沉积物中黑碳在古环境古气候研究中的应用

姜寿恕, 赵德博, 唐艺, 李梦君, 万世明

姜寿恕,赵德博,唐艺,等. 沉积物中黑碳在古环境古气候研究中的应用[J]. 海洋地质与第四纪地质,2023,43(5): 119-135. DOI: 10.16562/j.cnki.0256-1492.2023081802
引用本文: 姜寿恕,赵德博,唐艺,等. 沉积物中黑碳在古环境古气候研究中的应用[J]. 海洋地质与第四纪地质,2023,43(5): 119-135. DOI: 10.16562/j.cnki.0256-1492.2023081802
JIANG Shoushu,ZHAO Debo,TANG Yi,et al. Application of black carbon in sediments in paleoenvironment and paleoclimate studies[J]. Marine Geology & Quaternary Geology,2023,43(5):119-135. DOI: 10.16562/j.cnki.0256-1492.2023081802
Citation: JIANG Shoushu,ZHAO Debo,TANG Yi,et al. Application of black carbon in sediments in paleoenvironment and paleoclimate studies[J]. Marine Geology & Quaternary Geology,2023,43(5):119-135. DOI: 10.16562/j.cnki.0256-1492.2023081802

沉积物中黑碳在古环境古气候研究中的应用

基金项目: 国家自然科学基金“40万年以来东亚季风区硅酸盐风化历史在冲绳海槽北部的IODP深钻记录及其对全球碳循环的意义”(42176063)
详细信息
    作者简介:

    姜寿恕(1999—),男,硕士研究生,从事海洋沉积学研究,E-mail:jiangshoushu@qdio.ac.cn

    通讯作者:

    赵德博(1989—),男,副研究员,从事海洋沉积学研究,E-mail:zhaodebo@qdio.ac.cn

    万世明(1978—),男,研究员,从事海洋沉积学研究,E-mail:wanshiming@ms.qdio.ac.cn

  • 中图分类号: P736.2

Application of black carbon in sediments in paleoenvironment and paleoclimate studies

  • 摘要: 黑碳是指生物质或化石燃料不完全燃烧以及岩石风化所产生的一系列含碳物质连续体的统称。其特殊的物理化学性质可对全球气候环境造成显著影响,如加剧温室效应、影响水文循环和碳封存;由于其具有较为稳定的化学性质以及燃烧前后碳同位素分馏小的特征,又使黑碳作为一种载体被应用到地质时间尺度火历史与植被演化重建工作中。通过对黑碳的特征、来源、循环、在沉积物中的提取方法及其在不同时间尺度古环境重建中的应用进行评述,提出了目前黑碳记录在古环境重建中存在的一些问题,如黑碳的降解转化过程对黑碳沉积的影响,以及黑碳年龄具有滞后性,沉积物中黑碳来源及沉积过程的复杂性,地质时间尺度黑碳参与碳循环的角色仍不明确等。另外对未来研究进行了展望:相对于陆地土壤、湖泊、河流、冰川等载体,海洋沉积物中黑碳的研究工作还非常缺乏。自1966年以来,深海钻探计划、国际大洋钻探计划、综合大洋钻探/发现计划航次及我国自主航次在全球海洋获取了大量高质量沉积岩芯,为未来利用黑碳研究新生代以来构造、气候、植被、火乃至人类活动之间的相互作用提供了可能性。
    Abstract: Black carbon refers to a series of continuum of carbonaceous substances from incomplete combustion of biomass or fossil fuels or weathering of rocks. Its unique physical and chemical properties have significant impacts on the global climate and environment, such as exacerbating the greenhouse effect, affecting hydrological cycling and carbon sequestration. Due to its relatively stable chemical properties and small carbon isotope fractionation before and after combustion, black carbon has been used as a reliable proxy for the reconstruction of geological time-scale fire history and vegetation evolution. We reviewed the characteristics, sources, cycles, extraction methods in sediments, and their applications in paleoenvironmental reconstruction on different time scales of black carbon, and raised some issues in the current application of black carbon records for paleoenvironmental reconstruction. For example, the impact of the degradation and transformation of black carbon on black carbon deposition, as well as the lag in black carbon age, the complexity in black carbon origination and deposition, and the role of black carbon in carbon cycling at geological time scales, are still unclear. In addition, prospects for future research are presented: Unlike terrestrial soil, lakes, rivers, glaciers, and other carriers, black carbon in marine sediments are poorly studied. For more than half a century, international and national ocean drilling expeditions have obtained a large number of high-quality sedimentary cores in the global oceans, providing a possibility of using black carbon to study the interaction among tectonics, climate, vegetation, fire, and even human activities since the Cenozoic.
  • 海底冷泉是广泛存在于大陆边缘海底的一种地质现象,它不断从海底沉积界面之下以喷溢、渗漏等方式向海水中注入以水、天然气、细粒沉积物等为主的流体。自1983年在墨西哥湾佛罗里达陡崖3200 m深的海底发现冷泉以来[1],冷泉活动一直是国际研究热点,这是因为它是现代海底极端环境系统的重要组成部分,也是物质从岩石圈向外部圈层(生物圈、水圈和大气圈)进行转移和交换的重要途径甚至中枢环节[2],是地球物质循环的基本过程[3],对全球海洋物质循环[2]、生命活动[4-5]和天然气水合物形成[6-7]均有重要意义,是当前深海探测及相关科学研究的前沿领域之一。研究海底冷泉对于海洋工程安全、天然气水合物开发、海洋油气勘探、全球气候变化、碳循环和极端生物群落等方面具有重要意义。

    研究海底冷泉首先要解决茫茫海洋中的探测问题,因此科学、高效的探测技术尤为重要。目前,海底冷泉探测方法主要有多波束探测、海底原位观测、地质取样、多道地震探测、浅地层剖面探测和走航式声学遥感探测等。利用这些方法可以获取海底冷泉发育的直接或间接证据,如天然气水合物、碳酸盐岩、生物群落、麻坑、泥火山、丘状体、羽状流等(表1)。随着各学科对冷泉系统研究的不断深入,冷泉探测技术正在向多手段、立体化探测方向发展。

