Research progress of tracing sediment sources in the Western Pacific Warm Pool
-
摘要: 从沉积物中提取示踪指标是研究西太平洋暖池区古环境和古气候演化的有效途径之一,而准确识别沉积物的源区是其中的关键。目前已通过不同的物源示踪指标,如黏土矿物、石英单矿物、常量元素、稀土元素以及碎屑组分的放射性成因Sr-Nd同位素等,对西太平洋暖池北部和西部第四纪以来的沉积物来源进行了研究,结果表明暖池区沉积物主要来源于亚洲大陆和火山岛弧,部分来源于澳大利亚和/或新几内亚。本文系统归纳和总结了上述示踪指标在西太平洋暖池区的物源研究进展和成果,以及研究中存在的问题,并对西太平洋暖池沉积物源研究提出了几点建议。Abstract: Extracting tracer indicators from sediments is one of the effective ways to study the paleoenvironment and paleoclimate evolution in the Western Pacific Warm Pool (WPWP), and the key is to accurately identify the source region of sediments. The sources of sediments in the northern and western WPWP since the Quaternary have been studied using different source tracers, such as clay minerals, quartz, major elements, REE and Sr-Nd isotope of clastic components. Results show that the sediments of the WPWP originate mainly from the Asian continent and volcanic island arcs, and some originate from Australia and/or New Guinea. This paper systematically summarizes the sources and tracing methods of sediments in the WPWP, points out the issues in the current researches, and puts forward the prospects for the identification of sediment sources in the future.
-
Keywords:
- source area /
- sediment /
- source tracing /
- Western Pacific Warm Pool
-
渤海湾毗邻现代黄河三角洲,沿岸主要为砂质淤泥质海岸,其沉积物主要来自沿岸河流携带的大量泥沙,受河流与沿岸细粒物质大量供给和潮流作用为主的海洋动力控制,呈不规则带状和斑块状分布,沿岸粒度较粗,多为粉砂和黏土粉砂,东北部沿岸多为砂质粉砂,中部海域粒度较细,多为黏土软泥和粉砂质软泥[1]。渤海湾沿岸有多条河流,如黄河、海河、滦河等,其中黄河和滦河是渤海湾沉积物的主要来源[2],并以黄河入海泥沙量最大[3]。黄河每年入海泥沙约11亿t,大量入海泥沙在黄河口沉积下来,不仅使河流入海流路发生频繁变迁,而且导致河口三角洲快速淤积[4-7]。在海洋动力作用下,大量细颗粒泥沙自黄河口三角洲向北、东北、西北方向海域传输,可达到渤海湾湾顶[8-9]。自1976年以来其北部废弃的三角洲叶瓣遭受强烈的海岸侵蚀,在冬季强海洋动力作用下,大量再悬浮沉积物为渤海湾区域提供充足的物源供应[3,10-11]。