Influencing factors of air-sea CO2 exchange in the Western Tropical Pacific during the late Quaternary
-
摘要: 探究海气CO2交换有助于解析全球碳循环和全球气候变化。由于海水和大气的直接接触,研究表层海水碳酸盐系统变化成为探究海气碳交换的关键。基于已有热带西太平洋表层海水碳酸盐系统研究成果,本文总结了有孔虫壳体B/Ca和δ11B指标重建碳酸盐系统参数的原理、方法及优缺点。然后,从厄尔尼诺-南方涛动(El Niño-Southern Oscillation, ENSO)、东亚季风以及大气桥梁和海洋隧道三方面综述了晚第四纪热带西太平洋海气CO2交换影响因素的研究现状。结果显示,类ENSO通过横向平流和垂向变化分别影响热带西太平洋东端和西端的海气碳交换。东亚夏季风对热带西太平洋海气碳交换具有较强的调控作用,而东亚冬季风的调控作用较弱或不明显。冰消期南大洋深部流通状况增强,可通过大气桥梁(大气CO2)和海洋隧道(南极中层水)影响热带西太平洋海气碳交换。然而,为了更准确清晰地了解全球碳循环变化,还需针对指标记录的可靠性、覆盖范围以及海气碳交换在更长时间尺度的变化机理等方面开展更多研究。Abstract: Exploring air-sea CO2 exchange helps to analyze the global carbon cycle and global climate change. Due to the direct contact between seawater and atmosphere, characterizing the changes in the carbonate system of surface water is the key to explore the air-sea CO2 exchange. Available studies of the sea surface carbonate system in the Western Tropical Pacific (WTP) was reappraised, the principles, methods, advantages and disadvantages of reconstructing carbonate system parameters with foraminiferal B/Ca and δ11B were summarized. Secondly, the research status of influencing factors of air-sea CO2 exchange in the WTP during the late Quaternary was reviewed from three aspects: El Niño-Southern Oscillation (ENSO), East Asian monsoons, and atmospheric bridge and ocean tunnel. Results show that the ENSO-like processes can affect the air-sea CO2 exchange in the eastern and western parts of the WTP via lateral advection and vertical change, respectively. The East Asian summer monsoon regulates the air-sea CO2 exchange in WTP strongly and effectively, while the East Asian winter monsoon, weakly and insignificantly. During the deglaciation period, the increased ventilation of deep water in the Southern Ocean affects the air-sea CO2 exchange in the WTP through the atmospheric bridge (atmospheric CO2) and ocean tunnel (Antarctic Intermediate Water). In the future, more researches are required into the reliability and coverage of proxy records, and the mechanisms of air-sea CO2 exchange over longer time scales, to understand changes in the global carbon cycle more accurately and clearly.
-
Keywords:
- planktonic foraminifera /
- B/Ca /
- δ11B /
- ENSO /
- East Asian monsoon /
- Southern Ocean /
- carbon cycle
-
南极冰芯中大气二氧化碳(CO2)浓度的周期性变化及其与大气温度和冰期旋回的显著一致性[1-3],表明大气CO2在影响乃至调控气候变化中具有重要作用,基于此,有关全球碳循环的研究得到了越来越多的关注[4-6]。众所周知,海洋碳储库的规模是陆地生物圈和土壤的20倍左右,是大气圈的近60倍,并且海洋与大气的碳交换非常迅速,这些特性使得海洋在控制大气CO2浓度变化方面扮演关键角色[7-8]。海洋碳酸盐系统,由海水pH、[CO32−]、[HCO3−]、[CO2]、溶解无机碳(Dissolved Inorganic Carbon, DIC)和总碱度(Total Alkalinity, ALK)等六个相互影响的参数组成,可将海洋、大气和沉积物中的碳循环过程链接起来,并可通过生物、化学和物理过程实现无机碳和有机碳之间的相互转化[9]。因此,刻画海洋碳酸盐系统变化对于揭示和理解全球碳循环和全球气候变化具有重要意义。
