Silicic productivity record in the Westen Pacific Warm Pool in the last 700 ka and its climatic effect
-
摘要: 西太平洋暖池(WPWP)的硅质生产力水平在调节第四纪全球大气CO2分压的变化上发挥着重要作用,但其控制因素尚存争议。本研究对位于WPWP核心区的MD06-3047岩芯进行了生源蛋白石分析,探讨了700 ka以来WPWP的硅质生产力的控制因素及气候效应。研究发现,700 ka以来WPWP硅质生产力变化呈现显著的冰期-间冰期旋回,基本在冰期较高,间冰期较低。其主要控制因素可能是东吕宋陆架沉积物风化输入、亚洲风尘输入和温跃层深度(DOT)变化。南大洋中层水的“硅溢漏”可能无法对此海区产生显著影响。冰期时的低海平面,导致热带火山弧附近裸露的陆架沉积物的物理剥蚀和硅酸盐风化,淡水输入为WPWP提供了更多的硅酸;冰期时增强的风尘供应为WPWP提供了更多的Fe;冰期时较浅的DOT使表层海水的营养物质垂向空间变小,滞留时间增多。这些因素使冰期的WPWP生产力增高,有可能降低了大气CO2分压。Abstract: The Quaternary silicic productivity levels in the Western Pacific Warm Pool (WPWP) are believed to play a crucial role in regulating changes in global atmospheric CO2 partial pressure. However, there is a debate regarding the factors that control the productivity levels. We examined the biogenic opal of core MD06-3047, which is located in the central region of the WPWP, to investigate the controlling factors and climatic effects on silicic productivity over the past 700 kyr. Our findings indicate that the variation in silicic productivity in the WPWP exhibits significant glacial-interglacial cycles: higher levels during glacial periods while lower levels during interglacial periods. The primary controlling factors might be sediment erosion and weathering on the East Luzon continental shelf, the aeolian dust input, as well as the depth of the thermocline (DOT). The silicic acid leakage from the Southern Ocean may not have a significant impact. During glacial periods, physical erosion and silicate weathering of exposed continental shelf sediments near tropical volcanic arcs were intensified, and so did the dust input, which resulted in increased input of silicate and iron to the WPWP. The shallower DOT during glacial periods led to a smaller nutrient vertical space and increased retention time, thereby increasing the glacial productivity of the WPWP, and potentially reducing the partial pressure of atmospheric CO2.
