High-resolution records of sea surface temperature and salinity in the East China Sea in the last 14.2 ka: Implication from alkenone and its hydrogen isotopes
-
摘要: 东海古海洋环境条件(如海表温度(SST)和盐度(SSS))研究显示其与低纬热带大洋和东亚季风(EAM)的水文气候变化存在不同步的特征。然而末次冰消期以来,东海表层水温和表层盐度如何对东亚季风和低纬热带大洋的协同作用作出响应,目前尚不清楚。本文基于近1.4万年来东海的高分辨率岩芯中长链烯酮及其氢同位素(δDalkenone)的表层温盐记录,以了解不同时间尺度上的驱动机制。结果表明,东海表层水温、盐度具有不同时间尺度的变化,为约1500 a的千年尺度以及约750、350和120 a的百年尺度的周期波动。在末次冰消期和全新世早期,由于黑潮增强将高温、高盐海水带入东海,导致表层水温度、盐度均较高。在全新世早中期(9.0~5.0 kaBP),由于东海水动力环流形成,并受高纬大气变化和低纬热带大洋环流的双重影响,从而引起显著的海洋层化现象,导致海表出现高而稳定的表层水温和相对较低的表层盐度。5.0~2.7 kaBP,东亚冬季风似乎有所增强,而东亚夏季风减弱,从而导致东海的上升流增强。这可能是由于黑潮势力减弱,随后导致东海的低SST和高SSS现象。全新世晚期,东海表层水温和表层盐度呈下降趋势,这与黑潮变化几乎同步。Abstract: Palaeoceanographic environmental conditions in the East China Sea (ECS) shown as sea surface temperature (SST) and salinity (SSS) may reveal asynchronous hydroclimate changes from low-latitude warm ocean and East Asian monsoon (EAM). However, it remains unclear whether the SST and SSS in the ECS showed a notable response to the spatiotemporal patterns of hydroclimate with the synergistic impacts of the EAM and tropical ocean since the last deglaciation. The SST and SSS records based on alkenone and its hydrogen isotopes (δDalkenone) with a high-resolution core from the ECS over the last 14 ka were analyzed to understand the forcing mechanisms on different timescales. Results indicate that the SST and SSS of the ECS fluctuated in millennial (~1500 a) and centennial (~750 a, ~350 a , and ~ 120 a) scales. During the last deglaciation and early Holocene, the Kuroshio was strengthened and carried relatively warm and salty seawater into the ECS, thus the SST and SSS were generally higher than normal ones. During the middle Holocene (9.0~5.0 kaBP), freshwater discharged into the ECS, followed by the regulation of its hydrodynamic circulations, which might create strong upper-ocean stratification, high and stable SST, and relatively low SSS. During 5.0~2.7 kaBP, the East Asian Winter Monsoon seemed to be strengthened, while the East Asian Summer Monsoon weakened, which enhanced the upwelling in the ECS due probably to the weakening of the Kuroshio, and subsequently led to the low SST and high SSS in the ECS. In the late Holocene, the surface water temperature and salinity in the ECS showed a decreasing trend, which was almost synchronous with the changes in the Kuroshio. This study presents new lights for further understanding of the low-latitude forcing on the paleoenvironmental evolution in marginal sea.
-
Keywords:
- alkenone /
- δD /
- Kuroshio /
- millennial and centennial scales /
- East Asian monsoon /
- East China Sea
-
-
图 1 研究区域和采样站
a:东海的表层沉积物和岩芯 CS11(深蓝色方块),b:西太平洋岩芯顶部沉积物。图中显示了东海现代夏、冬季风和主要海表洋流,包括东亚冬季风、东亚夏季风、长江冲淡水、 台湾暖流、黑潮和对马暖流。标记了本研究中相关的岩芯,包括 PC-1[22]、255[11]、1202B[33-34]、A03-B[35]、Oki02[36]和 MD063-05[37]。图b中虚线正方形所划区域是图a的所在区域,灰线画圈区域为浙闽泥质区。
Figure 1. Study area and sampling stations
a: surface sediment and core CS11 in the ECS (dark blue square). b: top-core sediment in the western Pacific. Modern summer and winter monsoon and major surface currents in the East China Sea are shown, including East Asian winter monsoon, East Asian summer monsoon, Changjiang River Diluted Water, Taiwan Warm Current, Kuroshio and Tsushima Warm current. The cores used to correlate in this study are marked, including PC-1[22], 255[11], 1202B [33,34], A03-B[35], Oki02 [36], and MD063–05[37]. The dotted line square is the region of (a). The area of grey line means the Zhe-Min mud area. The color in (b) is the sea surface salinity.