为了重建海洋碳酸盐系统的演变,诸如有孔虫壳体硼同位素(δ11B)[10-12]、B/Ca[13-16]以及壳体重量[17-19]等替代性指标应运而生。其中,浮游有孔虫壳体δ11B[10-12]和B/Ca[13-15]指标主要用于重建上层水体pH和CO2分压(pCO2-sw),而底栖有孔虫壳体B/Ca[16, 20]和浮游有孔虫壳体重量[18-19]多用于重建深部水体[CO32−]。虽然有研究显示浮游有孔虫壳体B/Ca指标重建结果的可靠性可能受到生命效应和海水物理化学性质等因素的制约[21-23],但也有研究结果支持其作为海水pH代用指标的可用性[14-15, 24],并可进一步用其重建pCO2-sw。鉴于表层海水与大气直接接触,表层海水的碳酸盐化学与大气CO2的浓度变化密切相关。因此,利用浮游有孔虫壳体δ11B和B/Ca指标重建表层海水pH和pCO2-sw可能是估算CO2在海洋与大气之间分配机制和效应的有效方法。
基于亚极地北太平洋沉积物岩芯中浮游有孔虫壳体δ11B重建的表层海水pCO2-sw与大气CO2分压(pCO2-atm)对比发现,Bølling–Allerød暖期北太平洋向大气释放CO2及生产力增强可能是由风驱上升流使得富含CO2和营养物质的深层水上涌引起的[25]。结合浮游有孔虫壳体的δ11B和B/Ca指标,Foster [26]推断上升流同样对加勒比海的碳释放起到了重要作用。冰消期南大洋通风增强,可将储存在南大洋深部的碳通过海洋隧道传输到低纬,并影响包括热带西太平洋在内的低纬太平洋的海气CO2交换[15, 27-29]。关于热带西太平洋海气碳交换的机理研究,除南大洋的影响外,还有学者利用δ11B和B/Ca指标探究了厄尔尼诺-南方涛动(El Niño-Southern Oscillation, ENSO)和东亚季风等热带过程对该区域海气CO2交换的影响[10, 15, 30],为更好地理解该区域海气碳交换提供了研究资料。
热带西太平洋现代海气CO2净通量显示该区域呈现海气碳交换近平衡状态[31],这似乎意味着该区域表层海水对大气CO2的影响很小。然而,如前文所述,诸如ENSO和东亚季风等热带过程和诸如南极中层水等热带外水团可能会影响该区域的海气碳交换,致使热带西太平洋的海气CO2交换呈现不平衡状态[10, 15, 27, 32-33]。总之,关于该区域的海气碳交换机制仍不清楚。指标记录的可用性存疑以及影响因素的多样性和复杂相互作用是主要的限制因素。本文首先归纳了浮游有孔虫壳体B/Ca和δ11B指标重建表层海水pH和pCO2-sw的原理或方法以及指标重建表层海水碳酸盐系统的优缺点。在此基础上,以热带西太平洋为目标海域,从ENSO、东亚季风以及大气桥梁和海洋隧道三方面对晚第四纪热带西太平洋海气碳交换的研究现状加以总结,并对研究过程中存在的问题加以讨论和展望,以便未来更好地揭示全球碳循环和预测气候变化。
1. 指标原理或方法
1.1 B/Ca
海水中溶解的B主要以硼酸分子(B(OH)3)和硼酸根离子(B(OH)4−)两种形式存在,其相对丰度受pH控制(图1a)。由于海洋碳酸盐的δ11B组成与海水B(OH)4−的δ11B组成一致,由此推断,溶解的B主要以B(OH)4−形态进入到包括有孔虫在内的钙质壳体中[34-36]:
$$\rm CaC{O_3} + B(OH)_4^ - \to Ca(HB{O_3}) + HCO_3^ - + {H_2}O $$ (1) 因此,溶解的B进入到钙质壳体的分配系数(KD)可定义为[13]:
$$ {{K} _{\rm D}} = \rm\frac{{{{[{{HBO_3^{2 - }} \mathord{\left/ {\vphantom {{HBO_3^{2 - }} {CO_3^{2 - }}}} \right. } {CO_3^{2 - }}}]}_{CaC{O_3}}}}}{{{{[{{B(OH)_4^ - } \mathord{\left/ {\vphantom {{B(OH)_4^ - } {HCO_3^ - }}} \right. } {HCO_3^ - }}]}_{sw}}}} = \frac{{{{[{B \mathord{\left/ {\vphantom {B {Ca}}} \right. } {Ca}}]}_{CaC{O_3}}}}}{{{{[{{B(OH)_4^ - } \mathord{\left/ {\vphantom {{B(OH)_4^ - } {HCO_3^ - }}} \right. } {HCO_3^ - }}]}_{sw}}}} $$ (2) 通过公式(2)可知,钙质壳体B/Ca受海水中[B(OH)4−/HCO3−]和分配系数KD的影响,而现代大洋中,海水中[B(OH)4−/HCO3−]与pH呈正比。因此,如果能够确定分配系数KD的值[13-14, 37],结合测定的浮游有孔虫壳体B/Ca记录,即可计算出海水[B(OH)4−/HCO3−],进而获得海水pH和pCO2-sw。利用海水[B(OH)4−/HCO3−]重建海水pH和pCO2-sw前,还需通过浮游有孔虫壳体氧同位素(δ18O)和Mg/Ca比值计算海水温度、盐度和ALK,用以辅助计算。海水pH和pCO2-sw的重建方法主要有计算法[37]和迭代法[13]两种。
计算法[37]:首先利用“实际碱度”近似替代海水ALK[9]:
$$\rm [ALK] = [HCO_3^ - ] + 2[CO_3^{2 - }] + [B(OH)_4^ - ] + [O{H^ - }] - [{H^ + }] $$ (3) 然后,将公式(4)-(7)带入至公式(3)中:
$$ [{\rm{CO}}_3^{2 - }] = [{\rm{HCO}}_3^ - ] \times {K_2}/[{{\rm H}^ + }] $$ (4) $$ [{\rm{B(OH)}}_4^ - ] = [{\rm{{B_{tot}}}}] \times {K_{\rm B}}/([{{\rm H}^ + }] + {K_{\rm B}}) $$ (5) $$ [{\rm O}{{\rm H}^ - }] = {K_{\rm w}}/[{{\rm H}^ + }] $$ (6) $$ [{\rm{HCO}}_3^ - ] = {K_{\rm B}} \times {{\rm B}_{\rm{tot}}} \times ([{{\rm H}^ + }] + {K_{\rm B}}) \times ([{\rm B}({\rm{OH}})_4^ - ]/[{\rm{HCO}}_3^ - ]) $$ (7) 通过公式(3)—(7)的代数运算,即可获得关于[H+]的一元三次方程,对该方程求解即可获得海水pH值。最后,基于海水pH值和ALK以及温度、盐度和压力(水深),利用宏程序CO2sys.xls即可计算出海水pCO2-sw[38]。其中,K2来自于Lueker等[39]修订的Mehrbach等[40]的碳酸盐分离常数,KB和KW均取自Dickson和Goyet[41],Btot则来自Lee等[42],pH使用总标度(total scale)。
迭代法[13]:首先,使用假定的pH值,根据公式(5)计算B(OH)4−;其次,给定ALK、温度、盐度和压力(深度)以及假定的pH值,通过宏程序CO2sys.xls即可获得pCO2-sw和HCO3-[38],结合第一步即可确定B(OH)4−/ HCO3−;再次,根据公式(2)计算B/Ca比值,并与测定的B/Ca比值进行比较;最后,迭代上述计算步骤,直至B/Ca的计算值和测定值收敛,从而获得海水pH和pCO2-sw的最近似估计值。
虽然浮游有孔虫壳体B/Ca比值响应于海水pH,并可利用上述计算方法重建海水pH和pCO2-sw[13, 15, 37],但该指标在重建过程中仍存在不确定性。具体来说,不同学者重建的分配系数KD公式有差异[13, 26, 37]。早期研究认为分配系数KD受控于温度[13],而冰期旋回中海水温度与大气CO2(因而与海水pH值)息息相关,从而增加了重建结果的不确定性。后期研究发现海水[CO32−]也可影响分配系数KD的变化[26]。此外,DIC[21, 23]、光强度[43]、生长和钙化速率[22]、盐度[44]和[PO43−][44]等参数可能会影响有孔虫壳体对B的吸收。然而,培养试验显示壳体生长速率可能与B/Ca比值无关[23]。基于以上因素,现阶段使用浮游有孔虫壳体B/Ca指标重建海水表层pH和pCO2-sw过程中,需尽可能排除不利因素的影响,以便获得更可靠的重建数据。与同一研究区域内不同方法(如δ11B指标)重建的结果对比可能是现阶段确定重建结果是否可靠的较好方法[15]。未来仍需更多学者探究该指标的可用性和适用范围,从而使该指标得到更多的应用以及得出更好的重建结果。
1.2 δ11B
B(OH)3和B(OH)4−的δ11B组成同样受控于海水pH(图1b)。如前所述,海洋碳酸盐中的δ11B与海水B(OH)4−的δ11B相关,则海水pH可通过以下公式计算[9]:
$$ {\rm{pH}}= p{K_{\rm B}} - \log\left(\frac{ {\delta ^{11}}{\rm B} - {\delta ^{11}}{{\rm B} _{\rm {sw}}} } { { \delta ^{11}}\rm {B_{sw} - {\alpha _B} \times {\delta ^{11}}B - \left( {{\alpha _B} - 1} \right) \times 1000} }\right) $$ (8) 其中,pKB为硼酸的解离常数[45];δ11B为海水B(OH)4−的δ11B,可通过钙质壳体的δ11B计算;δ11Bsw为现代海水的硼同位素组成;αB为B(OH)3和B(OH)4−的B同位素交换平衡系数(推荐值:1.0272±0.0006)[46]。与B/Ca指标流程一致,将δ11B重建的海水pH与ALK以及温度、盐度和压力(水深)相结合,利用宏程序CO2sys.xls即可计算出海水pCO2-sw[38]。虽然δ11B重建海水pH值的方法较为成熟,结果也被大家认可,但δ11B分析测试结果的精确度及结合ALK重建pCO2-sw过程的误差传递等,均潜在影响着δ11B重建海水pH和pCO2-sw的准确性和可靠性。此外,该指标测试过程中耗样量大、耗时较长且花费较高,也不利于该指标的更广泛应用。
2. 晚第四纪热带西太平洋海气碳交换的影响因素
基于浮游有孔虫壳体B/Ca和δ11B指标,不同学者对热带西太平洋表层海水碳酸盐系统以及海洋与大气pCO2差值(ΔpCO2(sw-atm))演化进行了探究[10, 15, 37]。结果显示,晚第四纪热带西太平洋表层海水pH和pCO2-sw呈现明显的冰期间冰期变化[15]。此外,重建的ΔpCO2(sw-atm)演化记录在该时期呈现出不平衡状态[10, 15]。鉴于ENSO、东亚季风以及南大洋源头水团可能影响热带西太平洋海气碳交换[27, 32-33],本文从这三方面对晚第四纪该区域海气碳交换影响因素加以总结。
2.1 ENSO过程对海气CO2交换的影响
热带太平洋现代过程研究显示,东风驱动的上升流将热带东太平洋低pH和高pCO2-sw的深层水带至表层,使热带东太平洋相对热带中、西太平洋表层海水pH低0.1~0.2、ΔpCO2(sw-atm)高(50~100)×10−6 atm[47-48](图2a)。在此基础上,ENSO过程可通过热带东太平洋表层海水的横向平流来控制热带西太平洋的碳酸盐化学,进而调控热带西太平洋的海气CO2交换。具体来说,La Niña条件下,由于更强的东风,热带东太平洋低pH和高pCO2-sw的表层海水向西输送增强,导致热带中、西太平洋表层海水pH值降低、ΔpCO2(sw-atm)值升高[49, 50],使其更倾向于向大气释放CO2;相反,El Niño条件下,热带东太平洋上升流减弱限制了该区域表层海水向西输送,导致热带中、西太平洋表层海水pH值升高和ΔpCO2-sw值降低[49-50],使其倾向于吸收大气CO2(图2a)。珊瑚δ11B指标重建的热带中太平洋表层海水pH和pCO2-sw古记录表明,类ENSO过程的横向平流同样影响了该区域过去海气CO2交换[30]:冰消期类La Niña条件下,研究区表层海水pH明显降低、pCO2-sw明显增高,并向大气释放CO2;类El Niño条件下则与之相反[30]。