-
Keywords:
- Western Pacific Warm Pool /
- biogenic opal /
- sea level /
- depth of the thermocline /
- atmospheric CO2
-
西太平洋暖池(WPWP)是全球海洋和气候系统的重要组分,也是大气圈热量和水汽的主要来源,因此可以驱动诸如厄尔尼诺-南方涛动(ENSO)的全球尺度气候事件。而西太平洋暖池的生产力水平被认为在调节第四纪全球大气CO2分压的变化上发挥着重要作用[1-3]。之前的研究认为,风尘和陆源有机质输入是WPWP冰期-间冰期旋回尺度生物地球化学循环的首要控制因素[4-5]。也有研究发现,南大洋中层水(AAIW)可以将深层上涌的高营养水体通过“大洋隧道”过程水平传输至热带太平洋上层水体[6-7],从而影响其冰期旋回中的硅质生产力变化。然而冰期旋回中WPWP生产力的控制因素及其主次,目前依然存在争议。
初级生产者(硅藻)对溶解态硅酸(H4SiO4)的消耗是有效碳封存的首要先决条件[8]。硅藻生活在透光层,并利用硅酸合成生源蛋白石。生源蛋白石指示的生产力不仅受限于溶解态硅酸的供应[9-10],铁的供应也可以限制单独硅藻细胞的物理状态和生产速率[11]。WPWP沉积物中生源蛋白石的含量,不仅可以记录该海区的生产力水平和碳封存状态,也能记录陆源有机质、南源水体和风尘铁输入对WPWP的影响。本文对取自西菲律宾海的MD06-3047站柱状沉积物开展了生源蛋白石含量分析,探讨了700 ka以来WPWP的硅质生产力变化及其控制因素。
1. 区域地质背景
西菲律宾海是西太平洋最大的边缘洋盆。沿着西太平洋的菲律宾沿岸,北赤道流(NEC)在15°N分流为向北的黑潮和向南的棉兰老流(MC)[12-14]。NEC分叉点南北移动的年际变化,受ENSO过程的强烈影响,在厄尔尼诺发生的年份分叉点位置位于最北端[14]。来自南大洋的AAIW可以通过南赤道流(SEC)和新几内亚沿岸潜流进入到赤道中层水(EqPIW),并成为该水体的主要来源[7, 15]。东亚夏季风和冬季风控制了研究区的气候,导致了吕宋火山岩和亚洲风尘向该地区的陆源输入。另外,研究区的表层海水温度(SST)几乎是全球最高,其季节变化最小,且年均SST基本大于28°C[16]。研究区因较低的表层海水营养盐浓度,整体上呈现出较低的初级生产力(叶绿素a浓度 0.04~0.07 mg/m3),而较厚的混合层也限制了富含营养物质的深层水体上涌[17-18]。
2. 材料与方法
2.1 样品来源
重力柱状岩芯 MD06-3047,总长度890 cm,由中-法合作航次MARCO POLO 2/IMAGES XIV于2006年在西菲律宾洋盆的本哈姆海台(17º00.44'N、124º47.93'E,水深约2510 m,图1)获取。该岩芯样品主要由黄褐色粉砂质黏土组成,未见明显生物扰动。岩芯位置位于吕宋岛以东240 km,该海区主要受亚热带东亚季风气候影响[19]。
2.2 分析方法
将岩芯按照2 cm间隔分为445个样品用于分析测试。样品在50°C下被烘干,接着用5%的H2O2进行处理,然后用63 µm孔径的筛子在去离子水下进行冲洗,以获取有孔虫壳体样品。每个样品挑选粒径大于150 µm的浮游和底栖有孔虫壳体共计300个起进行属种鉴定和计数,并进行了底栖有孔虫表生种Cibicidoides wuellerstorfi有孔虫稳定氧同位素测试和温跃层深度(DOT)的函数转换分析[3]。
生源蛋白石含量采用湿碱消解法测定[20],该方法的平均误差为0.2%~1.0%,在自然资源部海洋地质与成矿作用重点实验室由钼酸蓝分光光度计进行测试。具体分析测试方法为:冻干样品研磨至 200 目以下,准确称取约130~140 mg 样品粉末,置于 50 mL 离心管中。将 5 mL 10% 过氧化氢溶液加入离心管中,震荡并静置 30 min以除去有机质;再在离心管中加入 5 mL 1∶9 盐酸,震荡反应 30 min 以去除碳酸盐。随后,加入 40 mL去离子水并以 3000 rpm 离心 10 min,滤出上清液,并重复该过程 3 次后将样品烘干。在烘干后的样品中加入 40 mL 2 mol/L 的 Na2CO3溶液,充分混合后放入 85 ℃ 恒温水浴箱中提取生物硅。每小时从水浴箱中取出样品离心 15 min,取 125 μL 上清液加入钼酸铵溶液,配置还原剂使其显色。每次取样后用力摇晃试管使固体重新悬浮后,继续水浴加热提取,共提取 6 次;该过程快速完成,以减少可溶硅在固体表面的不可逆损失。通过钼酸盐蓝光分光光度法分步测量提取物中的溶解硅,并根据硅的质量百分比随时间变化得出线性回归方程,其截距为沉积物中生源硅的含量。沉积物中的生源蛋白石含量按公式(Opal%= 2.4×BSi%)计算。