图 4 烯酮浓度的变化、
$ {\mathbf{U}}_{37}^{\mathbf{k}\mathbf{\text{'}}} $ -SST、δDAlkenone与东海δDAlkenone的表层盐度a:$ {\mathrm{U}}_{37}^{\mathrm{k}\mathrm{\text{'}}} $-SST,b:烯酮浓度,c:δDAlkenone,d:表层盐度(SSS)。浅蓝色和橙色阴影分别表示变冷事件和变暖事件。
Figure 4. Variations of alkenone concentrations, SST based on
$ {\mathbf{U}}_{37}^{\mathbf{k}\mathbf{\text{'}}} $ , δDAlkenones, and SSS derived from δDAlkenones in the ECSa:$ {\mathrm{U}}_{37}^{\mathrm{k}\mathrm{\text{'}}} $-SST, b: alkenone concentrations, c: δDAlkenones, d: SSS. The light blue and orange shadows indicate the cold and warm events, respectively.
图 5 东海古环境演化与选定古气候数据的比较
a:东海的$ {\mathrm{U}}_{37}^{\mathrm{k}\mathrm{\text{'}}} $-SST,b:东海的δDAlkenone,c:ODP1202B的$ {\mathrm{U}}_{37}^{\mathrm{k}\mathrm{\text{'}}} $-SST[33],d:KY07-04- 01 岩芯的 δ18Oresid 记录[63],e:255岩芯表层水温记录[11],f:A03-B 的水温[35],g:MD06-3040 的表层水温[48],h:来自 70GGC 和 13GGC 的西太平洋暖池中间水温(IWT)异常[60],i:PC-1中 P. obliquilocatata 丰度[17],j:ODP 1202B 岩芯淤泥分拣[34],k:Oki02 的黑潮(KC)指标[36],l:岩芯 M063-05的RelDM[87],m:东海海平面(SL)[49]和巴巴多斯岛(RSL,粉色方块)和大溪地岛(蓝色圆点)的相对海平面[64],n:格陵兰岛冰芯δ 18O 记录,o:董哥洞石笋 δ 18O记录[65-66]。
Figure 5. Comparisons of the paleoenvironmental evolution from the ECS with selected paleoclimatic data
a:$ {\mathrm{U}}_{37}^{\mathrm{k}\mathrm{\text{'}}} $-SST record from the ECS, b: δDAlkenones-SSS record from the ECS, c:$ {\mathrm{U}}_{37}^{\mathrm{k}\mathrm{\text{'}}} $-SST from core ODP 1202B[33], d: δ18Oresid record from core KY07–04-01[63], e: SST record from core 255[11], f: water temperature from A03-B[35], g: SST in core MD06–3040[48], h: WPWP intermediate water temperature (IWT) anomaly from cores 70GGC and 13GGC[60], i: abundance (%) of P. obliquiloculatata from core PC-1[17], j: sorting silt in Core ODP 1202B[34], k: KC indicator in core Oki02[36], l: RelDM in core M063–05[87], m: sea level of the ECS (SL)[49] and the relative sea level of Barbados (RSL, pink square) and Tahiti (blue dot)[64], n: Ice core δ18O record from Greenland, o: Stalagmites δ18O records in the Dongge Cave[65-66].
图 7 全新世期间与高纬度气候过程和热带太平洋作用力有关的东海的表层水温和表层盐度变化模式
KC:黑潮,TWC:台湾暖流,EAWM:东亚冬季风,EASM:东亚夏季风,ZMCC:浙闽沿岸流。
Figure 7. A schematic model of SST and SSS changes in the ECS associated with high-latitude climate processes and tropical Pacific forcing during the Holocene
KC: Kuroshio Currents; TWC: Taiwan Warm Current; EAWM: East Asian Winter monsoon; EASM: East Asian Summer monsoon; ZMCC: Zhe-Min Coastal Current.