图 2 ENSO过程和东亚季风对海气CO2交换的调控图a中双线箭头和深蓝色实线分别指示季风风向和图b的剖面范围;图a中∆pCO2(sw-atm)数据来源于Takahashi等[47];图b中pCO2-sw数据基于Global Data Analysis Project (GLODAP) [51]和World Ocean Atlas 2009 (WOA 09)计算;底图由Ocean Data View (ODV)制图软件生成[52]。Figure 2. The regulation of ENSO processes and East Asian monsoon on air-sea CO2 exchangeThe double-line arrow and dark blue solid line in (a) indicate the wind direction of the monsoon and the section position in (b), respectively. The data of ∆pCO2(sw-atm) are from Takahashi et al[47]. The values for pCO2-sw in (b) were calculated using data from Global Data Analysis Project (GLODAP)[51] and World Ocean Atlas 2009 (WOA 09). Maps are generated using Ocean Data View[52].然而,ENSO驱动的横向平流向西扩张过程中,仅能影响到热带西太平洋东端的表层海水碳酸盐系统(150°~180°E,图2a红框区域),包括西菲律宾海在内的热带西太平洋西部区域不受其影响[10]。因此,现代大洋ENSO过程主要通过调控温跃层深度(Depth of Thermocline, DOT)变化来影响热带西太平洋西部区域的海气CO2交换[32, 49, 53](图2b)。具体来说,El Niño事件时,温跃层变浅,将富含CO2和营养物质的次表层水带至表层,导致表层海水pCO2-sw、生产力和ΔpCO2(sw-atm)升高;相比之下,La Niña事件时,温跃层变深,限制了CO2和营养物质在温跃层和表层水之间的迁移,导致该区域表层海水的pCO2-sw、生产力和ΔpCO2(sw-atm)降低[10, 32, 49](图2b)。
晚第四纪,诸如西菲律宾海等热带西太平洋西部海域表层海水pH和pCO2-sw的古记录与类ENSO过程对比发现,不同时间尺度下,类ENSO过程对研究区海气CO2交换的影响有差异[10, 15]。千年尺度下,浮游有孔虫壳体δ11B重建的古记录显示,ΔpCO2(sw-atm)快速变化与类ENSO有关,ΔpCO2(sw-atm)的低值对应于海因里希事件1、Allerød以及新仙女木事件期间的类La Niña态;ΔpCO2(sw-atm)的高值对应于Bølling和Pre-Boreal事件期间的类El Niño态[10]。轨道尺度下,浮游有孔虫壳体B/Ca重建的古记录表明,岁差周期上的类ENSO过程变化与该区域海气碳交换联系尚不明确[15]。以上结论差异,可能跟时间尺度和分辨率有关。更长时间尺度下类ENSO过程对海气碳交换的影响如何,我们不得而知。未来还需更多学者对该方面展开研究,以获得ENSO过程对海气碳交换更清晰的理解。
2.2 东亚季风对海气CO2交换的调控
现代季节尺度上,东亚夏季风(East Asian Summer Monsoon, EASM)引发的上升流可将富含DIC和营养物质的深层水带至表层,促进沿岸海水生物生产力增强和CO2释放[33]。西北太平洋浮游有孔虫壳体δ11B重建的古记录研究显示,Bølling–Allerød暖期风驱上升流同样引发了研究区表层海水pH降低、pCO2-sw升高以及生产力增加,并使西北太平洋在该时期向大气释放CO2,对冰消期大气CO2的升高起到了贡献作用[25]。基于浮游有孔虫壳体B/Ca和δ11B指标重建的古记录研究显示,热带西太平洋西菲律宾海海气碳交换受到东亚季风的影响较为明显[10, 15]。
现代EASM的风向在西菲律宾海可形成正风应力旋度[54](图2a),导致该区域出现Ekman上升流[10, 55](图2b)。Ekman上升流伴随着温跃层变浅,将富含CO2和营养物质的次表层水带至表层,导致表层海水pCO2-sw和生物生产力升高[31, 55-56](图2b)。表层海水pCO2-sw升高有助于海洋向大气释放CO2,而生物生产力增强则有助于海洋吸收大气的CO2,因此,物理脱气和生物固碳相互抵消后的综合效应,最终决定了海洋是大气的碳源或碳汇。在类ENSO过程对海气碳交换的调控作用中,物理过程造成的CO2脱气效应强于生物过程的固碳作用,导致表层海水pCO2-sw与ΔpCO2(sw-atm)的变化一致。而与类ENSO过程对海气CO2交换影响不同的是,EASM对海气CO2交换的影响在不同时间尺度下表现不同。具体来说,千年尺度下,EASM诱发的生物固碳过程强于物理脱气作用,表现为海洋是大气的碳汇[10];轨道尺度下,EASM诱发的物理脱气作用强于生物固碳过程,表现为海洋是大气的碳源[15]。虽然不同时间尺度下EASM产生的效应不同,但EASM的强度与研究区ΔpCO2(sw-atm)均表现为强相关,即EASM的强度变化对西菲律宾海海气CO2交换具有较强的调控作用[10, 15]。