3. 结果与讨论
3.1 年龄框架重建
MD06-3047岩芯的年龄框架通过将该岩芯底栖有孔虫表生种C. wuellerstorfi的δ18O曲线[3]和LR04 δ18O标准曲线[21]进行图形比对来获得,并且考虑了浮游有孔虫Globigerinoides ruber (pink)的末现面。G. ruber (pink)的末现面出现在岩芯160 cm处,对应年龄为120 kaBP[22]。该岩芯地层覆盖了海洋氧同位素期次MIS 1-17期(图2),记录了WPWP近700 ka的古海洋变化历史。
3.2 冰期旋回中的西太平洋暖池生源蛋白石含量特征
MD06-3047岩芯的生源蛋白石含量在700 ka以来平均值为3.10%,最大值8.46%,最小值1.40%。在冰期-间冰期旋回中,其阶段性低值往往出现在间冰期;而在大多数间冰期的中后期到紧接着的冰期,对应着有孔虫氧同位素记录的全球冰量增加[3, 21],生源蛋白石含量往往呈现出阶段性上升的趋势(图2C)。其最大值出现在MIS 5.4期,基本对应着MIS 5.5期到MIS 5.4期全球冰体积的迅速增加。在MIS 11期以前,其冰期旋回尺度的变化幅度相对较小,而在MIS 11期之后显著增大。与同为生产力指标的总有机碳含量(TOC)比较(图2D)[23],在冰期旋回中整体变化趋势一致,即大致呈现出了冰期高、冰消期和间冰期低的特点。
3.3 西太平洋暖池硅质生产力控制因素
可能影响WPWP硅质生产力的因素包括:风尘带来的Si和Fe[2, 23]、陆架物理剥蚀和硅酸盐风化导致的陆源有机质输入[24-25]、与类ENSO过程相关的温跃层动力机制[26-27]和南大洋“硅溢漏”[28]。我们认为,表层海水硅藻生产力的勃发需要3个条件:① 充足的硅酸盐供应;② 可供生物利用的铁的供给;③ 营养物质在表层水体较小的纵向空间和充分的滞留时间。根据上述研究提出的可能影响因素,结合硅藻生长所需条件,我们假设:亚洲陆源输入和南大洋为研究区供应硅酸;亚洲风尘Fe的输入为水体提供Fe供给;DOT的深浅改变了混合层的深度,从而影响了硅酸和Fe在表层水体的纵向空间和滞留时间。
通过与本岩芯风尘通量和溶解Fe含量的比较(图3A,B)[23],我们发现生源蛋白石和这两项风尘指标基本都在冰期表现为高值,而冰消期时蛋白石的低值也往往对应着风尘的低值。这说明风尘通过Fe的输入对WPWP生产力的影响符合我们的假设。而通过与本岩芯DOT记录的比对,发现生源蛋白石在冰期时的高值往往对应DOT较浅的时期;其低值期,DOT也往往较深(图3D)。这和我们的假设一致,即较浅的温跃层可以减少营养物质和Fe的垂向空间,增强其在透光层的滞留,为硅藻的生成创造时间窗口。而DOT较深时,往往是北赤道流输送至WPWP核心区的寡营养水体逐渐聚集、堆积,不利于硅藻的生长。为了验证南大洋“硅溢漏”对WPWP硅质生产力的影响,我们比对了南大洋南极带上升流区的生源蛋白石记录和南半球西风带(SWW)记录(图3E,F)[29-30],发现其最显著特征是在每个冰消期呈现出峰值,意味着冰消期SWW的南移和增强,导致了南极带风驱上升流的增强、富硅深层水体进入南极中层水和亚南极模态水并进一步向低纬的上层水体输送[29]。然而这一冰消期“硅溢漏”特征在WPWP的生源蛋白石记录中并未得到响应。这说明冰消期南大洋“硅溢漏”未能影响到WPWP的硅质生产力。另外,来自东菲律宾海的硅藻席硅同位素的研究也表明,末次盛冰期南大洋“硅溢漏”并未显著影响到研究区[18]。本岩芯生源蛋白石含量并未在末次盛冰期出现峰值,可能与年龄框架的不确定性、生源蛋白石的保存状况有关(图3C)。而跟海平面记录的比对(图4B)[31],则进一步支持了我们的假设,即低海平面时裸露的东吕宋陆架的硅酸盐物理剥蚀和化学风化可能为研究区表层海水提供了硅酸和有机质,导致了生源蛋白石的增长,这与前人在这一海区的研究一致[25, 32]。