    表  1  冷泉基本特征与探测方法
    Table  1.  Basic characteristics and detecting method of cold seep
    位置特征描述探测手段探测方法
    沉积层泥火山 在正常沉积物表面由喷溢气体驱动形成的具有火山构造的泥质沉积多波束、浅剖、多道地震地球物理
    泥底辟、泥海岭由比泥火山小的气上升形成的正向隆起的海底沉积
    碳酸盐丘与石化冷泉有关的可高达300 m的沉积体
    气烟囱底部与顶部分别与底辟和麻坑相连,流体自深部向浅部渗漏和逸散
    沉积物烃类异常以甲烷为主的富烃类流体向海底运移过程会使还原沉积物中的硫酸盐浓度变低,钙、镁等离子也会出现异常[8]地质取样(拖网、箱式取样、拖网取样、多管取样、重力柱状取样、海底钻探);海底原位探测地球化学
    天然气水合物浅表层富含由水和甲烷气组成的结晶状似冰状化合物
    海底麻坑由于天然气、水等流体在海底表面逸散,带走部分沉积物颗粒而形成的海底凹坑多波束、浅剖、多道地震地球物理
    冷泉碳酸盐结壳海底的甲烷渗漏过程中, 向海底运移的富甲烷流体与上层海水扩散到沉积物中的硫酸盐发生甲烷厌氧氧化,生成甲烷成因自生碳酸盐岩地质取样(拖网、箱式取样、拖网取样、多管取样、重力柱状取样、海底钻探);海底原位探测地球化学
    生物礁与浅层气或冷泉存在有关的似珊瑚的岩群
    深水珊瑚礁石化冷泉口,经常与碳酸盐丘共存
    冷泉生物群落海底菌席等微生物、双壳类、多毛类、虾蟹类、冷水珊瑚等组成的生态系统
    水体天然气渗漏/冷泉羽状流肉眼可见从海底排溢出气体,这些气体通过泥火山、断层、裂隙等运移通道进入海水以气泡的形式上升运移,形成气泡羽流[9-10]多波束、浅剖、多道地震地球物理
    近底层海水甲烷高浓度异常由于沉积物下部甲烷渗漏活动造成的底层水甲烷高浓度异常[11]吹扫-捕集法;海底原位探测地球化学
    海面海面增温异常近海临震前卫星热红外增温异常,指示临震前导致的油气渗漏和(或)水合物因断裂减压或受热分解的烃类气体沿着构造裂隙不断逸出、上升至海面[12]热红外卫星遥感
    海面浮油海底渗漏的烃类物质以气泡或油滴的形式垂直迁移进入水体,部分气体到达水面进入大气,而油则在水面扩散成薄且非常细长的可凝聚的油膜合成孔径雷达
    下载: 导出CSV 
    | 显示表格

    海底冷泉泄漏产生的一系列物理、化学和生物作用,引发了复杂的海洋生物地球化学变化,现场原位观测可以直接反映海底冷泉的活动过程,利用搭载于深潜器(ROV 和 AUV)的高清摄像系统和集成多种传感器深海观测站可以获得冷泉区高清影像资料和近海底水体原位观测数据,是研究冷泉区海底表征、化学场特征及流体通量的重要方法。

    原位观测方法主要通过在锚系、浮标、ROV和AUV等设备上搭载高清摄像系统和多种传感器,来获得海底冷泉活动区的高清视像资料和近海底水体原位观测数据,进而获得冷泉活动区海底表征、化学场特征及流体通量等,大大提高了原位观测的精度、时间和分辨率,但其原位观测时长、传感器搭载等存在局限性,仅能提供较少时间段的现象观测。近年来,低成本、可移动、长时序、多参数和可拓展的坐底式海底环境原位观测系统发展迅速,已成为当前海底冷泉原位监测的重要技术手段和发展趋势[13]。海底环境原位观测系统一般由搭载平台子系统、传感器子系统、数据采集子系统、多通路供电子系统、数据通讯子系统、释放与回收装置及其他附属设备组成[14],通过搭载温度、盐度、CO2、CH4、pH、溶解氧等反映原位环境参数的传感器,可对海底冷泉活动区进行长时间序列的、可靠的近海底水体、沉积物环境参数的观测,可以获取海底边界层的物理、化学和环境等参数的变化特征,能够为深入研究海底冷泉活动的生物地球化学过程及其环境效应提供宝贵的数据资料[15-19]

    冷泉碳酸盐岩是冷泉渗漏的产物,是判断冷泉是否存在的重要标志。中国在南海、东海等地区通过底质取样获得了大量的海底冷泉碳酸盐岩样品[19]。海洋底质取样技术具有作业成本低、作业效率高和船舶适应性强等优点[20],是开展海底冷泉研究不可缺少的技术手段。目前,海洋底质取样技术包括箱式取样、拖网取样、多管取样、重力柱状取样和海底钻探等[20-21]。其中,箱式取样和多管取样以获取海底冷泉表层松软物质样品为目的;海底拖网在获取海底较大面积的块状碳酸盐岩样品中应用较广;重力柱状取样主要依靠自身重力可钻获海底冷泉表层数米厚的样品;海底钻探可以在数千米水深内获取连续厚度的海底冷泉碳酸盐岩样品。近些年来,随着海洋探测方法和装备技术的不断提升,海底取样设备也在不断更新和改进,海底冷泉底质取样技术正向着可视化、可控化、动力化、智能化和多样化发展,在常规海洋底质取样设备的基础上,随着电视抓斗、重力活塞式保真取样器、深水海底钻机等取样设备投入使用,为海底冷泉的探测与研究提供了更丰富的技术手段[21-25]

    冷泉活动一般与泥底辟、流体管道、断层和裂隙、气烟囱、海底麻坑和泥火山等流体逸散结构相关,通过对高质量地震数据的处理和分析,可以揭示冷泉系统的深部结构特征。近年来,国内外学者开始利用地震海洋学方法对海水层进行成像,基于羽状流与背景海水的反射地震特征差异分析冷泉系统在多道反射地震剖面上的活动特征[26]。徐华宁等利用广州海洋地质调查局“奋斗四号”调查船在南海北部神狐海域采集的多道反射地震数据[27],发现了羽状流、声波速度反转、溢出口、海底下陷和浅部BSR等地质现象,推测为甲烷气体沿运移通道进入近海底沉积物中形成了天然气水合物或溢出至海水中所致(图1)。

    图  1  多道反射地震剖面上的泥火山及冷泉羽状流
    Figure  1.  Mud volcano and plume of sea cold seep on multi-channel reflection seismic section

    多道地震方法获得的数据信息丰富,有利于浅层地质信息的综合分析,通过多道地震数据的水体成像特征可以初步确定甲烷气体渗漏的异常反射区域,将这些异常区与下伏的沉积地层构造特征进行综合解释,可以圈定活动冷泉流体发育位置,进而探寻天然气水合物成藏的相关科学问题。

    浅地层剖面探测以其高效率采集过程和浅表层高分辨率的特点被国内外学者广泛应用于天然气水合物调查、冷泉探测等领域,并取得了一系列丰硕的成果[28]。与冷泉系统相关的海底异常特征包括浅层气聚集、海底流体运移、泥火山和气体渗漏,这种地质现象在浅地层剖面上的地震反射特征响应主要表现为浊反射、帘式反射、增强反射、声学空白带和声学羽流等[29]。例如,Roy等[30]在挪威斯匹次卑尔根海域的浅地层剖面上发现增强反射、声学空白带、羽状流等异常(图2)。郑红波等在南海北部东沙西南海域发现深部的天然气水合物分解后通过断层运移到浅层中形成了浅层含气带[28],其证据为浅层剖面上发现浅层含气带以及泄露点喷射到海水中形成的气体泄露现象。

    图  2  斯匹次卑尔根海域浅地层剖面增强反射、声学空白带、羽状流等
    Figure  2.  Enhanced reflections, acoustic anomalies and plumes on the shallow profiles in Spitsbergen sea areas

    高分辨率浅地层剖面不仅能清晰地揭示海底浅表层的地层结构,而且还可以反映海底浅地层中含气带以及发生的气体泄露现象,是探测海底冷泉系统的有效方法。但常规的浅地层剖面探测无法避开侧反射干扰,解释存在多解性,因此,需要综合其他调查手段来证实浅地层剖面上观测到的关于海底冷泉的异常现象,且相对于声呐探测,其分辨率较低,难以探测小气泡的海底羽状流。