随着人类活动的增强,河流入海径流量和泥沙量明显减少,粒度粗化[6,10,12],大量泥沙快速沉积在河口附近,在波浪和潮流的控制下,泥沙再悬浮并在渤海海域传输,在沿岸悬浮体浓度明显高于渤海湾中部[13-14],水体底层浓度明显高于表层浓度,悬浮体浓度的分布呈季节性分布特征[3,11,15-16],冬季渤海湾在强风浪的再悬浮和沿岸流的搬运作用下,悬浮体浓度分布明显高于海洋动力较弱的夏季[3,17-18],水体的层化混合过程对黄河入海悬浮体传输过程起到重要的控制作用[6,19]。除此之外,渤海湾海域悬浮体的分布还具有明显的大小潮差异,大潮时期悬浮体浓度高于小潮时期[20]。因此,不同时段、不同区域内,渤海湾海域悬浮体的分布特征与海域内海洋动力条件有着密不可分的关系,要了解该海域悬浮体分布的变化规律,就需要分不同时段对不同区域进行连续观测研究,才能更全面地掌握渤海湾悬浮体的运移特征。但是迄今为止对黄河三角洲北部和渤海湾泥质区毗邻海域再悬浮沉积物的输运过程及其沉积分布尚缺乏系统性观测研究,这方面的观测有待加强。大量的研究表明[21-23],近海沉积物输运过程及其沉积分布与污染物和生源要素的扩散具有极为密切的关系,是影响区域生物地球化学循环和生态系统的重要因素。渤海湾周边城市人口稠密,大中城市密集,有重要能源生产基地,是目前我国重要的经济发展区之一。随着大规模的围海造地工程和周边临港工程建设,填海面积增加的同时,大量来自陆域的重金属和污染物较易附着在悬浮体上随径流入海,并在海洋动力的作用下,在近岸海域扩散和沉积,对近岸海洋生态系统产生了重要影响[24-27]。因此渤海湾及毗邻海域不同时间尺度的沉积动力过程及其环境效应,有利于推进对该海域沉积动力学和“源–汇”过程研究的进一步认识,对区域环境可持续发展具有重要的意义。
本文在前人的研究基础上,对渤海湾泥质区南部靠近黄河三角洲北部海域的夏季悬浮体浓度、水体温盐结构进行了25 h连续观测调查,对悬浮体输运过程展开了时空对比分析,并探讨了其水动力机制。
1. 材料及方法
1.1 数据采集
2012年8月20日—9月10日在渤海湾海域完成了对10个站位的海流连续25 h定点观测,并每隔1 h对垂向剖面进行温度、盐度和浊度的观测,采集表、中、底3层水位的悬浮体水样用于悬浮体浓度的实验室抽滤测试分析(图1)。其中,流速、流向及水深数据采集使用美国SonTek公司生产的声学多普勒流速剖面仪ADCP(工作频率为300 kHz,盲区为1 m,测流误差<5 mm/s和<1°)来进行观测,测层间隔设置为1 m,定点观测采样频率设为10 s,温度、盐度及浊度数据采集使用美国Seabird公司生产的SBE19 Plus多参数水质剖面仪来进行观测(温度、电导率和浊度的精度分别为<0.1°C、0.001 mS/cm和0.01 NTU),用绞车以平均每2 s下放1 m的速度下放仪器,平均每0.2 s可获取一个数据,悬浮体水样采集使用美国Seabird公司生产的SBE ECO55自动采水器进行采集,该仪器与SBE19 Plus集成在一起。悬浮体水样采集以ADCP测深为准,分层进行采取(表层样取自水深2 m以内,中层样取自0.5倍水深处,底层样取距底0.5~2 m处),与温度、盐度及浊度数据采集同步进行。本文采用本航次调查的10个站位中位于渤海湾泥质区南部的5个站位(A1—A5站)的观测结果进行悬浮体输运过程分析。
1.2 数据处理
悬浮体水样在实验室进行双滤膜抽滤测试,抽滤实验采用孔径0.45 μm的醋酸纤维滤膜进行双膜抽滤矫正,抽滤前将滤膜以45°C烘干24 h并称得上膜前质量(Wt1)和下膜前质量(Wb1),称重采用万分之一的电子天平,抽滤后再以45°C烘干24 h并称得上膜后质量(Wt2)和下膜后质量(Wb2),并记录抽滤水体体积(V)通过计算公式(1)计算悬浮体浓度(SSC)。