图 3 MD06-3047岩芯生源蛋白石含量与潜在控制因素比对MD06-3047相关参数:A:风尘通量[23],B:溶解铁含量[23],C:生源蛋白石含量,D:温跃层深度[3];E:南大洋南极带ANT29/P1-03岩芯生源蛋白石含量[29];F:南极EDC冰芯积累率[30]。图中灰色条带为间冰期,绿色半透明条带为冰消期。Figure 3. Comparison of bornite opal concentration and potential controls in core MD06-3047Proxies in MD06-3047: A: dust flux[23], B: dissolved iron content[23], C: biogenic opal concentration, D: thermocline depth[3]. E: biogenic opal content of core ANT29/P1-03 in the Antarctic Zone of the Southern Ocean[29], and F: accumulation rate in Antarctic Epica Dome C ice core[30]. The gray bars are interglacial periods, and the green translucent bars are the deglacial periods.图 4 MD06-3047岩芯相关参数与全球气候指标比对MD06-3047相关参数:A:风尘通量[23],B:全球海平面变化[31],C:生源蛋白石含量,D:总有机碳含量[23],E:温跃层深度[3];F:南极冰芯Epica Dome C大气CO2浓度[1]。图中灰色条带为间冰期,绿色半透明条带为冰消期。Figure 4. Comparison of MD06-3047 proxies with global climate proxiesMD06-3047 proxies: A: dust flux[23], B: global sea-level changes[31], C: biogenic opal concentration, D: total organic carbon concentration[23], E: depth of thermocline[3]; F: atmospheric CO2 concentration in the Epica Dome C ice core[1]. The gray bars are interglacial periods, the green translucent bars are the deglacial periods.3.4 冰期WPWP硅质生产力的增强与pCO2atm的降低
冰期旋回中WPWP的生源蛋白石含量大多在冰期中处于高值,这与TOC的含量高值基本对应 (图4C,D)。而且WPWP硅质生产力的高值,往往对应大气CO2低值;其生产力增加的过程,则往往对应pCO2atm迅速降低的过程。WPWP的硅质生产力,可能在冰期旋回中影响了大气CO2的浓度[4-5]。在第四纪的冰期,同时也是低海平面期,广泛存在的热带火山弧,导致了此时期可侵蚀沉积物的面积显著增大,并使暴露的未固结碎屑遭受侵蚀与风化(图4B)[25, 32]。而从裸露的东吕宋陆架入海的巨量淡水,为研究区输入了大量陆源硅,并使生产力显著提高[25, 32]。低海平面时期从热带火山弧向深海的硅质有效搬运,可能调节了WPWP的生产力、碳埋藏和大气CO2浓度[24, 32-33]。而亚洲风尘,则是WPWP的铁的首要来源,刺激了这些海区的生产力水平(图4A)[2, 4, 18, 23]。冰期时热带火山弧附近裸露的陆架沉积物的物理剥蚀、硅酸盐风化以及风尘输入的增加,可使WPWP西部边缘海的有机碳埋藏效率提高,有可能降低了冰期时的大气CO2分压(图4)[1-2, 24-25, 32]。而在这一过程中,较浅的DOT水平使表层海水中营养物质的垂向空间变小、滞留时间增强,则进一步提高了这一海区的生产力水平和碳埋藏效率(图4E)。
3.5 冰消期南大洋“硅溢漏”在WPWP的失效与硅质生产力的降低