    走航式声学遥感探测具有简单、快捷、方便等特点,适合冷泉发育区大面积快速普查。声呐系统具有较高的工作频率,在冷泉羽状流探测中得到广泛应用,目前被广泛使用的声呐类型有单波束声呐系统、分裂波束声呐系统、侧扫声呐系统和多波束声呐系统[30-34]。在早期,声学探测设备主要以单频单波束、双频单波束以及分裂波束系统为主。Sassen等利用单波束回声探测系统对墨西哥湾进行探测,在该区域 Green Canyon(GC)Block 185 的海底圆丘发现从海底向上一直延伸至接近海水表面位置的海底冷泉羽状流[35];大洋钻探机构(ODP)在墨西哥湾利用单波束回声探测器探测到从海底喷溢口逸出的甲烷羽状流,证明了此处富含天然气水合物(图3);Greinert等利用Kongsberg公司分裂波束声呐系统Simrad EK500[36],在黑海发现了高达900 m的甲烷羽状流(图4)。

    图  3  墨西哥湾气泡羽状流
    Figure  3.  Bubble plume in the Gulfof Mexico
    图  4  海底甲烷羽状流的声学图像
    Figure  4.  Acoustic image of submarine methane plume

    对于单波束和分裂波束声呐来说,其脚印面积随着水深的增加而增大,声学图像的分辨率也随之降低。多波束声呐系统因为具有较小的波束宽度和更大的波束开角,同等水深下,其声学图像分辨率较高,覆盖宽度也较大[36]。国内外学者已经利用多波束声呐系统获得反向散射强度信号来识别和定位海底甲烷气泡羽状流。2011 年,美国国家海洋和大气管理局(NOAA)利用多波束水体影像在墨西哥湾北部比洛克西穹隆发现并标定了大量海底冷泉羽状流;刘斌等通过“海洋六号”科考船上Kongsberg EM122 多波束声呐采集的水体影像[37]探测到南海西北部陆坡琼东南海域的海底冷泉羽状流(图5)。

    图  5  南海北部陆坡海底冷泉羽状流在多波束声呐图像上的形态特征
    Figure  5.  Shapes of plume of sea cold seep on the northern slope of the South China Sea in multi beam sonar images

    中国地质调查局青岛海洋地质研究所利用Kongsberg EM122多波束系统在中国某海域开展了针对海底冷泉泄漏活动的多波束测深及水体声学探测,发现多处海底气泡羽状流显示(图6)。通过和多波束系统获取的地形地貌资料对比发现,该区域羽状流与发源于泥火山和麻坑等特殊地貌的冷泉喷溢活动密切相关。探测到的最高羽状流自海底至顶部高约578 m,其形态呈弯曲炊烟状。通过ROV原位探测结果验证(图7),并与国内外类似研究对比,确认该巨型羽流为泥火山成因的冷泉气体渗漏的典型结果。

    图  6  多波束水体探测过程中发现的数座海底泥火山同时喷发的冷泉羽状流
    Figure  6.  sea cold seep plumes erupted simultaneously with multiple submarine mud volcanoes during multi beam water exploration
    图  7  海底冷泉羽状流及ROV原位探测
    左图:活动冷泉喷出的高浊度流体,右图:在海底960 m水深冷泉喷口原位合成天然气水合物。
    Figure  7.  Plumes of sea cold seep and in-situ detect by ROV
    Left figure is high turbidity fluid ejected from active plumes of sea cold seep, right figure is in-situ synthesis of natural gas hydrate in the cold spring vent at 960 m depth.

    目前深海冷泉最常用的探测方法是基于声学的地球物理和地质地球化学及可视化手段,但多道地震、单道地震、地球化学、地质微生物、海底摄像等手段探测海底冷泉,通常难以兼顾作业效率和探测精度,如何高效探测海底冷泉是世界性难题。随着海底冷泉探测和研究的深入发展,传统的探测技术难以满足海底冷泉大规模探测需求,多波束水体数据相对于海底声呐图像与海底地形数据,携带有更丰富、更全面的采样信息,具有大规模、高精度、高效率的探测优势,通过多波束系统水体扫描的类似火焰的羽状流声学反射图像可以较好地识别海底冷泉,进而实现冷泉的大范围、全水深精确探测。

    随着多波束水体声学技术在冷泉羽状流探测中的不断应用,国内外学者开始有针对性地开展多波束数据处理和数值模拟工作,在提高多波束水体数据信噪比[38-39]、水体目标物自动提取[40-42],以及冷泉动力学特征反演方面[43-45]取得重要进展。

    由于旁瓣干扰、船舶噪音等影响,多波束水体数据中存在大量干扰。在利用多波束水体数据探测冷泉羽状流时,往往只能采用中央波束数据,或者采用最小倾斜距离(MSR)以内数据,这些数据处理手段,极大地弱化了多波束设备覆盖宽度大的优点,限制了多波束水体数据的应用[46-47]。汪诗奇等提出了基于强度分布规律的异常“弧圈”检测与消除方法和基于图像交集和差集运算的背景噪声削弱方法(图8),实现了水体影像中噪声的综合抑制,保留目标的同时改善了水体影像的质量[48]。权永峥等提出了一种适用于平坦海底的多波束水体数据处理方法,提升了识别水体数据中目标的能力[49]

    图  8  多波束水体数据异常“弧圈”检测与消除
    Figure  8.  Detection and elimination of abnormal “arc” in multi beam water body data

    为实现对水体目标(海洋内波、鱼群、沉船、气泡、油气泄漏)的高效探测和准确分析,国内外学者开始探索多波束水体数据的自动化处理方法[50-51]。龙睿捷等通过研究羽状流声反射回波强度阈值,设计一种基于 3D搜索单元的羽流气泡三维滤波器,实现了墨西哥湾三维羽流数据的提取[51]。李东辉等提出一种基于单帧水体影像自动提取沉船目标的算法,通过分析接收旁瓣干扰特性,综合噪声抑制、形态学边缘检测,有效地解决了水体数据不易处理、难以分辨等问题,且该算法在提取过程中并非针对特定沉船形态,对冷泉羽状流自动精准提取具有借鉴意义[52]

    利用声学资料对冷泉气泡的粒径分布、上升速率、溢出通量等特征要素进行反演, 近年来成为国内外学者研究的热点。Artemov等使用Simrad EK500声呐系统对黑海第聂伯河古三角洲海域进行了全面的探测,借鉴声呐探测鱼群密度的相关理论,对2200多处甲烷羽状流的气体运移通量进行测算[53]。Douglas等利用Teledyne-Reson7125多波束系统对北海海域巨型海底冷泉羽状流上升过程进行了精细刻画[54]图9);Urban等基于多波束水体数据实现了冷泉羽状流的动检测, 并尝试进行定量的气体释放评估[44]。华志励等在前人计算模型的基础上,考虑船航向与冷泉水体流向的差异会对声学探测结果产生影响,改进了冷泉气泡上升、溶解速率的定量反演方法,综合运用单波束测深数据和冷泉水体流场数据,对鄂霍次克海(the Okhotsk Sea)千岛盆地(the Kurile Basin)西部陆坡区的冷泉气体溢出、溶解通量以及冷泉水体的甲烷浓度进行了估算[55]。但由于现场流场数据不足, 且缺乏冷泉羽状流原位探测数据支撑,使得该方法目前更适合进行较大范围的统计分析, 在局部计算结果的精度方面还存在较大局限。

