abundant C4 grasses and habitat heterogeneity in eastern Africa[J]. Science, 2023, 380(6641):173-177. doi: 10.1126/science.abq2834
[85] Shen X Y, Wan S M, Colin C, et al. Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene-Pliocene boundary[J]. Earth and Planetary Science Letters, 2018, 502:74-83. doi: 10.1016/j.jpgl.2018.08.056
[86] Li M J, Wan S M, Colin C, et al. Expansion of C4 plants in South China and evolution of East Asian monsoon since 35Ma: Black carbon records in the northern South China Sea[J]. Global and Planetary Change, 2023, 223:104079. doi: 10.1016/j.gloplacha.2023.104079
[87] Zhou B, Shen C D, Sun W D, et al. Late Pliocene-Pleistocene expansion of C4 vegetation in semiarid East Asia linked to increased burning[J]. Geology, 2014, 42(12):1067-1070. doi: 10.1130/G36110.1
[88] Zhou B, Bird M, Zheng H B, et al. New sedimentary evidence reveals a unique history of C4 biomass in continental East Asia since the early Miocene[J]. Scientific Reports, 2017, 7(1):170. doi: 10.1038/s41598-017-00285-7
[89] Rae J W B, Zhang Y G, Liu X Q, et al. Atmospheric CO2 over the Past 66 Million years from marine archives[J]. Annual Review of Earth and Planetary Sciences, 2021, 49:609-641. doi: 10.1146/annurev-earth-082420-063026
[90] 饶志国, 陈发虎, 张晓, 等. 末次冰期以来全球陆地植被中C3/C4植物相对丰度时空变化基本特征及其可能的驱动机制[J]. 科学通报, 2012, 57(18): 1633-45 RAO Zhiguo, CHEN Fahu, ZHANG Xiao, et al. Spatial and temporal variations of C3/C4 relative abundance in global terrestrial ecosystem since the Last Glacial and its possible driving mechanisms[J]. Chinese Science Bulletin, 2012, 57(31): 4024-4035.
[91] Huang Y S, Street-Perrott F A, Perrott R A, et al. Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya[J]. Geochimica et Cosmochimica Acta, 1999, 63(9):1383-1404. doi: 10.1016/S0016-7037(99)00074-5
[92] Ficken K J, Street-Perrott F A, Perrott R A, et al. Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya, East Africa[J]. Organic Geochemistry, 1998, 29(5-7):1701-1719. doi: 10.1016/S0146-6380(98)00109-0
[93] Olago D O, Street-Perrott F A, Perrott R A, et al. Late Quaternary glacial-interglacial cycle of climatic and environmental change on Mount Kenya, Kenya[J]. Journal of African Earth Sciences, 1999, 29(3):593-618. doi: 10.1016/S0899-5362(99)00117-7
[94] Van Der Kaars S, Dam R. Vegetation and climate change in West-Java, Indonesia during the last 135, 000 years[J]. Quaternary International, 1997, 37:67-71. doi: 10.1016/1040-6182(96)00002-X
[95] He J, Jia G D, Li L, et al. Differential timing of C4 plant decline and grassland retreat during the penultimate deglaciation[J]. Global and Planetary Change, 2017, 156:26-33. doi: 10.1016/j.gloplacha.2017.08.001
[96] Galy V, François L, France-Lanord C, et al. C4 plants decline in the Himalayan basin since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2008, 27(13-14):1396-1409. doi: 10.1016/j.quascirev.2008.04.005
[97] Hughen K A, Eglinton T I, Xu L, et al. Abrupt tropical vegetation response to rapid climate changes[J]. Science, 2004, 304(5679):1955-1959. doi: 10.1126/science.1092995
[98] Krishnamurthy R V, DeNiro M J, Pant R K. Isotope evidence for Pleistocene climatic changes in Kashmir, India[J]. Nature, 1982, 298(5875):640-641. doi: 10.1038/298640a0
[99] Nordt L C, Boutton T W, Jacob J S, et al. C4 plant productivity and climate-CO2 variations in South-central texas during the late quaternary[J]. Quaternary Research, 2002, 58(2):182-188. doi: 10.1006/qres.2002.2344
[100] Rao Z G, Zhu Z Y, Jia G D, et al. Relationship between climatic conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific[J]. Chinese Science Bulletin, 2010, 55(18):1931-1936. doi: 10.1007/s11434-010-3101-z