紧接着冰期的冰消期,南大洋西风带和风驱上升流增强,南大洋深部的大量硅酸进入表层,并伴随南大洋中层水生成的增强向北水平输送,进入低纬大洋的上层水体[28-30]。然而南大洋“硅溢漏”并未导致WPWP硅质生产力的提高(图4C),我们认为这与冰消期这一海区Fe的输入水平有关。在冰消期,海平面迅速上升,导致东吕宋陆架重新被海水覆盖,显著降低了可侵蚀沉积物的面积,向研究区的硅质输入随之减少;而亚洲风尘输入也明显降低,从而降低了对这一海区的Fe的输入(图3B,图4)。即使南大洋溢漏的硅酸到达WPWP上层水体,此时亚洲风尘带来的Fe含量的骤降,将使硅藻生长速率无法有效提高,从而降低了这一海区的硅质生产力,使南大洋“硅溢漏”失效。而冰消期的温跃层深度均处于较深水平(图4E),加厚的混合层使表层水体中的营养物质纵向空间更大、滞留时间更短,而且是自东向西的寡营养上层水体堆积,这使冰消期WPWP的硅质生产力进一步降低。冰消期降低的WPWP硅质生产力,将降低WPWP的碳埋藏效率,并影响大气CO2浓度(图4F)。
4. 结论
(1)700 ka以来西太平洋暖池的硅质生产力变化呈现显著的冰期-间冰期旋回,基本在冰期较高,而间冰期较低。其主要控制因素可能是海平面变化引起的东吕宋陆架沉积物风化以及亚洲风尘输入,改变了该海区的陆源硅酸和铁的输入。温跃层深度的改变则可能强化了这一过程。南大洋中层水的“硅溢漏”可能无法显著影响WPWP的生产力。
(2)冰期时的低海平面,导致热带火山弧附近裸露的陆架沉积物的物理剥蚀和硅酸盐风化,通过淡水输入为WPWP提供了更多的硅酸;增强的风尘输入则为WPWP提供了更多的Fe;冰期时较浅的DOT使表层海水的营养物质垂向空间变小、滞留时间增多。这些因素使冰期的WPWP生产力增高,有可能降低大气CO2分压。
(3)冰消期时迅速升高的海平面、亚洲风尘输入的减少以及温跃层变深,都使此时可能进入到WPWP的南大洋“硅溢漏”失效,并使其硅质生产力显著降低。
-
图 2 MD06-3047岩芯生源蛋白石含量特征
A:LR04氧同位素标准曲线[21],B:MD06-3047岩芯底栖有孔虫C. wuellerstorfi氧同位素[3],C:MD06-3047岩芯生源蛋白石含量,D:MD06-3047岩芯总有机碳含量[23]。图中灰色条带为间冰期。
Figure 2. Characteristics of biogenic opal content in core MD06-3047
A: LR04 oxygen isotope standard curve[21], B: benthic foraminifera[3], C: oxygen isotope of benthic foraminifera C. wuellerstorfi, D: total organic carbon content[23]. The gray bars in this figure are interglacial periods.
图 3 MD06-3047岩芯生源蛋白石含量与潜在控制因素比对
MD06-3047相关参数:A:风尘通量[23],B:溶解铁含量[23],C:生源蛋白石含量,D:温跃层深度[3];E:南大洋南极带ANT29/P1-03岩芯生源蛋白石含量[29];F:南极EDC冰芯积累率[30]。图中灰色条带为间冰期,绿色半透明条带为冰消期。
Figure 3. Comparison of bornite opal concentration and potential controls in core MD06-3047
Proxies in MD06-3047: A: dust flux[23], B: dissolved iron content[23], C: biogenic opal concentration, D: thermocline depth[3]. E: biogenic opal content of core ANT29/P1-03 in the Antarctic Zone of the Southern Ocean[29], and F: accumulation rate in Antarctic Epica Dome C ice core[30]. The gray bars are interglacial periods, and the green translucent bars are the deglacial periods.