$${\rm{ SSC}} =\frac{W_{\rm{t2}}-W_{\rm{t1}}-\dfrac{(W_{\rm{b2}}-W_{\rm{b1}})\times W_{\rm{t1}}}{W_{\rm{b1}}}}{V} $$ (1) 选取10个站位SSC测试结果,对采集悬浮体样品所在的垂向2 m范围内的悬浮体浊度进行平均计算,并与SSC进行拟合,拟合结果如图2所示,相关系数R2=0.83,拟合结果较好,可参考拟合结果,根据悬浮体浊度的观测结果,对SSC进行拟合判定。
2. 结果
2.1 潮流特征
渤海湾泥质区南部潮流以M2潮流为主[29-30],从图3和图4的流速矢量图以及图3潮流类型分布[29]可以看出,A1、A2、A3、A5站的潮流类型为规则半日潮流,A4站潮流类型为不规则半日潮流,A1站为逆时针旋转流,A2站为E-W向往复流,A3、A4、A5站为顺时针旋转流。从图4水深变化以及图3潮汐类型分布[29]可以看出,A1、A2、A4站的潮汐类型为不规则半日潮,A3站为不规则全日潮,A5站处在不规则全日潮的位置,而在观测期间,A5站出现半日潮特征。各站位的流速东西分量u明显高于流速南北分量v(图4),u分量流速超过40 cm/s的历时超过观测历时的1/2,v分量流速低于40 cm/s的历时占观测历时的主要部分。A1站涨潮流为SW向,落潮流为NE向;A2站涨潮流为W向,落潮流为E向;A3站涨潮流和落潮流均有N向顺时针旋转为E向的现象;A4站涨潮流为SE向顺时针旋转为NW向,落潮流为NW向顺时针旋转为SE向;A5站涨潮流和落潮流均有NW向顺时针旋转一周回到NW向的现象。
2.2 温盐交换过程
从各站位温盐垂向剖面结构可以看出(图5),受各站位涨落潮流影响,水体的垂向温盐结构具有周期性分布的特点。整体来看(图6),水深最浅、最靠近岸边的A1站(水深5~15 m)温度最高,盐度最低,水深15~20 m的A2站和A5站温度和盐度都偏高,水深大于20 m的A3站和A4站温度偏低,盐度偏高。这说明渤海湾泥质区南部海域,15 m等深线以浅海域受周边径流高温淡水影响较大,15~20 m范围高温淡水与低温盐水交汇,盐度明显升高,20 m以深海域主要受渤海中部低温高盐水舌入侵影响,水体温度偏低。
A1站SW向涨潮流从湾外带来低温高盐的水体,NE向落潮流向湾外带走近岸的高温低盐的水体;湾口处A2站W向涨潮流从湾外带来低温高盐水体,E向的落潮流从湾内带出高温低盐水体,主要在表层水深10 m范围内传输,10 m以深水体为盐度较高、温度较低的水体;A3站的温盐结构在涨潮和涨平阶段,在表层10 m范围内层化明显,出现高温低盐水体,10 m以深水体垂向较均匀,在落潮和落平阶段,水体温盐垂向结构整体均匀,主要为温度和盐度都相对较高的水体;A4站和A5站的温盐结构较其他站位更稳定,温度自上而下逐渐降低,盐度自上而下逐渐升高,A4站(站位水深约25 m)在水深15 m(自海面向下)处温盐梯度较大,A5站(站位水深约20 m)则是在水深10 m处温盐梯度较大,两站连线与黄河口附近岸线和等深线接近垂直,呈NE向展布,说明夏季黄河口高温低盐的淡水向20 m以深的渤海中部海域传输的方式,主要为表层传输的羽状流形式。
2.3 SSC时空变化特征
从图7可以看出,渤海湾内(A1站)和湾口(A2站)处高浊度悬浮体多出现在涨急和落急时期,较高的流速对底质掀沙作用加强(图8a),其中A1站涨平后到落急期间SSC明显降低,可见,在渤海湾南部湾内的近岸海域,大部分底质再悬浮的泥沙还是随着涨潮流向湾内汇聚,方向多为SW向。黄河口SE向的A3、A4、A5三站SSC分布的潮周期特点较湾内和湾口处不显著,且水体较湾内和湾口清澈,SSC值偏低。A3站SSC高值出现在N向和E向潮流时期,A4和A5站SSC高值出现在NW向和SE向潮流时期。