    图  9  北海海域巨型海底冷泉羽状流上升过程示意图
    Figure  9.  Sketch of a megaplume in the North Sea area

    利用多波束水体数据进行冷泉羽状流的探测正受到广大学者的关注,国内外在声学羽状流探测方面开展了一些研究,确定了多波束水体数据提取冷泉羽状流的可行性,但相关的研究大多都还处在起步阶段,关于探测成功率、自动化处理、气体定量分析等方面的研究较少,相关难题的解决仍面临巨大挑战。

    多波束水体影像对深海冷泉羽状流的立体探测与特征反演技术取得了快速的进步,但仍缺乏系统的理论与方法支撑,主要存在的问题有:

    (1)深海环境中,声信号旅行时增加、噪声信号强、水体影像分辨率低,导致图像质量下降,对目标识别产生严重干扰。

    (2)多波束水体影像目标识别以人工判读为主,严重影响目标提取精度和可靠性,同时通过二维剖面影像来分析水体中的三维目标物,增加了人工识别目标的难度。

    (3)水体含气量一般通过声学反向散射强度进行估计,但两者之间关系模型尚未进行深入研究,羽状流气体通量反演的精度有待提高。

    (4)由于受到气泡之间的“遮蔽效应”或海底强回波的影响,气泡渗漏源从影像中难以发觉。

  • 图  1   黑碳燃烧连续体的特征[3]

    Figure  1.   Characteristics of black carbon combustion continuum[3]

    图  2   黑碳在全球气候变化中的角色[3]

    Figure  2.   The role of black carbon in global climate change[3]

    图  3   黑碳在自然界中的循环[3]

    Figure  3.   The cycle of black carbon in the nature[3]

    图  4   文中涉及到的研究站点位置图

    Figure  4.   Location of the sites mentioned in this study

    图  5   冰期间冰期火历史重建

    a:全球深海底栖有孔虫氧同位素曲线[63]; b:热带大西洋晚更新世海洋沉积物中黑碳含量,数据来自文献[64];c:黄土高原沉积物中的黑碳沉积速率,数据来自文献[60];d:玻利维亚的喀喀湖沉积物中的黑碳含量,数据来自文献[62];e.全球海平面变化[65]

    Figure  5.   Reconstruction of fire history during glacial-interglacial cycles

    a: Oxygen isotope curve of global deep-sea benthic foraminifera[63]; b: black carbon content in late Pleistocene marine sediments of tropical Atlantic Ocean (data are from reference [64]); c: the deposition rate of black carbon in sediments of the Loess Plateau (data from reference[60]); d: black carbon content in sediments of Lake Titicaca in Bolivia (data from reference [62]); e: global sea-level change[65].

    图  6   全新世东亚火活动演变历史

    a:65°N夏季太阳辐射曲线;b:秦岭大冶湖地区黑碳沉积速率,数据来自文献[71];c:内蒙古岱海湖地区火灾发生频率,数据来自文献[69];d:珠江入海口沉积物中黑碳含量变化,数据来自文献[72]; e:东海大陆架ECMZ岩心记录的黑碳含量变化,数据来自文献[73]。

    Figure  6.   Evolution of East Asian fire activity in the Holocene

    a: 65°N summer solar radiation curve; b: the deposition rate of black carbon in the Daye Lake area of the Qinling Mountains (data from reference[71]); c: The frequency of fires in the Daihai Lake area of Inner Mongolia (data from reference [69]); d: changes of black carbon content in sediments from the the Pearl River estuary (data from reference [72]); e: changes in black carbon content recorded by the ECMZ core of the East China Sea continental shelf (data from reference [73]).

    图  7   构造尺度全球不同区域植被演化历史重建记录

    a:南海IODP U1501站沉积物黑碳重建的东亚南部植被演化历史[86],b:中国北方食草动物牙釉质碳同位素记录的植被演化历史[81], c:日本海IODP U1430站沉积物黑碳重建的中亚北部植被演化历史[85],d:中亚南部食草动物牙釉质碳同位素记录的植被演化历史[78],e:植物叶蜡碳同位素记录的非洲植被演化历史[83];f:南美食草动物牙釉质碳同位素记录的植被演化历史[78],g:北美食草动物牙釉质碳同位素记录的植被演化历史[78],h:大气二氧化碳浓度变化[89]

    Figure  7.   Reconstruction records of global vegetation evolution history on tectonic scale.

    a: The evolution history of vegetation in southern East Asia recorded by black carbon from sediments at IODP U1501 station in the South China Sea [86],b: Vegetation evolution history recorded by tooth enamel carbon isotope of herbivores in northern China [81], c: Vegetation evolution history of northern central Asia for sediment black carbon reconstruction at IODP U1430 station in the Japan Sea [85], d: Vegetation evolution history recorded by tooth enamel carbon isotope of herbivores in southern central Asia [78], e: The evolution history of African vegetation recorded by carbon isotopes of plant leaf wax [89], f: Vegetation evolution history recorded by carbon isotopes of tooth enamel of South America [78]gg: Vegetation evolution history recorded by carbon isotopes of tooth enamel of North America [78], h: Changes in atmospheric carbon dioxide concentration [90].

    图  8   轨道-千年时间尺度植被演化历史重建

    a:深海底栖有孔虫氧同位素曲线,数据来自于文献[63];b:低纬度地区孟加拉湾沉积扇总有机质和正构烷烃单体δ13C记录,数据来自于文献[94];c:中纬度地区麦地那河沉积物δ13C记录,数据来自于文献[100];d:高纬度地区莱茵河谷黄土剖面的土壤有机碳δ13C记录,数据来自于文献[103]。

    Figure  8.   Reconstruction of vegetation evolution history on the orbital-millennial time scales

    a: Oxygen isotope curve of global deep-sea benthic foraminifera (data from reference [63]); b: Total organic matter and n-alkane monomer of Bay of Bengal sedimentary fan in low latitude area δ13C record (data from reference [94]), c: sediments of Medina River in mid latitude area δ13C record (data from reference [100]), d: soil organic carbon in the Loess Profile of the Rhine Valley in high latitude regions δ13C record (data from reference [103]).

  • [1]

    Masiello C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92(1-4):201-213. doi: 10.1016/j.marchem.2004.06.043

    [2]

    Dickens A F, Gélinas Y, Masiello C A, et al. Reburial of fossil organic carbon in marine sediments[J]. Nature, 2004, 427(6972):336-339. doi: 10.1038/nature02299

    [3]

    Coppola A I, Wagner S, Lennartz S T, et al. The black carbon cycle and its role in the Earth system[J]. Nature Reviews Earth & Environment, 2022, 3(8):516-532.

    [4]

    Cope M J, Chaloner W G. Fossil charcoal as evidence of past atmospheric composition[J]. Nature, 1980, 283(5748):647-649. doi: 10.1038/283647a0

    [5]

    Shrestha G, Traina S J, Swanston C W. Black carbon’s properties and role in the environment: A comprehensive review[J]. Sustainability, 2010, 2(1):294-320. doi: 10.3390/su2010294

    [6]

    Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos[J]. Proceedings of the national academy of sciences, 2004, 101(2):423-428. doi: 10.1073/pnas.2237157100

    [7]

    Clarke A D, Noone K J. Soot in the Arctic snowpack: A cause for perturbations in radiative transfer[J]. Atmospheric Environment, 2007, 41:64-72. doi: 10.1016/j.atmosenv.2007.10.059

    [8] 穆燕, 秦小光, 刘嘉麒, 等. 黑碳的研究历史与现状[J]. 海洋地质与第四纪地质, 2011, 31(1):143-155

    MU Yan, QIN Xiaoguang, LIU Jiaqi, et al. A review of black carbon study: history and current status[J]. Marine Geology & Quaternary Geology, 2011, 31(1):143-155.