图 4 MD06-3047岩芯相关参数与全球气候指标比对
MD06-3047相关参数:A:风尘通量[23],B:全球海平面变化[31],C:生源蛋白石含量,D:总有机碳含量[23],E:温跃层深度[3];F:南极冰芯Epica Dome C大气CO2浓度[1]。图中灰色条带为间冰期,绿色半透明条带为冰消期。
Figure 4. Comparison of MD06-3047 proxies with global climate proxies
MD06-3047 proxies: A: dust flux[23], B: global sea-level changes[31], C: biogenic opal concentration, D: total organic carbon concentration[23], E: depth of thermocline[3]; F: atmospheric CO2 concentration in the Epica Dome C ice core[1]. The gray bars are interglacial periods, the green translucent bars are the deglacial periods.
-
[1] Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present[J]. Nature, 2008, 453(7193): 379-382. doi: 10.1038/nature06949
[2] Xiong Z F, Li T G, Crosta X, et al. Potential role of giant marine diatoms in sequestration of atmospheric CO2 during the last glacial maximum: δ13C evidence from laminated Ethmodiscus rex mats in tropical west pacific[J]. Global and Planetary Change, 2013, 108: 1-14. doi: 10.1016/j.gloplacha.2013.06.003
[3] Tang Z, Li T G, Chang F M, et al. Paleoproductivity evolution in the west Philippine sea during the last 700 ka[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(2): 435-444. doi: 10.1007/s00343-013-2117-z
[4] Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the Tropical West Pacific[J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044
[5] Xu Z K, Wan S M, Colin C, et al. Enhanced terrigenous organic matter input and productivity on the western margin of the western pacific warm pool during the quaternary sea-level lowstands: Forcing mechanisms and implications for the global carbon cycle[J]. Quaternary Science Reviews, 2020, 232: 106211. doi: 10.1016/j.quascirev.2020.106211
[6] Sarmiento J L, Gruber N, Brzezinski M A, et al. High-latitude controls of thermocline nutrients and low latitude biological productivity[J]. Nature, 2004, 427(6969): 56-60. doi: 10.1038/nature02127
[7] Bostock H C, Opdyke B N, Williams M J M. Characterising the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(7): 847-859. doi: 10.1016/j.dsr.2010.04.005
[8] Ragueneau O, Tréguer P, Leynaert A, et al. A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J]. Global and Planetary Change, 2000, 26(4): 317-365. doi: 10.1016/S0921-8181(00)00052-7
[9] Pondaven P, Ragueneau O, Tréguer P, et al. Resolving the ‘opal paradox’ in the Southern Ocean[J]. Nature, 2000, 405(6783): 168-172. doi: 10.1038/35012046
[10] Nelson D M, Anderson R F, Barber R T, et al. Vertical budgets for organic carbon and biogenic silica in the pacific sector of the Southern Ocean, 1996–1998[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9-10): 1645-1674. doi: 10.1016/S0967-0645(02)00005-X
[11] Boyd P W, Watson A J, Law C S, et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization[J]. Nature, 2000, 407(6805): 695-702. doi: 10.1038/35037500
[12] Qiu B, Lukas R. Seasonal and interannual variability of the north equatorial current, the Mindanao current, and the Kuroshio along the pacific western boundary[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12315-12330. doi: 10.1029/95JC03204
[13] Qu T D, Lukas R. The bifurcation of the north equatorial current in the pacific[J]. Journal of Physical Oceanography, 2003, 33(1): 5-18. doi: 10.1175/1520-0485(2003)033<0005:TBOTNE>2.0.CO;2
[14] Kim J H, Rimbu N, Lorenz S J, et al. North pacific and north Atlantic sea-surface temperature variability during the Holocene[J]. Quaternary Science Reviews, 2004, 23(20-22): 2141-2154. doi: 10.1016/j.quascirev.2004.08.010
[15] Dugdale R C, Wischmeyer A G, Wilkerson F P, et al. Meridional asymmetry of source nutrients to the equatorial pacific upwelling ecosystem and its potential impact on ocean–atmosphere CO2 flux; a data and modeling approach[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(13-14): 2513-2531. doi: 10.1016/S0967-0645(02)00046-2
[16] Locarnini R A, Mishonov A V, Antonov J I, et al. World ocean atlas 2005, vol. 1, temperature[M]//Levitus S. NOAA Atlas NESDIS, vol. 61. Washington: U. S. Government Printing Office, 2006.