-
[1] 王丹. 全新世以来西北大西洋沉积物记录的古气候变化研究[D]. 上海海洋大学硕士学位论文, 2021 WANG Dan. Research on paleoclimate changes recorded by sediments in the Northwest Atlantic since Holocene[D]. Master Dissertation of Shanghai Ocean University, 2021.
[2] 姜大膀, 田芝平, 王娜, 等. 末次冰盛期和中全新世气候模拟分析进展[J]. 地球科学进展, 2022, 37(1): 1-13 JIANG Dabang, TIAN Zhiping, WANG Na, et al. Progress of Last Glacial Maximum and Mid-Holocene climate modeling analyses[J]. Advances in Earth Science, 2022, 37(1): 1-13.
[3] 赵亮. 早、中、晚全新世气候年代际变化特征及成因分析[D]. 南京师范大学硕士学位论文, 2021 ZHAO Liang. Interdecadal variation and attribution of climate during Early, Middle and Late Holocene[D]. Master Dissertation of Nanjing Normal University, 2021.
[4] Alley R B, Marotzke J, Nordhaus W D, et al. Abrupt climate change[J]. Science, 2003, 299(5615): 2005-2010. doi: 10.1126/science.1081056
[5] IPCC. Climate Change 2007: The Physical Science Basis[C]. Geneva: IPCC, 2007.
[6] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023
[7] Li X Y, Jian Z M, Shi X F, et al. A Holocene record of millennial-scale climate changes in the mud area on the inner shelf of the East China Sea[J]. Quaternary International, 2015, 384: 22-27. doi: 10.1016/j.quaint.2014.11.030
[8] 石学法, 刘升发, 乔淑卿, 等. 中国东部近海沉积物地球化学: 分布特征、控制因素与古气候记录[J]. 矿物岩石地球化学通报, 2015, 34(5): 885-894 SHI Xuefa, LIU Shengfa, QIAO Shuqing, et al. Geochemical characteristics, controlling factor and record of paleoclimate in sediments from Eastern China Seas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 885-894.
[9] 李超, 蓝东兆, 方琦. 东海陆架晚第四纪沉积硅藻及其古海洋学意义[J]. 台湾海峡, 2002, 21(3): 351-359 LI Chao, LAN Dongzhao, FANG Qi. Late Quaternary sedimentary diatom from East China Sea continental shelf and its paleoceanographical significance[J]. Journal of Oceanography in Taiwan Strait, 2002, 21(3): 351-359.
[10] 程振波, 刘振夏, 石学法, 等. 东海DGKS96-03岩心中微体化石的古海洋学特点、δ18O曲线与AMS14C测年[J]. 沉积学报, 2000, 18(4): 501-505 CHENG Zhenbo, LIU Zhenxia, SHI Xuefa, et al. Paleoceanographic characteristics of microfossils, δ18O curve and AMS14C dating in the core DGKS96-03 from the East China Sea[J]. Acta Sedimentologica Sinica, 2000, 18(4): 501-505.
[11] Jian Z M, Wang P X, Saito Y, et al. Holocene variability of the Kuroshio current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319. doi: 10.1016/S0012-821X(00)00321-6
[12] 史光辉. 东海陆架泥质区底栖有孔虫记录及其环境意义[D]. 中国海洋大学硕士学位论文, 2013 SHI Guanghui. Benthic foraminifera response to changes in paleoenviornments of Mud area on the East China Sea shelf[D]. Master Dissertation of Ocean University of China, 2013.
[13] Liu S F, Shi X F, Liu Y G, et al. Records of the East Asian winter monsoon from the mud area on the inner shelf of the East China Sea since the mid-Holocene[J]. Chinese Science Bulletin, 2010, 55(21): 2306-2314. doi: 10.1007/s11434-010-3215-3
[14] 贾培蒙, 庄振业, 叶银灿, 等. 东海陆架中南部末次盛冰期以来的沉积地层及环境演变[J]. 海洋地质前沿, 2012, 28(8): 20-26 JIA Peimeng, ZHUANG Zhenye, YE Yincan, et al. Sedimentary strata after last glacial maximum on central and South East China Sea shelf and environmental evolution[J]. Marine Geology Frontiers, 2012, 28(8): 20-26.