    [9] 刘恋, 周鑫, 葛俊逸. 元素碳碳同位素在古环境研究中的应用[J]. 地质论评, 2012, 58(3):526-532 doi: 10.3969/j.issn.0371-5736.2012.03.013

    LIU Lian, ZHOU Xin, GE Junyi. The application of carbon lsotope of element carbon in the research of paleoenvironment[J]. Geological Review, 2012, 58(3):526-532. doi: 10.3969/j.issn.0371-5736.2012.03.013

    [10]

    Kang S C, Zhang Y L, Chen P F, et al. Black carbon and organic carbon dataset over the Third Pole[J]. Earth System Science Data, 2022, 14(2):683-707. doi: 10.5194/essd-14-683-2022

    [11] 汪青. 土壤和沉积物中黑碳的环境行为及效应研究进展[J]. 生态学报, 2012, 32(1):293-310 doi: 10.5846/stxb201011091604

    WANG Qing. A review of the environmental behavior and effects of black carbon in soils and sediments[J]. Acta Ecologica Sinica, 2012, 32(1):293-310. doi: 10.5846/stxb201011091604

    [12] 吴建育, 吴海斌, 沈佳恒, 等. 全球不同植被类型的C3/C4植物δ13C变化特征[R]. 北京,2054

    WU Jianyu, WU Haibin, SHEN Jiaheng, et al. C3/C4 plants of different vegetation types worldwide δ13C variation characteristics[R]. Beijing, 2015.

    [13] 刘一兰, 张恩楼, 刘恩峰, 等. 人类活动影响下的云南阳宗海近百年有机碳与黑炭湖泊沉积记录[J]. 湖泊科学, 2017, 29(4):1018-1028 doi: 10.18307/2017.0426

    LIU Yilan, ZHANG Enlou, LIU Enfeng, et al. TOC and black carbon records in sediment of Lake yangzong, Yunnan Province under the influence of humaan activities during the past century[J]. Journal of Lake Sciences, 2017, 29(4):1018-1028. doi: 10.18307/2017.0426

    [14]

    Vaezzadeh V, Zhong G C, Gligorovski S, et al. Characteristics of dissolved black carbon in riverine surface microlayer[J]. Marine Pollution Bulletin, 2023, 194:115301. doi: 10.1016/j.marpolbul.2023.115301

    [15]

    Dickens A F, Gélinas Y, Hedges J I. Physical separation of combustion and rock sources of graphitic black carbon in sediments[J]. Marine Chemistry, 2004, 92(1-4):215-223. doi: 10.1016/j.marchem.2004.06.027

    [16]

    Brodowski S, Amelung W, Haumaier L, et al. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy[J]. Geoderma, 2005, 128(1-2):116-129. doi: 10.1016/j.geoderma.2004.12.019

    [17]

    Ali M U, Siyi L, Yousaf B, et al. Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: a review[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(9):857-896. doi: 10.1080/10643389.2020.1738854

    [18]

    Gao C Y, Liu H X, Cong J X, et al. Historical sources of black carbon identified by PAHs and δ13C in Sanjiang Plain of Northeastern China[J]. Atmospheric Environment, 2018, 181:61-69. doi: 10.1016/j.atmosenv.2018.03.026

    [19]

    Zhan C L, Wan D J, Han Y M, et al. Historical variation of black carbon and PAHs over the last~ 200 years in central North China: Evidence from lake sediment records[J]. Science of the Total Environment, 2019, 690:891-899. doi: 10.1016/j.scitotenv.2019.07.008

    [20]

    Zhan C L, Cao J J, Han Y M, et al. Spatial distributions and sequestrations of organic carbon and black carbon in soils from the Chinese loess plateau[J]. Science of the Total Environment, 2013, 465:255-266. doi: 10.1016/j.scitotenv.2012.10.113

    [21]

    Pauraitė J, Mordas G, Byčenkienė S, et al. Spatial and temporal analysis of organic and black carbon mass concentrations in Lithuania[J]. Atmosphere, 2015, 6(8):1229-1242. doi: 10.3390/atmos6081229

    [22]

    Horvath H. Size segregated light absorption coefficient of the atmospheric aerosol[J]. Atmospheric Environment, 1995, 29(8):875-83. doi: 10.1016/1352-2310(95)00025-T

    [23]

    Jacobson M Z. Control of fossil‐fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D19): ACH 16-1-ACH 16-22.

    [24]

    Fierce L, Riemer N, Bond T. Explaining variance in black carbon’s aging timescale[J]. Atmospheric Chemistry and Physics Discussions, 2014, 14(13):18703-18737.

    [25]

    Jurado E, Dachs J, Duarte C M, et al. Atmospheric deposition of organic and black carbon to the global oceans[J]. Atmospheric Environment, 2008, 42(34):7931-7939. doi: 10.1016/j.atmosenv.2008.07.029

    [26]

    Nakane M, Ajioka T, Yamashita Y. Distribution and sources of dissolved black carbon in surface waters of the Chukchi Sea, Bering Sea, and the North Pacific Ocean[J]. Frontiers in Earth Science, 2017, 5:34. doi: 10.3389/feart.2017.00034

    [27]

    Reisser M, Purves R S, Schmidt M W I, et al. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks[J]. Frontiers in Earth Science, 2016, 4:80.

    [28]

    Bellè S L, Berhe A A, Hagedorn F, et al. Key drivers of pyrogenic carbon redistribution during a simulated rainfall event[J]. Biogeosciences, 2021, 18(3):1105-1126. doi: 10.5194/bg-18-1105-2021

    [29]

    Masiello C A, Berhe A A. First interactions with the hydrologic cycle determine pyrogenic carbon's fate in the Earth system[J]. Earth Surface Processes and Landforms, 2020, 45(10):2394-2398. doi: 10.1002/esp.4925

    [30]

    Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37(11):1477-1488. doi: 10.1016/j.orggeochem.2006.06.022

    [31]

    Abiven S, Hengartner P, Schneider M P W, et al. Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal[J]. Soil Biology and Biochemistry, 2011, 43(7):1615-1617. doi: 10.1016/j.soilbio.2011.03.027

    [32]

    Jaffé R, Ding Y, Niggemann J, et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans[J]. Science, 2013, 340(6130):345-347. doi: 10.1126/science.1231476

    [33]

    Hanke U M, Reddy C M, Braun A L L, et al. What on earth have we been burning? Deciphering sedimentary records of pyrogenic carbon[J]. Environmental Science & Technology, 2017, 51(21):12972-12980.