现代东亚冬季风(East Asian Winter Monsoon, EAWM)的风向在西菲律宾海可产生负风应力旋度[54](图2a),导致该区域呈现Ekman下降流[10, 55](图2b)。Ekman下降流伴随着温跃层变深,这限制了温跃层CO2和营养物质向表层输送,导致表层海水pCO2-sw和生物生产力降低[10]。然而,关于该区域EAWM对海气CO2交换影响的古记录研究显示,千年尺度下,ΔpCO2(sw-atm)的快速变化仅在较小程度上与EAWM有关;而在轨道尺度下,EAWM在岁差周期上对海气CO2交换几乎没有影响。总的来看,EASM对西菲律宾海海气碳交换的调控作用较强,而EAWM的调控作用较弱或不明显,但这仅限于晚第四纪西菲律宾海的研究成果。更长时间尺度以及热带西太平洋其他海域,东亚季风对海气CO2交换的调控如何?还需要更多学者的探索和补充。
2.3 冰消期南大洋对海气CO2交换的控制
南大洋晚第四纪的研究结果显示,冰消期风驱上升流增强,绕极深层水(CDW)上涌增强,将富含DIC和δ13C低值信号的深层水带至表层,不仅可通过海气碳交换向大气释放CO2促进冰消期大气CO2浓度的升高,还可通过增强的亚南极模态水(SAMW)/南极中层水(AAIW)将南大洋上涌深层水的化学信号带至低纬[27](图3)。热带西太平洋上层水δ13C演化研究证实,冰消期南大洋深层水δ13C低值信号可通过大气CO2和增强的AAIW传输至热带西太平洋[29]。热带东太平洋古记录研究同样得出有孔虫壳体δ13C低值信号受两者影响的结论[28]。此外,通过将热带西太平洋δ13C记录和重建的ΔpCO2(sw-atm)记录与表征南大洋上升流强度的蛋白石记录对比发现,冰消期南大洋深层水流通增强时,富含DIC和δ13C低值信号的AAIW可扩散至热带西太平洋的温跃层,进而影响研究区上层水体碳酸盐系统和海气CO2交换(图3)[15]。由此推断,冰消期南大洋可通过大气桥梁(大气CO2)和海洋隧道(AAIW)这两个路径来调控热带西太平洋海气CO2交换。然而,如何判别冰消期南大洋通过这两条传播路径分别对低纬海气碳交换的贡献,现阶段仍是一个难以解决的科学问题。
图 3 流进和流出南大洋的水团[27]SAMW:亚南极模态水,AAIW:南极中层水,CDW:绕极深层水,APF:南极锋,SAF:亚南极峰,STF:亚热带锋,PFZ:极锋区,SAZ:亚南极区。Figure 3. Water masses entering and leaving the Southern Ocean[27]SAMW: Subantarctic Mode Water; AAIW: Antarctic Intermediate Water; CDW: Circumpolar Deep Water; APF: Antarctic Polar Front; SAF: Subantarctic Front; STF: Subtropical Front; PFZ: Polar Front Zone; SAZ: Subantarctic Zone.3. 结论及展望
海洋碳酸盐系统作为海气碳循环的链接者,刻画其变化有助于揭示和理解过去全球碳循环和全球气候变化。目前,浮游有孔虫壳体B/Ca和δ11B指标是表层海水pH和pCO2-sw重建的主要方法。但是,未来还需在指标的实验分析方法和重建原理上进行改进,以便使指标的分析更加精确、指标的重建结果更加可靠、指标的使用更加广泛。
本文以热带西太平洋为目标海域,总结了晚第四纪该区域海气CO2交换的影响因素。类ENSO过程除可通过热带东太平洋表层海水的横向平流来调控热带西太平洋东端的海气CO2交换外,还可通过调控温跃层深度从垂向上影响热带西太平洋西端的海气CO2交换,但不同时间尺度下,类ENSO过程对该区域海气碳交换的影响不同。EASM的强度变化在不同时间尺度下均与热带西太平洋的海气CO2交换具有较强的相关性。然而,EAWM则表现为对该区域海气碳交换的调控作用影响较小或无影响。冰消期南大洋深部流通状况增强时,可通过大气桥梁和海洋隧道这两个路径来调控热带西太平洋海气CO2交换。总体来看,现有的研究成果多集中在晚第四纪,更长时间尺度下不同因素对热带西太平洋海气碳交换的调控如何?各个因素对调控所作的贡献有多少?还需更多探索。
-
图 2 ENSO过程和东亚季风对海气CO2交换的调控
图a中双线箭头和深蓝色实线分别指示季风风向和图b的剖面范围;图a中∆pCO2(sw-atm)数据来源于Takahashi等[47];图b中pCO2-sw数据基于Global Data Analysis Project (GLODAP) [51]和World Ocean Atlas 2009 (WOA 09)计算;底图由Ocean Data View (ODV)制图软件生成[52]。
Figure 2. The regulation of ENSO processes and East Asian monsoon on air-sea CO2 exchange
The double-line arrow and dark blue solid line in (a) indicate the wind direction of the monsoon and the section position in (b), respectively. The data of ∆pCO2(sw-atm) are from Takahashi et al[47]. The values for pCO2-sw in (b) were calculated using data from Global Data Analysis Project (GLODAP)[51] and World Ocean Atlas 2009 (WOA 09). Maps are generated using Ocean Data View[52].
图 3 流进和流出南大洋的水团[27]
SAMW:亚南极模态水,AAIW:南极中层水,CDW:绕极深层水,APF:南极锋,SAF:亚南极峰,STF:亚热带锋,PFZ:极锋区,SAZ:亚南极区。