[101] Brincat D, Yamada K, Ishiwatari R, et al. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments[J]. Organic Geochemistry, 2000, 31(4):287-294. doi: 10.1016/S0146-6380(99)00164-3
[102] Hatté C, Antoine P, Fontugne M, et al. New chronology and organic matter δ13C paleoclimatic significance of Nußloch loess sequence (Rhine Valley, Germany)[J]. Quaternary International, 1999, 62(1):85-91. doi: 10.1016/S1040-6182(99)00026-9
[103] Jiang W Q, Wu H B, Li Q, et al. Spatiotemporal changes in C4 plant abundance in China since the Last Glacial Maximum and their driving factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 518:10-21. doi: 10.1016/j.palaeo.2018.12.021
[104] Chen Z M Z, Wan S M, Zhang J, et al. Human impact overwhelms long-term climatic control on C4 vegetation in the Yellow River Basin after 3 ka BP[J]. Geosystems and Geoenvironment, 2022, 1(2):100021. doi: 10.1016/j.geogeo.2021.100021
[105] Zhang E L, Sun W W, Zhao C, et al. Linkages between climate, fire and vegetation in southwest China during the last 18.5 ka based on a sedimentary record of black carbon and its isotopic composition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435:86-94. doi: 10.1016/j.palaeo.2015.06.004
[106] Zimmerman A R. Abiotic and microbial oxidation of laboratory-produced black carbon (Biochar)[J]. Environmental Science & Technology, 2010, 44(4):1295-1301.
[107] Li M, Bao F X, Zhang Y, et al. Photochemical aging of soot in the aqueous phase: release of dissolved black carbon and the formation of 1O2[J]. Environmental Science & Technology, 2019, 53(21):12311-12319.
[108] Marques J S J, Dittmar T, Niggemann J, et al. Dissolved black carbon in the headwaters-to-ocean continuum of Paraíba Do Sul River, Brazil[J]. Frontiers in Earth Science, 2017, 5:11.
[109] Bostick K W, Zimmerman A R, Goranov A I, et al. Photolability of pyrogenic dissolved organic matter from a thermal series of laboratory-prepared chars[J]. Science of the Total Environment, 2020, 724:138198. doi: 10.1016/j.scitotenv.2020.138198
[110] Jones M W, De Aragão L E O C, Dittmar T, et al. Environmental controls on the riverine export of dissolved black carbon[J]. Global Biogeochemical Cycles, 2019, 33(7):849-874. doi: 10.1029/2018GB006140
[111] Masiello C A, Druffel E R M. Organic and black carbon 13C and 14C through the Santa Monica Basin sediment oxic-anoxic transition[J]. Geophysical Research Letters, 2003, 30(4):1185.
[112] Suman D O, Kuhlbusch T A J, Lim B. Marine sediments: a reservoir for black carbon and their use as spatial and temporal records of combustion[M]//Clark J S, Cachier H, Goldammer J G, et al. Sediment Records of Biomass Burning and Global Change. Berlin: Springer, 1997.
[113] Wagner S, Brandes J, Spencer R G M, et al. Isotopic composition of oceanic dissolved black carbon reveals non-riverine source[J]. Nature Communications, 2019, 10(1):5064. doi: 10.1038/s41467-019-13111-7
[114] Rossel P E, Stubbins A, Rebling T, et al. Thermally altered marine dissolved organic matter in hydrothermal fluids[J]. Organic Geochemistry, 2017, 110:73-86. doi: 10.1016/j.orggeochem.2017.05.003
[115] Karthik V, Bhaskar B V, Ramachandran S, et al. Black carbon flux in terrestrial and aquatic environments of Kodaikanal in the Western Ghats, South India: Estimation, source identification, and implication[J]. Science of the Total Environment, 2023, 854:158647. doi: 10.1016/j.scitotenv.2022.158647
-
期刊类型引用(3)
1. 战超,刘传康,石洪源,朱君,王红艳,于洋,李涛,孙岳,王庆. 河口湾海水淡化工程浓海水入海扩散与生态环境影响预测——以山东半岛丁字湾为例. 海洋通报. 2024(06): 698-712 . 百度学术
2. 李诗颖,林振文,李出安,阳峰,罗俊超,郑思琦,李雨龙. 珠江磨刀门河口百年来沉积速率变化与环境变迁——沉积物粒度及~(210)Pb_(ex)约束. 海洋地质前沿. 2023(12): 26-34 . 百度学术
3. 李胜利,李顺利,付超. 长试管静置沉降实验结果对湖盆细粒沉积纹层成因的启示. 古地理学报. 2022(03): 405-414 . 百度学术
其他类型引用(3)