整体来看(图8a),夏季渤海湾南部海域高于20 mg/L的SSC值出现在A2、A3站表层5 m水深范围内,A3、A4、A5站底层5 m水深范围内,A2站底层12 m范围内,以及A1站的整个垂向水体范围内。靠近底层的SSC值均高于表层SSC值(图8a),各站位靠近底层最高SSC值对比结果显示,湾内(A1站)及湾口(A2站)处最高,分别可达约130和80 mg/L,黄河口SE向20 m及更深(A4、A5站)处最小,均低于40 mg/L。SSC值高于20 mg/L的流速值基本位于50~70 cm/s区间(图8b),各站位流速基本低于100 cm/s,结合图8a,可知该区域底层高浊度的悬浮细颗粒物质的输运流速在50~100 cm/s区间,且具备这种输运条件的高浊度悬浮体多出现在渤海湾南部湾内和湾口海域,其向湾内汇沙的效应也符合中国东部陆架边缘海沉积物“夏储冬输”的季节性特征[31]。
3. 讨论
3.1 悬浮体输沙率的潮周期变化特征
采用相对水深对瞬时物质输移量进行分解[32],设x轴为纵向坐标,t为时间,z为相对水深(0≤z≤1),不计流速脉动项,将瞬时流速u(x, z, t)分解成垂向平均量项及其偏项之和:
$$ u(x, z, t)=\bar u+u' $$ (2) ū和uʹ均分解为潮平均量项和潮变化项之和:
$$\bar u= \bar u_{0}+\bar u_{t}·u'=\bar u_{0}'+\bar u_{t}'$$ (3) 瞬时流速即为:
$$ u(x, z, t) = \bar u_{0}+\bar u_{t}+\bar u_{0}'+\bar u_{t}'$$ (4) 水深可分解为:
$$ h(x, t)= h_{0}+h_{t} $$ (5) 单宽潮周期平均输水量为:
$$ \langle Q \rangle = \frac{1}{T_t}\int\limits ^{T_t}_0\int\limits^1_0 uh{\rm d}z{\rm d}t= \bar u_{0}h_{0}+ \langle \bar u_{t}h_{t} \rangle$$ (6) 其中,
$\langle \rangle$ 表示潮平均,ū0h0为平均流项,$ \langle$ ūtht$\rangle $ 为潮汐与潮流相关项,即斯托克斯漂移效应,Tt为潮周期。式(6)可表示为:$$\langle Q \rangle = h_{0}(\bar u_{E}+\bar u_{S}) = h_{0}\bar u_{L} $$ (7) 其中,ūE = ū0,ūS =
$\langle $ ūtht$\rangle $ /h0$$ \bar u_{L}=\langle Q\rangle/h_{0} =\bar u_{E}+\bar u_{S} $$ (8) 由式(8)计算出来的ūL即为一维垂向平均拉格朗日余流,其中ūE、ūS分别为一维垂向平均欧拉余流和斯托克斯余流。
与余流的计算原理相似(式(2)—(5)),悬浮泥沙浓度SSC的函数c(x, z, t)可分解为:
$$ c(x, z, t) =\bar c_0 +\bar c_t +c_{0}'+c_{t}' $$ (9) 单宽输沙率E为:
$$\begin{split}\int\limits ^1_0 huc{\rm d}z =& h\bar u_{0}\bar c_0+h\bar u_{0}\bar c_t+h\bar u_{t}\bar c_0+h\bar u_{t}\bar c_t+\\&h\overline{u'_0c'_0}+h\overline{u'_0c'_t}+h\overline{u'_tc'_0}+h\overline{u'_tc'_t}\end{split} $$ (10) 其中,E1=