[15] Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: a synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294: 176-191. doi: 10.1016/j.margeo.2011.06.003
[16] Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews, 2014, 139: 390-405. doi: 10.1016/j.earscirev.2014.09.007
[17] Xu F J, Hu B Q, Dou Y G, et al. Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene[J]. Continental Shelf Research, 2017, 144: 21-30. doi: 10.1016/j.csr.2017.06.013
[18] Jia Y H, Li D W, Yu M, et al. High- and low-latitude forcing on the south Yellow Sea surface water temperature variations during the Holocene[J]. Global and Planetary Change, 2019, 182: 103025. doi: 10.1016/j.gloplacha.2019.103025
[19] Huang J, Wan S M, Zhang J, et al. Mineralogical and isotopic evidence for the sediment provenance of the western South Yellow Sea since MIS 3 and implications for paleoenvironmental evolution[J]. Marine Geology, 2019, 414: 103-117. doi: 10.1016/j.margeo.2019.05.011
[20] Xu Y, Chang F M, Li T G, et al. High-resolution sea surface temperature and salinity dynamics in the northern Okinawa trough over the last 24 Kyr[J]. Palaeoworld, 2021, 30(4): 770-785. doi: 10.1016/j.palwor.2020.12.005
[21] 王郑雷, 曾阳, 刘力宽, 等. 生物标志物在全新世古气候和古环境研究中的应用进展[J]. 环境监测管理与技术, 2022, 34(6): 9-13 WANG Zhenglei, ZENG Yang, LIU Likuan, et al. Application of biomarkers in Holocene paleoclimate and paleoenvironment: A review[J]. The Administration and Technique of Environmental Monitoring, 2022, 34(6): 9-13.
[22] 陈立雷. 东海闽浙沿岸全新世古气候和古环境演变的生物标志物记录[D]. 中国地质大学博士学位论文, 2018 CHEN Lilei. Biomarker records from the Zhejiang-Fujian Coast, East China Sea: Implications for paleoclimatic and palaeoenvironmental changes in Holocene[D]. Doctor Dissertation of China University of Geosciences, 2018.
[23] Nan Q Y, Li T G, Chen J X, et al. High resolution unsaturated alkenones sea surface temperature records in the Yellow Sea during the period of 3500-1300 cal. yr BP[J]. Quaternary International, 2017, 441: 107-116. doi: 10.1016/j.quaint.2016.10.025
[24] Chen C T A. Chemical and physical fronts in the Bohai, Yellow and East China seas[J]. Journal of Marine Systems, 2009, 78(3): 394-410. doi: 10.1016/j.jmarsys.2008.11.016
[25] Li D W, Zhao M X, Tian J. Low-high latitude interaction forcing on the evolution of the 400 kyr cycle in East Asian winter monsoon records during the last 2.8 Myr[J]. Quaternary Science Reviews, 2017, 172: 72-82. doi: 10.1016/j.quascirev.2017.08.005
[26] Webster P J, Magaña V O, Palmer T N, et al. Monsoons: Processes, predictability, and the prospects for prediction[J]. Journal of Geophysical Research: Oceans, 1998, 103(C7): 14451-14510. doi: 10.1029/97JC02719
[27] Hsueh Y, Schultz J R, Holland W R. The Kuroshio flow-through in the East China Sea: A numerical model[J]. Progress in Oceanography, 1997, 39(2): 79-108. doi: 10.1016/S0079-6611(97)00008-6
[28] 王建丰, 司广成, 于非. 台湾暖流变化特征及机制研究进展[J]. 海洋科学, 2020, 44(5): 141-148 WANG Jianfeng, SI Guangcheng, YU Fei. Progress in studies of the characteristics and mechanisms of variations in the Taiwan warm current[J]. Marine Sciences, 2020, 44(5): 141-148.