    [34]

    Coppola A I, Wiedemeier D B, Galy V, et al. Global-scale evidence for the refractory nature of riverine black carbon[J]. Nature Geoscience, 2018, 11(8):584-588. doi: 10.1038/s41561-018-0159-8

    [35]

    Wagner S, Jaffé R. Effect of photodegradation on molecular size distribution and quality of dissolved black carbon[J]. Organic Geochemistry, 2015, 86:1-4. doi: 10.1016/j.orggeochem.2015.05.005

    [36]

    Ohlson M, Kasin I, Wist A N, et al. Size and spatial structure of the soil and lacustrine charcoal pool across a boreal forest watershed[J]. Quaternary Research, 2013, 80(3):417-424. doi: 10.1016/j.yqres.2013.08.009

    [37] 陈颖颖, 贺梦晴, 周倩, 等. 鄂东南湖泊水体中颗粒态黑碳分布特征与来源分析: 以磁湖为例[J]. 环境化学, 2024, 43(2):1-10

    CHEN Yingying, HE Mengqing, ZHOU Qian, et al. Spatial variation and sources of particulate black carbon in Cihu Lake in Southeast Hubei province[J]. Environmental Chemistry, 2024, 43(2):1-10.

    [38]

    Matsui H, Mori T, Ohata S, et al. Contrasting source contributions of Arctic black carbon to atmospheric concentrations, deposition flux, and atmospheric and snow radiative effects[J]. Atmospheric Chemistry and Physics, 2022, 22(13):8989-9009. doi: 10.5194/acp-22-8989-2022

    [39]

    Ziolkowski L A, Druffel E R M. Aged black carbon identified in marine dissolved organic carbon[J]. Geophysical Research Letters, 2010, 37(16):L16601.

    [40]

    Wang X C, Xu C L, Druffel E M, et al. Two black carbon pools transported by the Changjiang and Huanghe Rivers in China[J]. Global Biogeochemical Cycles, 2016, 30(12):1778-1790. doi: 10.1002/2016GB005509

    [41]

    Stubbins A, Niggemann J, Dittmar T. Photo-lability of deep ocean dissolved black carbon[J]. Biogeosciences, 2012, 9(5):1661-1670. doi: 10.5194/bg-9-1661-2012

    [42]

    Yamashita Y, Nakane M, Mori Y, et al. Fate of dissolved black carbon in the deep Pacific Ocean[J]. Nature Communications, 2022, 13(1):307. doi: 10.1038/s41467-022-27954-0

    [43]

    Hammes K, Schmidt M W I, Smernik R J, et al. Comparison of quantification methods to measure fire‐derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere[J]. Global Biogeochemical Cycles, 2007, 21(3):GB3016.

    [44] 邱敬, 高人, 杨玉盛, 等. 土壤黑碳的研究进展[J]. 亚热带资源与环境学报, 2009, 4(1):88-94 doi: 10.3969/j.issn.1673-7105.2009.01.012

    QIU Jing, GAO Ren, YAGN Yusheng, et al. Advances on research of black carbon in soil[J]. Journal of Subtropical Resources and Environment, 2009, 4(1):88-94. doi: 10.3969/j.issn.1673-7105.2009.01.012

    [45] 王旭, 于赤灵, 彭平安, 等. 沉积物中黑碳的提取和测定方法: 误差分析和回收率实验[J]. 地球化学, 2001, 30(5):439-444

    WANG Xu, YU Chiling, PENG Ping’an, et al. Extraction and determination of black carbon in sediments: Error analysis and recovery ratio experiment[J]. Geochimica, 2001, 30(5):439-444.

    [46]

    Elmquist M, Gustafsson Ö, Andersson P. Quantification of sedimentary black carbon using the chemothermal oxidation method: an evaluation of ex situ pretreatments and standard additions approaches[J]. Limnology and Oceanography:Methods, 2004, 2(12):417-427. doi: 10.4319/lom.2004.2.417

    [47]

    Simpson M J, Hatcher P G. Overestimates of black carbon in soils and sediments[J]. Naturwissenschaften, 2004, 91(9):436-440.

    [48]

    Nguyen T H, Brown R A, Ball W P. An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment[J]. Organic Geochemistry, 2004, 35(3):217-234. doi: 10.1016/j.orggeochem.2003.09.005

    [49]

    Poot A, Quik J T K, Veld H, et al. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods[J]. Journal of Chromatography A, 2009, 1216(3):613-622. doi: 10.1016/j.chroma.2008.08.011

    [50]

    Bornemann L, Welp G, Brodowski S, et al. Rapid assessment of black carbon in soil organic matter using mid-infrared spectroscopy[J]. Organic Geochemistry, 2008, 39(11):1537-1544. doi: 10.1016/j.orggeochem.2008.07.012

    [51]

    Han Y M, Cao J J, Chow J C, et al. Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-EC[J]. Chemosphere, 2007, 69(4):569-574. doi: 10.1016/j.chemosphere.2007.03.024

    [52] 魏科, 陈文, 徐路扬, 等. 平流层放大火灾的全球气候影响[J]. 中国科学: 地球科学, 2020, 50(2): 318-320

    WEI Ke, CHEN Wen, XU Luyang, et al. Stratosphere amplifies the global climate effect of wildfires[J]. Science China Earth Sciences, 2020, 63(2): 309-311.

    [53] 韩建军, 曾前. 我国气候异常对森林火灾发生的影响[J]. 森林防火, 2003(1):15-16 doi: 10.3969/j.issn.1002-2511.2003.01.009

    HAN Jianjun, ZENG Qian. The effect of unusual climate in our country on forest fire[J]. Forest Fire Prevention, 2003(1):15-16. doi: 10.3969/j.issn.1002-2511.2003.01.009

    [54] 裴文强. 中国边缘海黑碳记录的长江、珠江流域火历史[D]. 中国科学院大学博士学位论文, 2020

    PEI Wenqiang. Fire history in the Yangtze River and Pearl River Basins: black arbon records from the China seas[D]. Doctor Dissertation of University of Chinese Academy of Sciences, 2020.

    [55]

    Ren G Y. Changes in forest cover in China during the Holocene[J]. Vegetation History and Archaeobotany, 2007, 16(2):119-126.

    [56] 邱扬. 森林植被的自然火干扰[J]. 生态学杂志, 1998, 17(1):54-60 doi: 10.3321/j.issn:1000-4890.1998.01.009

    QIU Yang. Natural fire disturbance of forest vegetation[J]. Chinese Journal of Ecology, 1998, 17(1):54-60. doi: 10.3321/j.issn:1000-4890.1998.01.009

    [57]

    Jiao S L, Zhang H, Cai Y F, et al. Collapse of tropical rainforest ecosystems caused by high-temperature wildfires during the end-Permian mass extinction[J]. Earth and Planetary Science Letters, 2023, 614:118193. doi: 10.1016/j.jpgl.2023.118193

    [58]

    Duffin K I. The representation of rainfall and fire intensity in fossil pollen and charcoal records from a South African savanna[J]. Review of Palaeobotany and Palynology, 2008, 151(1-2):59-71. doi: 10.1016/j.revpalbo.2008.02.004

    [59]

    Bird M I, Cali J A. A million-year record of fire in sub-Saharan Africa[J]. Nature, 1998, 394(6695):767-769. doi: 10.1038/29507

    [60]

    Wang X, Peng P A, Ding Z L. Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1-2):9-19. doi: 10.1016/j.palaeo.2005.03.023

    [61]

    Verardo D J, Ruddiman W F. Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: Climatic and geochemical significance[J]. Geology, 1996, 24(9):855-857. doi: 10.1130/0091-7613(1996)024<0855:LPCITA>2.3.CO;2

    [62]

    Hanselman J A, Bush M B, Gosling W D, et al. A 370, 000-year record of vegetation and fire history around Lake Titicaca (Bolivia/Peru)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305(1-4):201-214. doi: 10.1016/j.palaeo.2011.03.002

    [63]

    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003.