Figure 3. Water masses entering and leaving the Southern Ocean[27]
SAMW: Subantarctic Mode Water; AAIW: Antarctic Intermediate Water; CDW: Circumpolar Deep Water; APF: Antarctic Polar Front; SAF: Subantarctic Front; STF: Subtropical Front; PFZ: Polar Front Zone; SAZ: Subantarctic Zone.
-
[1] Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650, 000–800, 000 years before present[J]. Nature, 2008, 453(7193): 379-382. doi: 10.1038/nature06949
[2] Jouzel J, Masson-Delmotte V, Cattani O, et al. Orbital and millennial Antarctic climate variability over the past 800, 000 years[J]. Science, 2007, 317(5839): 793-796. doi: 10.1126/science.1141038
[3] Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present[J]. Geophysical Research Letters, 2015, 42(2): 542-549. doi: 10.1002/2014GL061957
[4] Yu J M, Oppo D W, Jin Z D, et al. Millennial and centennial CO2 release from the Southern Ocean during the last deglaciation[J]. Nature Geoscience, 2022, 15(4): 293-299. doi: 10.1038/s41561-022-00910-9
[5] Yamamoto M, Clemens S C, Seki O, et al. Increased interglacial atmospheric CO2 levels followed the mid-Pleistocene Transition[J]. Nature Geoscience, 2022, 15(4): 307-313. doi: 10.1038/s41561-022-00918-1
[6] Nehrbass-Ahles C, Shin J, Schmitt J, et al. Abrupt CO2 release to the atmosphere under glacial and early interglacial climate conditions[J]. Science, 2020, 369(6506): 1000-1005. doi: 10.1126/science.aay8178
[7] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000
[8] Siegenthaler U, Stocker T F, Monnin E, et al. Stable carbon cycle-climate relationship during the late pleistocene[J]. Science, 2005, 310(5752): 1313-1317. doi: 10.1126/science.1120130
[9] Zeebe R E, Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M]. Amesterdam: Elsevier, 2001.
[10] Xiong Z F, Li T G, Hönisch B, et al. Monsoon- and ENSO-driven surface-water pCO2 variation in the tropical West Pacific since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2022, 289: 107621. doi: 10.1016/j.quascirev.2022.107621
[11] Guillermic M, Misra S, Eagle R, et al. Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients[J]. Biogeosciences, 2020, 17(13): 3487-3510. doi: 10.5194/bg-17-3487-2020
[12] Hönisch B, Hemming N G. Surface ocean pH response to variations in pCO2 through two full glacial cycles[J]. Earth and Planetary Science Letters, 2005, 236(1-2): 305-314. doi: 10.1016/j.jpgl.2005.04.027
[13] Yu J M, Elderfield H, Hönisch B. B/Ca in planktonic foraminifera as a proxy for surface seawater pH[J]. Paleoceanography, 2007, 22(2): PA2202.