[17] Sigman D M, Hain M P. The biological productivity of the ocean[J]. Nature Education Knowledge, 2012, 3(10): 21.
[18] Xiong Z F, Li T G, Algeo T, et al. The silicon isotope composition of Ethmodiscus rex laminated diatom mats from the tropical west pacific: Implications for silicate cycling during the last glacial maximum[J]. Paleoceanography, 2015, 30(7): 803-823. doi: 10.1002/2015PA002793
[19] Liu Z F, Zhao Y L, Colin C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry, 2009, 24(11): 2195-2205. doi: 10.1016/j.apgeochem.2009.09.025
[20] Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7
[21] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): PA1003.
[22] Thompson P R, Bé A W H, Duplessy J C, et al. Disappearance of pink-pigmented Globigerinoides ruber at 120, 000 yr BP in the Indian and pacific oceans[J]. Nature, 1979, 280(5723): 554-558. doi: 10.1038/280554a0
[23] Xu Z K, Li T G, Clift P D, et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the Mid‐Late Quaternary and its potential significance for paleoenvironment[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3182-3196. doi: 10.1002/2015GC005929
[24] Wan S M, Clift P D, Zhao D B, et al. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2[J]. Geochimica et Cosmochimica Acta, 2017, 200: 123-144. doi: 10.1016/j.gca.2016.12.010
[25] Xu Z K, Li T G, Clift P D, et al. Bathyal records of enhanced silicate erosion and weathering on the exposed Luzon shelf during glacial lowstands and their significance for atmospheric CO2 sink[J]. Chemical Geology, 2018, 476: 302-315. doi: 10.1016/j.chemgeo.2017.11.027
[26] Beaufort L, De Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the Late Pleistocene[J]. Science, 2001, 293(5539): 2440-2444. doi: 10.1126/science.293.5539.2440
[27] Sun H J, Li T G, Liu C L, et al. Variations in the western pacific warm pool across the Mid-Pleistocene: Evidence from oxygen isotopes and coccoliths in the West Philippine sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 157-171. doi: 10.1016/j.palaeo.2017.07.008
[28] Brzezinski M A, Pride C J, Franck V M, et al. A switch from Si(OH)4 to NO3− depletion in the glacial Southern Ocean[J]. Geophysical Research Letters, 2002, 29(12): 5-1-5-4.
[29] Tang Z, Shi X F, Zhang X, et al. Deglacial biogenic opal peaks revealing enhanced Southern Ocean upwelling during the last 513 ka[J]. Quaternary International, 2016, 425: 445-452. doi: 10.1016/j.quaint.2016.09.020
[30] Bazin L, Landais A, Lemieux-Dudon B, et al. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka[J]. Climate of the Past, 2013, 9(4): 1715-1731. doi: 10.5194/cp-9-1715-2013
[31] Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past Discussions, 2015, 11: 3699-3728.
[32] Xiong Z F, Li T G, Chang F M, et al. Rapid precipitation changes in the tropical West Pacific linked to North Atlantic climate forcing during the last deglaciation[J]. Quaternary Science Reviews, 2018, 197: 288-306. doi: 10.1016/j.quascirev.2018.07.040
[33] Chen L Y, Luo M, Dale A W, et al. Reconstructing organic matter sources and rain rates in the southern West Pacific Warm Pool during the transition from the deglaciation period to early Holocene[J]. Chemical Geology, 2019, 529: 119291. doi: 10.1016/j.chemgeo.2019.119291