[29] Che H, Zhang J. Water mass analysis and end–member mixing contribution using coupled radiogenic Nd isotopes and Nd concentrations: Interaction between marginal seas and the northwestern Pacific[J]. Geophysical Research Letters, 2018, 45(5): 2388-2395. doi: 10.1002/2017GL076978
[30] Zhang J, Liu S M, Ren J L, et al. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf[J]. Progress in Oceanography, 2007, 74(4): 449-478. doi: 10.1016/j.pocean.2007.04.019
[31] Chen C T A. Downwelling then upwelling again of the upwelled Kuroshio water in the southern East China Sea[J]. Journal of Geophysical Research: Oceans, 2011, 116: C07003.
[32] Xing L, Zhao M X, Zhang T, et al. Ecosystem responses to anthropogenic and natural forcing over the last 100 years in the coastal areas of the East China Sea[J]. The Holocene, 2016, 26(5): 669-677. doi: 10.1177/0959683615618248
[33] Ruan J P, Xu Y P, Ding S, et al. A high resolution record of sea surface temperature in southern Okinawa Trough for the past 15, 000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426: 209-215. doi: 10.1016/j.palaeo.2015.03.007
[34] Diekmann B, Hofmann J, Henrich R, et al. Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary[J]. Marine Geology, 2008, 255(1-2): 83-95. doi: 10.1016/j.margeo.2008.08.001
[35] Li D W, Yu M, Jia Y H, et al. Gradually cooling of the Yellow Sea Warm Current driven by tropical Pacific subsurface water temperature changes over the past 5 kyr[J]. Geophysical Research Letters, 2021, 48(10): e2021GL093534. doi: 10.1029/2021GL093534
[36] Zheng X F, Li A C, Kao S, et al. Synchronicity of Kuroshio current and climate system variability since the Last Glacial Maximum[J]. Earth and Planetary Science Letters, 2016, 452: 247-257. doi: 10.1016/j.jpgl.2016.07.028
[37] Li Q, Li G X, Chen M T, et al. New insights into Kuroshio current evolution since the last deglaciation based on paired organic paleothermometers from the middle Okinawa Trough[J]. Paleoceanography and Paleoclimatology, 2020, 35(12): e2020PA004140.
[38] Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215-230. doi: 10.1017/S0033822200013904
[39] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50, 000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947
[40] Yoneda M, Uno H, Shibata Y, et al. Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1): 432-437. doi: 10.1016/j.nimb.2007.01.184
[41] Bai J, Gu X Y, Feng Y Y, et al. Autumn living coccolithophores in the Yellow Sea and the East China Sea[J]. Acta Oceanologica Sinica, 2014, 33(8): 83-94. doi: 10.1007/s13131-014-0481-y
[42] Sun J, Gu X Y, Feng Y Y, et al. Summer and winter living coccolithophores in the Yellow Sea and the East China Sea[J]. Biogeosciences, 2014, 11(3): 779-806. doi: 10.5194/bg-11-779-2014
[43] Weiss G M, Pfannerstill E Y, Schouten S, et al. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi[J]. Biogeosciences, 2017, 14(24): 5693-5704. doi: 10.5194/bg-14-5693-2017
[44] Weiss G M, Schouten S, Sinninghe Damsté J S, et al. Constraining the application of hydrogen isotopic composition of alkenones as a salinity proxy using marine surface sediments[J]. Geochimica et Cosmochimica Acta, 2019, 250: 34-48. doi: 10.1016/j.gca.2019.01.038
[45] Schulz M, Mudelsee M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computers & Geosciences, 2002, 28(3): 421-426.
[46] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987 QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology in the East China Sea[M]. Beijing: Science Press, 1987.
[47] Li G X, Sun X Y, Liu Y, et al. Sea surface temperature record from the north of the East China Sea since late Holocene[J]. Chinese Science Bulletin, 2009, 54(23): 4507-4513.