    [64]

    Driese S G, Li Z H, Horn S P. Late Pleistocene and Holocene climate and geomorphic histories as interpreted from a 23, 000 14C yr B. P. paleosol and floodplain soils, southeastern West Virginia, USA[J]. Quaternary Research, 2005, 63(2):136-149. doi: 10.1016/j.yqres.2004.10.005

    [65]

    Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past Discussions, 2015, 11(4):3699-3728.

    [66]

    Glikson A. Fire and human evolution: The deep-time blueprints of the Anthropocene[J]. Anthropocene, 2013, 3:89-92. doi: 10.1016/j.ancene.2014.02.002

    [67] 方引, 陈颖军, 林田, 等. 黑碳在渤海泥质区的百年沉积记录[J]. 海洋学报, 2014, 36(5):98-106

    FANG Yin, CHEN Yingjun, LIN Tian, et al. One hundred year sedimentary record of black carbon from mud area in Bohai Sea, China[J]. Acta Oceanologica Sinica, 2014, 36(5):98-106.

    [68]

    Neupane B, Kang S C, Chen P F, et al. Historical black carbon reconstruction from the lake sediments of the Himalayan - Tibetan Plateau[J]. Environmental Science & Technology, 2019, 53(10):5641-5651.

    [69]

    Wang X, Xiao J L, Cui L L, et al. Holocene changes in fire frequency in the Daihai Lake region (north-central China): Indications and implications for an important role of human activity[J]. Quaternary Science Reviews, 2013, 59:18-29. doi: 10.1016/j.quascirev.2012.10.033

    [70] 裴文强, 万世明, 谭扬, 等. 过去5万年来珠江流域火历史的南海沉积记录[J]. 海洋地质与第四纪地质, 2017, 37(3):47-57 doi: 10.16562/j.cnki.0256-1492.2017.03.005

    PEI Wenqiang, WAN Shiming, TAN Yang, et al. Fire history in pearl river basin since 50 kaBP: sediment records from the south China sea[J]. Marine Geology & Quaternary Geology, 2017, 37(3):47-57. doi: 10.16562/j.cnki.0256-1492.2017.03.005

    [71]

    Zhang Y, Cui Q Y, Blockley S, et al. Fire history in the qinling mountains of east‐central china since the last Glacial Maximum[J]. Geophysical Research Letters, 2023, 50(10):e2023GL102848. doi: 10.1029/2023GL102848

    [72]

    Pei W Q, Wan S M, Clift P D, et al. Farming stimulated stronger chemical weathering in South China since 3.0 ka BP[J]. Quaternary Science Reviews, 2023, 307:108065. doi: 10.1016/j.quascirev.2023.108065

    [73]

    Pei W Q, Wan S M, Clift P D, et al. Human impact overwhelms long-term climate control of fire in the Yangtze River Basin since 3.0 ka BP[J]. Quaternary Science Reviews, 2020, 230:106165. doi: 10.1016/j.quascirev.2020.106165

    [74] 饶志国, 朱照宇, 贾国东, 等. 环北太平洋地区现代植被中C3/C4植物相对丰度与气候条件关系研究[J]. 科学通报, 2010, 55(12): 1134-1140

    RAO Zhiguo, ZHU Zhaoyu, JIA Guodong, et al. Relationship between climatic conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific[J]. Chinese Science Bulletin, 2010, 55(18): 1931-1936.

    [75]

    Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan[J]. Nature, 1989, 342(6246):163-166. doi: 10.1038/342163a0

    [76]

    Quade J, Cerling T E. Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 115(1-4):91-116. doi: 10.1016/0031-0182(94)00108-K

    [77]

    Morgan M E, Kingston J D, Marino B D. Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya[J]. Nature, 1994, 367(6459):162-165. doi: 10.1038/367162a0

    [78]

    Cerling T E, Harris J M, MacFadden B J, et al. Global vegetation change through the Miocene/Pliocene boundary[J]. Nature, 1997, 389(6647):153-158. doi: 10.1038/38229

    [79]

    Freeman K H, Colarusso L A. Molecular and isotopic records of C4 grassland expansion in the late miocene[J]. Geochimica et Cosmochimica Acta, 2001, 65(9):1439-1454. doi: 10.1016/S0016-7037(00)00573-1

    [80]

    Huang Y S, Clemens S C, Liu W G, et al. Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula[J]. Geology, 2007, 35(6):531-534. doi: 10.1130/G23666A.1

    [81]

    Wang Y, Deng T. A 25 m. y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2005, 236(1-2):322-338. doi: 10.1016/j.jpgl.2005.05.006

    [82]

    Ségalen L, Renard M, Lee-Thorp J A, et al. Neogene climate change and emergence of C4 grasses in the Namib, southwestern Africa, as reflected in ratite 13C and 18O[J]. Earth and Planetary Science Letters, 2006, 244(3-4):725-734. doi: 10.1016/j.jpgl.2005.12.012

    [83]

    Polissar P J, Rose C, Uno K T, et al. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification[J]. Nature Geoscience, 2019, 12(8):657-660. doi: 10.1038/s41561-019-0399-2

    [84]

    Peppe D J, Cote S M, Deino A L, et al. Oldest evidence of abundant C4 grasses and habitat heterogeneity in eastern Africa[J]. Science, 2023, 380(6641):173-177. doi: 10.1126/science.abq2834

    [85]

    Shen X Y, Wan S M, Colin C, et al. Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene-Pliocene boundary[J]. Earth and Planetary Science Letters, 2018, 502:74-83. doi: 10.1016/j.jpgl.2018.08.056

    [86]

    Li M J, Wan S M, Colin C, et al. Expansion of C4 plants in South China and evolution of East Asian monsoon since 35Ma: Black carbon records in the northern South China Sea[J]. Global and Planetary Change, 2023, 223:104079. doi: 10.1016/j.gloplacha.2023.104079

    [87]

    Zhou B, Shen C D, Sun W D, et al. Late Pliocene-Pleistocene expansion of C4 vegetation in semiarid East Asia linked to increased burning[J]. Geology, 2014, 42(12):1067-1070. doi: 10.1130/G36110.1

    [88]

    Zhou B, Bird M, Zheng H B, et al. New sedimentary evidence reveals a unique history of C4 biomass in continental East Asia since the early Miocene[J]. Scientific Reports, 2017, 7(1):170. doi: 10.1038/s41598-017-00285-7

    [89]

    Rae J W B, Zhang Y G, Liu X Q, et al. Atmospheric CO2 over the Past 66 Million years from marine archives[J]. Annual Review of Earth and Planetary Sciences, 2021, 49:609-641. doi: 10.1146/annurev-earth-082420-063026

    [90] 饶志国, 陈发虎, 张晓, 等. 末次冰期以来全球陆地植被中C3/C4植物相对丰度时空变化基本特征及其可能的驱动机制[J]. 科学通报, 2012, 57(18): 1633-45

    RAO Zhiguo, CHEN Fahu, ZHANG Xiao, et al. Spatial and temporal variations of C3/C4 relative abundance in global terrestrial ecosystem since the Last Glacial and its possible driving mechanisms[J]. Chinese Science Bulletin, 2012, 57(31): 4024-4035.