[14] Guo J T, Li T G, Xiong Z F, et al. Revisiting the dependence of thermocline-dwelling foraminiferal B/Ca on temperature and[CO32−], and its application in reconstruction of the subsurface carbonate system in the tropical western Pacific since 24 ka[J]. Acta Oceanologica Sinica, 2019, 38(9): 71-86. doi: 10.1007/s13131-019-1476-y
[15] Guo J T, Qiu X H, Algeo T J, et al. Precession-driven changes in air-sea CO2 exchange by East Asian summer monsoon in the Western Tropical Pacific since MIS 6[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 607: 111267. doi: 10.1016/j.palaeo.2022.111267
[16] Yu J, Menviel L, Jin Z D, et al. Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion[J]. Nature Geoscience, 2020, 13(9): 628-633. doi: 10.1038/s41561-020-0610-5
[17] Barker S, Elderfield H. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2[J]. Science, 2002, 297(5582): 833-836. doi: 10.1126/science.1072815
[18] Qin B B, Li T G, Xiong Z F, et al. Influences of Atlantic Ocean thermohaline circulation and Antarctic ice-sheet expansion on Pliocene deep Pacific carbonate chemistry[J]. Earth and Planetary Science Letters, 2022, 599: 117868. doi: 10.1016/j.jpgl.2022.117868
[19] Qin B B, Jia Q, Xiong Z F, et al. Sustained deep pacific carbon storage after the mid-pleistocene transition linked to enhanced southern ocean stratification[J]. Geophysical Research Letters, 2022, 49(4): e2021GL097121. doi: 10.1029/2021GL097121
[20] Wan S, Jian Z M, Gong X, et al. Deep water [CO32−] and circulation in the south China sea over the last glacial cycle[J]. Quaternary Science Reviews, 2020, 243: 106499. doi: 10.1016/j.quascirev.2020.106499
[21] Allen K A, Hönisch B. The planktic foraminiferal B/Ca proxy for seawater carbonate chemistry: a critical evaluation[J]. Earth and Planetary Science Letters, 2012, 345-348: 203-211. doi: 10.1016/j.jpgl.2012.06.012
[22] Salmon K H, Anand P, Sexton P F, et al. Calcification and growth processes in planktonic foraminifera complicate the use of B/Ca and U/Ca as carbonate chemistry proxies[J]. Earth and Planetary Science Letters, 2016, 449: 372-381. doi: 10.1016/j.jpgl.2016.05.016
[23] Haynes L L, Hönisch B, Dyez K A, et al. Calibration of the B/Ca proxy in the planktic foraminifer Orbulina universa to Paleocene seawater conditions[J]. Paleoceanography, 2017, 32(6): 580-599. doi: 10.1002/2016PA003069
[24] Dang H W, Wang T T, Qiao P J, et al. The B/Ca and Cd/Ca of a subsurface-dwelling foraminifera Pulleniatina obliquiloculata in the tropical Indo-Pacific Ocean: implications for the subsurface carbonate chemistry estimation[J]. Acta Oceanologica Sinica, 2019, 38(3): 138-150. doi: 10.1007/s13131-019-1406-6
[25] Gray W R, Rae J W B, Wills R C J, et al. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean[J]. Nature Geoscience, 2018, 11(5): 340-344. doi: 10.1038/s41561-018-0108-6
[26] Foster G L. Seawater pH, pCO2 and [CO32-] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera[J]. Earth and Planetary Science Letters, 2008, 271(1-4): 254-266. doi: 10.1016/j.jpgl.2008.04.015
[27] Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2[J]. Science, 2009, 323(5920): 1443-1448. doi: 10.1126/science.1167441
[28] Spero H J, Lea D W. The cause of carbon isotope minimum events on glacial terminations[J]. Science, 2002, 296(5567): 522-525. doi: 10.1126/science.1069401
[29] Chen S X, Li T G, Tang Z, et al. Response of the northwestern Pacific upper water δ13C to the last deglacial ventilation of the deep Southern Ocean[J]. Chinese Science Bulletin, 2011, 56(24): 2628-2634. doi: 10.1007/s11434-011-4590-0
[30] Douville E, Paterne M, Cabioch G, et al. Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals ( Porites)[J]. Biogeosciences, 2010, 7(8): 2445-2459. doi: 10.5194/bg-7-2445-2010
[31] Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8-9): 554-577.
[32] Feely R A, Boutin J, Cosca C E, et al. Seasonal and interannual variability of CO2 in the equatorial Pacific[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(13-14): 2443-2469. doi: 10.1016/S0967-0645(02)00044-9
[33] Yuan X C, Yin K, Cai W J, et al. Influence of seasonal monsoons on net community production and CO2 in subtropical Hong Kong coastal waters[J]. Biogeosciences, 2011, 8(2): 289-300. doi: 10.5194/bg-8-289-2011
[34] Hemming N G, Hanson G N. Boron isotopic composition and concentration in modern marine carbonates[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 537-543. doi: 10.1016/0016-7037(92)90151-8
[35] Rae J W B, Foster G L, Schmidt D N, et al. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system[J]. Earth and Planetary Science Letters, 2011, 302(3-4): 403-413. doi: 10.1016/j.jpgl.2010.12.034
[36] Branson O, Kaczmarek K, Redfern S A T, et al. The coordination and distribution of B in foraminiferal calcite[J]. Earth and Planetary Science Letters, 2015, 416: 67-72. doi: 10.1016/j.jpgl.2015.02.006
[37] Tripati A K, Roberts C D, Eagle R A. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years[J]. Science, 2009, 326(5958): 1394-1397. doi: 10.1126/science.1178296
[38] Pelletier G, Lewis E, Wallace D. CO2SYS. XLS: a calculator for the CO2 system in seawater for Microsoft Excel/VBA[Z]. Washington State Department of Ecology/Brookhaven National Laboratory, Olympia, WA/Upton, NY, USA, 2007.