[48] Kajita H, Kawahata H, Wang K, et al. Extraordinary cold episodes during the mid-Holocene in the Yangtze delta: Interruption of the earliest rice cultivating civilization[J]. Quaternary Science Reviews, 2018, 201: 418-428. doi: 10.1016/j.quascirev.2018.10.035
[49] Zheng X F, Li A C, Wan S M, et al. ITCZ and ENSO pacing on east Asian winter monsoon variation during the Holocene: Sedimentological evidence from the Okinawa Trough[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4410-4429. doi: 10.1002/2013JC009603
[50] 张军强, 唐璐璐, 邹昊. 晚更新世以来古气候与海平面变化在东海地区的响应[J]. 海洋湖沼通报, 2008(1): 25-31 doi: 10.3969/j.issn.1003-6482.2008.01.004 ZHANG Junqiang, TANG Lulu, ZOU Hao. The response to the variety of paleoclimate and sea level in the East China Sea after the late pleistocence[J]. Transactions of Oceanology and Limnology, 2008(1): 25-31. doi: 10.3969/j.issn.1003-6482.2008.01.004
[51] 庄丽华. 黄东海陆架晚第四纪古环境演化及海平面变化[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2002 ZHUANG Lihua. The Late Quaternary paleo-environmental evolution and sea level change in the Yellow sea and the East China Sea[D]. Doctor Dissertation of Graduate School of Chinese Academy of Sciences (Institute of Oceanography), 2002.
[52] He W, Liu J G, Huang Y, et al. Sea level change controlled the sedimentary processes at the makran continental margin over the past 13, 000yr[J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015703. doi: 10.1029/2019JC015703
[53] Marlowe I T, Brassell S C, Eglinton G, et al. Long chain unsaturated ketones and esters in living algae and marine sediments[J]. Organic Geochemistry, 1984, 6: 135-141. doi: 10.1016/0146-6380(84)90034-2
[54] Thiagarajan N, Subhas A V, Southon J R, et al. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean[J]. Nature, 2014, 511(7507): 75-78. doi: 10.1038/nature13472
[55] Li T G, Sun R T, Zhang D Y, et al. Evolution and variation of the Tsushima warm current during the late quaternary: evidence from planktonic foraminifera, oxygen and carbon isotopes[J]. Science in China Series D: Earth Sciences, 2007, 50(5): 725-735. doi: 10.1007/s11430-007-0003-2
[56] Liu X, Chiang K P, Liu S M, et al. Influence of the Yellow Sea warm current on phytoplankton community in the Central Yellow Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 106: 17-29. doi: 10.1016/j.dsr.2015.09.008
[57] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618
[58] 王江月, 白伟明, 王照波, 等. 中国东部地区全新世气候演化及其与气候事件的对应性[J]. 海洋地质与第四纪地质, 2022, 42(2): 167-177 doi: 10.16562/j.cnki.0256-1492.2021122001 WANG Jiangyue, BAI Weiming, WANG Zhaobo, et al. The Holocene climatic evolution in Eastern China and its bearing on climatic events[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 167-177. doi: 10.16562/j.cnki.0256-1492.2021122001
[59] Xu X D, Oda M. Surface-water evolution of the eastern East China Sea during the last 36, 000 years[J]. Marine Geology, 1999, 156(1-4): 285-304. doi: 10.1016/S0025-3227(98)00183-2
[60] Rosenthal Y, Linsley B K, Oppo D W. Pacific Ocean heat content during the past 10, 000 years[J]. Science, 2013, 342(6158): 617-621. doi: 10.1126/science.1240837
[61] Stanley D J, Chen Z Y, Song J. Inundation, sea-level rise and transition from Neolithic to Bronze Age cultures, Yangtze Delta, China[J]. Geoarchaeology, 1999, 14(1): 15-26. doi: 10.1002/(SICI)1520-6548(199901)14:1<15::AID-GEA2>3.0.CO;2-N
[62] Marcott S A, Shakun J D, Clark P U, et al. A reconstruction of regional and global temperature for the past 11, 300 years[J]. Science, 2013, 339(6124): 1198-1201. doi: 10.1126/science.1228026
[63] Kubota Y, Kimoto K, Tada R, et al. Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea[J]. Paleoceanography and Paleoclimatology, 2010, 25(4): PA4205.