    [91]

    Huang Y S, Street-Perrott F A, Perrott R A, et al. Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya[J]. Geochimica et Cosmochimica Acta, 1999, 63(9):1383-1404. doi: 10.1016/S0016-7037(99)00074-5

    [92]

    Ficken K J, Street-Perrott F A, Perrott R A, et al. Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya, East Africa[J]. Organic Geochemistry, 1998, 29(5-7):1701-1719. doi: 10.1016/S0146-6380(98)00109-0

    [93]

    Olago D O, Street-Perrott F A, Perrott R A, et al. Late Quaternary glacial-interglacial cycle of climatic and environmental change on Mount Kenya, Kenya[J]. Journal of African Earth Sciences, 1999, 29(3):593-618. doi: 10.1016/S0899-5362(99)00117-7

    [94]

    Van Der Kaars S, Dam R. Vegetation and climate change in West-Java, Indonesia during the last 135, 000 years[J]. Quaternary International, 1997, 37:67-71. doi: 10.1016/1040-6182(96)00002-X

    [95]

    He J, Jia G D, Li L, et al. Differential timing of C4 plant decline and grassland retreat during the penultimate deglaciation[J]. Global and Planetary Change, 2017, 156:26-33. doi: 10.1016/j.gloplacha.2017.08.001

    [96]

    Galy V, François L, France-Lanord C, et al. C4 plants decline in the Himalayan basin since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2008, 27(13-14):1396-1409. doi: 10.1016/j.quascirev.2008.04.005

    [97]

    Hughen K A, Eglinton T I, Xu L, et al. Abrupt tropical vegetation response to rapid climate changes[J]. Science, 2004, 304(5679):1955-1959. doi: 10.1126/science.1092995

    [98]

    Krishnamurthy R V, DeNiro M J, Pant R K. Isotope evidence for Pleistocene climatic changes in Kashmir, India[J]. Nature, 1982, 298(5875):640-641. doi: 10.1038/298640a0

    [99]

    Nordt L C, Boutton T W, Jacob J S, et al. C4 plant productivity and climate-CO2 variations in South-central texas during the late quaternary[J]. Quaternary Research, 2002, 58(2):182-188. doi: 10.1006/qres.2002.2344

    [100]

    Rao Z G, Zhu Z Y, Jia G D, et al. Relationship between climatic conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific[J]. Chinese Science Bulletin, 2010, 55(18):1931-1936. doi: 10.1007/s11434-010-3101-z

    [101]

    Brincat D, Yamada K, Ishiwatari R, et al. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments[J]. Organic Geochemistry, 2000, 31(4):287-294. doi: 10.1016/S0146-6380(99)00164-3

    [102]

    Hatté C, Antoine P, Fontugne M, et al. New chronology and organic matter δ13C paleoclimatic significance of Nußloch loess sequence (Rhine Valley, Germany)[J]. Quaternary International, 1999, 62(1):85-91. doi: 10.1016/S1040-6182(99)00026-9

    [103]

    Jiang W Q, Wu H B, Li Q, et al. Spatiotemporal changes in C4 plant abundance in China since the Last Glacial Maximum and their driving factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 518:10-21. doi: 10.1016/j.palaeo.2018.12.021

    [104]

    Chen Z M Z, Wan S M, Zhang J, et al. Human impact overwhelms long-term climatic control on C4 vegetation in the Yellow River Basin after 3 ka BP[J]. Geosystems and Geoenvironment, 2022, 1(2):100021. doi: 10.1016/j.geogeo.2021.100021

    [105]

    Zhang E L, Sun W W, Zhao C, et al. Linkages between climate, fire and vegetation in southwest China during the last 18.5 ka based on a sedimentary record of black carbon and its isotopic composition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435:86-94. doi: 10.1016/j.palaeo.2015.06.004

    [106]

    Zimmerman A R. Abiotic and microbial oxidation of laboratory-produced black carbon (Biochar)[J]. Environmental Science & Technology, 2010, 44(4):1295-1301.

    [107]

    Li M, Bao F X, Zhang Y, et al. Photochemical aging of soot in the aqueous phase: release of dissolved black carbon and the formation of 1O2[J]. Environmental Science & Technology, 2019, 53(21):12311-12319.

    [108]

    Marques J S J, Dittmar T, Niggemann J, et al. Dissolved black carbon in the headwaters-to-ocean continuum of Paraíba Do Sul River, Brazil[J]. Frontiers in Earth Science, 2017, 5:11.

    [109]

    Bostick K W, Zimmerman A R, Goranov A I, et al. Photolability of pyrogenic dissolved organic matter from a thermal series of laboratory-prepared chars[J]. Science of the Total Environment, 2020, 724:138198. doi: 10.1016/j.scitotenv.2020.138198

    [110]

    Jones M W, De Aragão L E O C, Dittmar T, et al. Environmental controls on the riverine export of dissolved black carbon[J]. Global Biogeochemical Cycles, 2019, 33(7):849-874. doi: 10.1029/2018GB006140

    [111]

    Masiello C A, Druffel E R M. Organic and black carbon 13C and 14C through the Santa Monica Basin sediment oxic-anoxic transition[J]. Geophysical Research Letters, 2003, 30(4):1185.

    [112]

    Suman D O, Kuhlbusch T A J, Lim B. Marine sediments: a reservoir for black carbon and their use as spatial and temporal records of combustion[M]//Clark J S, Cachier H, Goldammer J G, et al. Sediment Records of Biomass Burning and Global Change. Berlin: Springer, 1997.

    [113]

    Wagner S, Brandes J, Spencer R G M, et al. Isotopic composition of oceanic dissolved black carbon reveals non-riverine source[J]. Nature Communications, 2019, 10(1):5064. doi: 10.1038/s41467-019-13111-7

    [114]

    Rossel P E, Stubbins A, Rebling T, et al. Thermally altered marine dissolved organic matter in hydrothermal fluids[J]. Organic Geochemistry, 2017, 110:73-86. doi: 10.1016/j.orggeochem.2017.05.003

    [115]

    Karthik V, Bhaskar B V, Ramachandran S, et al. Black carbon flux in terrestrial and aquatic environments of Kodaikanal in the Western Ghats, South India: Estimation, source identification, and implication[J]. Science of the Total Environment, 2023, 854:158647. doi: 10.1016/j.scitotenv.2022.158647

  • 期刊类型引用(3)

    1. 姜兆霞 ,李三忠 ,索艳慧 ,吴立新 . 海底氢能探测与开采技术展望. 地学前缘. 2024(04): 183-190 . 百度学术
    2. 刘莉萍,初凤友,郭磊,李小虎. 海底天然气水合物及冷泉流体渗漏的原位观测技术. 海洋学研究. 2023(01): 26-44 . 百度学术
    3. 车昊函,邢磊,蔺玉曌. 科研鱼探仪数据的解编及地球物理应用. 海洋科学. 2023(11): 121-131 . 百度学术

    其他类型引用(2)

图(8)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  75
  • PDF下载量:  39
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-08-17
  • 修回日期:  2023-10-08
  • 网络出版日期:  2023-10-29
  • 刊出日期:  2023-10-27

目录

/

返回文章
返回