[39] Lueker T J, Dickson A G, Keeling C D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium[J]. Marine Chemistry, 2000, 70(1-3): 105-119. doi: 10.1016/S0304-4203(00)00022-0
[40] Mehrbach C, Culberson C H, Hawley J E, et al. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure[J]. Limnology and Oceanography, 1973, 18(6): 897-907. doi: 10.4319/lo.1973.18.6.0897
[41] Dickson A G, Goyet C. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2[R]. Oak Ridge: Oak Ridge National Lab. , 1994.
[42] Lee K, Kim T W, Byrne R H, et al. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans[J]. Geochimica et Cosmochimica Acta, 2010, 74(6): 1801-1811. doi: 10.1016/j.gca.2009.12.027
[43] Babila T L, Rosenthal Y, Conte M H. Evaluation of the biogeochemical controls on B/Ca of Globigerinoides ruber white from the Oceanic Flux Program, Bermuda[J]. Earth and Planetary Science Letters, 2014, 404: 67-76. doi: 10.1016/j.jpgl.2014.05.053
[44] Henehan M J, Foster G L, Rae J W B, et al. Evaluating the utility of B/Ca ratios in planktic foraminifera as a proxy for the carbonate system: a case study of Globigerinoides ruber[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(4): 1052-1069. doi: 10.1002/2014GC005514
[45] Dickson A G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1990, 37(5): 755-766. doi: 10.1016/0198-0149(90)90004-F
[46] Klochko K, Kaufman A J, Yao W S, et al. Experimental measurement of boron isotope fractionation in seawater[J]. Earth and Planetary Science Letters, 2006, 248(1-2): 276-285. doi: 10.1016/j.jpgl.2006.05.034
[47] Takahashi T, Sutherland S C, Kozyr A. Global ocean surface water partial pressure of CO2 database (LDEO Database Version 2019): measurements performed during 1957-2019 (NCEI Accession 0160492)[Z]. NOAA National Centers for Environmental Information, 2019.
[48] Pelejero C, Calvo E, McCulloch M T, et al. Preindustrial to modern interdecadal variability in coral reef pH[J]. Science, 2005, 309(5744): 2204-2207. doi: 10.1126/science.1113692
[49] Inoue H Y, Sugimura Y. Variations and distributions of CO2 in and over the equatorial Pacific during the period from the 1986/88 El Niño event to the 1988/89 La Niña event[J]. Tellus B: Chemical and Physical Meteorology, 1992, 44(1): 1-22. doi: 10.3402/tellusb.v44i1.15417
[50] Ishii M, Feely R A, Rodgers K B, et al. Air–sea CO2 flux in the Pacific Ocean for the period 1990–2009[J]. Biogeosciences, 2014, 11(3): 709-734. doi: 10.5194/bg-11-709-2014
[51] Key R M, Kozyr A, Sabine C L, et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP)[J]. Global Biogeochemical Cycles, 2004, 18(4): GB4031.
[52] Schlitzer R. Ocean Data View, v.5.5.1-64 bit (Windows)[EB/OL]. 2021.https://odv.awi.de.
[53] Chiodi A M, Harrison D E. Global seasonal precipitation anomalies robustly associated with El Niño and La Niña Events—an OLR perspective[J]. Journal of Climate, 2015, 28(15): 6133-6159. doi: 10.1175/JCLI-D-14-00387.1
[54] Xiong Z F, Li T G, Chang F M, et al. Rapid precipitation changes in the tropical West Pacific linked to North Atlantic climate forcing during the last deglaciation[J]. Quaternary Science Reviews, 2018, 197: 288-306. doi: 10.1016/j.quascirev.2018.07.040
[55] Tozuka T, Kagimoto T, Masumoto Y, et al. Simulated multiscale variations in the western tropical pacific: the Mindanao dome revisited[J]. Journal of Physical Oceanography, 2002, 32(5): 1338-1359. doi: 10.1175/1520-0485(2002)032<1338:SMVITW>2.0.CO;2
[56] Raven J, Caldeira K, Elderfield H, et al. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide[M]. London, UK: The Royal Society, 2005.
-
期刊类型引用(1)
1. 邱峥力,于潭. 中高风速下海气CO_2交换速率影响因子探究. 化工管理. 2024(23): 152-155 . 百度学术
其他类型引用(0)