[64] Bard E, Hamelin B, Delanghe-Sabatier D. Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti[J]. Science, 2010, 327(5970): 1235-1237. doi: 10.1126/science.1180557
[65] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86. doi: 10.1016/j.jpgl.2005.01.036
[66] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857. doi: 10.1126/science.1106296
[67] Volkman J K, Eglinton G, Corner E D S, et al. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi[J]. Phytochemistry, 1980, 19(12): 2619-2622. doi: 10.1016/S0031-9422(00)83930-8
[68] Volkman J K, Barrerr S M, Blackburn S I, et al. Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate[J]. Geochimica et Cosmochimica Acta, 1995, 59(3): 513-520. doi: 10.1016/0016-7037(95)00325-T
[69] Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy: a new tool for climatic assessment[J]. Nature, 1986, 320(6058): 129-133. doi: 10.1038/320129a0
[70] Wang P X, Li Q Y, Tian J, et al. Monsoon influence on planktic δ18O records from the South China Sea[J]. Quaternary Science Reviews, 2016, 142: 26-39. doi: 10.1016/j.quascirev.2016.04.009
[71] Zhu Z M, Feinberg J M, Xie S C, et al. Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 852-857.
[72] Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2013.
[73] Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294(5549): 2130-2136. doi: 10.1126/science.1065680
[74] Alley R B, Ágústsdóttir A M. The 8k event: cause and consequences of a major Holocene abrupt climate change[J]. Quaternary Science Reviews, 2005, 24(10-11): 1123-1149. doi: 10.1016/j.quascirev.2004.12.004
[75] Sun Y B, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1): 46-49. doi: 10.1038/ngeo1326
[76] Soon W, Herrera V M V, Selvaraj K, et al. A review of Holocene solar-linked climatic variation on centennial to millennial timescales: physical processes, interpretative frameworks and a new multiple cross-wavelet transform algorithm[J]. Earth-Science Reviews, 2014, 134: 1-15. doi: 10.1016/j.earscirev.2014.03.003
[77] Russell J M, Johnson T C, Talbot M R. A 725yr cycle in the climate of central Africa during the late Holocene[J]. Geology, 2003, 31(8): 677-680. doi: 10.1130/G19449.1
[78] Stuiver M, Braziunas T F. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships[J]. The Holocene, 1993, 3(4): 289-305. doi: 10.1177/095968369300300401
[79] Sagawa T, Kuwae M, Tsuruoka K, et al. Solar forcing of centennial-scale East Asian winter monsoon variability in the mid- to late Holocene[J]. Earth and Planetary Science Letters, 2014, 395: 124-135. doi: 10.1016/j.jpgl.2014.03.043
[80] Walczak M H, Mix A C, Cowan E A, et al. Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans[J]. Science, 2020, 370(6517): 716-720. doi: 10.1126/science.aba7096
[81] Emile-Geay J, Mark A C, Naomi N, et al. Warren revisited: Atmospheric freshwater fluxes and “Why is no deep water formed in the North Pacific”[J]. Journal of Geophysical Research, 2003, 108(C6): 3178. doi: 10.1029/2001JC001058
[82] Li Z Y, Chen M T, Lin D C, et al. Holocene surface hydroclimate changes in the Indo-Pacific warm pool[J]. Quaternary International, 2018, 482: 1-12. doi: 10.1016/j.quaint.2018.04.027
[83] Broccoli A J, Dahl K A, Stouffer R J. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33(1): L01702.
[84] Oppo D W, Rosenthal Y, Linsley B K. 2, 000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool[J]. Nature, 2009, 460(7259): 1113-1116. doi: 10.1038/nature08233
[85] Jia W, Zhang P Z, Zhang L L, et al. Highly resolved δ13C and trace element ratios of precisely dated stalagmite from northwestern China: Hydroclimate reconstruction during the last two millennia[J]. Quaternary Science Reviews, 2022, 291: 107473. doi: 10.1016/j.quascirev.2022.107473
[86] Chen F H, Xu Q H, Chen J H, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports, 2015, 5: 11186. doi: 10.1038/srep11186
[87] Li Q, Zhang Q, Li G X, et al. A new perspective for the sediment provenance evolution of the middle Okinawa Trough since the last deglaciation based on integrated methods[J]. Earth and Planetary Science Letters, 2019, 528: 115839. doi: 10.1016/j.jpgl.2019.115839