$h\bar u_0 \bar c_0 $ 为平流引起的平均输沙量,$E_2=h\bar u_0\bar c_t $ 和$E_3=h\bar u_t\bar c_0 $ 为潮周期平均输沙量与潮变化量的相关项,$E_4=h\bar u_t\bar c_t $ 为潮汐振荡引起的输沙量,$E_5=h\overline{u'_0c'_0} $ 为时均量引起的扩散,$E_6=h\overline{u'_0c'_t} $ 和$E_7=h\overline{u'_tc'_0} $ 为时均量与潮变化量引起的剪切扩散,$E_8=h\overline{u'_tc'_t} $ 为潮振荡引起的剪切扩散。潮平均单宽瞬时输沙率T为:
$$ \begin{split} T=& \frac{1}{T_t}\int\limits^{T_t}_0\int\limits^h_0 uc{\rm d}z{\rm d}t=h_{0}\bar u_{0}\bar c_0+\langle h_{t}\bar u_{t}\rangle \bar c_0+\langle h_{t}\bar c_t \rangle \bar u_{0}+\\&\langle h_{t}\bar u_{t}\bar c_t\rangle + h_{0}\overline{u'_0c'_0} +\langle h_{t} u'_{0}c'_{t}\rangle +\langle h_{t}u'_{t}c'_{0}\rangle +\langle h_{t}u'_{t}c'_{t}\rangle \end{split} $$ (11) 其中,
$T_1=h_0\bar u_0\bar c_0 $ 为平均流引起的输沙量;$T_2=\langle h_t\bar u_t \rangle \bar c_0 $ 为潮汐与潮流的相关项,即斯托克斯漂流输沙量;T1+T2为拉格朗日输沙量;$T_3=\langle h_t \bar c_t \rangle \bar u_0$ 为潮汐与含沙量潮变化相关项;$T_4=\langle h_t \bar u_t \bar c_t \rangle $ 为SSC与潮流变化相关项;$T_5=h_0\overline{u'_0 c'_0} $ 为垂向流速变化和含沙量变化的相关项,为垂向净环流的贡献;$ T_6=\langle h_t u'_0 c'_t \rangle $ 和$T_7=\langle h_tu'_tc'_0 \rangle $ 为时均量与潮汐振动切变引起的剪切扩散;$T_8=\langle h_t u'_t c'_t \rangle $ 为垂向潮振荡切变作用项。湾内A1站(图9a)涨平期间的单宽输沙率为68~143 g·m−1·s−1,方向为偏S向,向岸输沙。落平期间单宽输沙率为41~93 g·m−1·s−1,方向为偏N向,向湾外输沙,单宽输沙率明显小于涨平期间。落潮时期输沙以E、SE向为主,涨潮时期输沙率方向以W、SW向为主,大小相当。整体来看(图10a),渤海湾南部湾内海域以向近岸输沙为主,潮平均单宽输沙率为7.8 g·m−1·s−1,方向为280°(以E向为0°的逆时针旋转角度),其中,T1+T2所代表的拉格朗日输沙率为7.6 g·m−1·s−1,方向为274°;T4和T5数量级相当,分别为0.6和0.3 g·m−1·s−1,方向为偏E向和偏SE向;其他分量的数量级较小,T3、T6数量级相当,T7和T8数量级相当,T3、T6、T7方向偏E向和偏SE向,T8方向偏N向。
湾口A2站(图9b)落平和落潮时期输沙方向偏E向,以朝湾外输沙为主,在涨平和涨潮期间输沙方向偏W向,以向湾内输沙为主,前者的单宽输沙率范围为24~281 g·m−1·s−1,后者的单宽输沙率范围为28~258 g·m−1·s−1,后者历时更长。整体上(图10b),湾口处海域拉格朗日输沙率(T1+T2)为12.7 g·m−1·s−1,方向为329°;垂向净环流的贡献项T5为5.5 g·m−1·s−1,方向为149°,方向与拉格朗日输沙率方向相反;整体来看A2站潮平均输沙率为7.2 g·m−1·s−1,方向为328°,输沙以向湾外SE向输沙为主;其他分量数量级较小,T4和T7数量级相当,T3、T6、T8数量级最小,T3、T6、T7方向偏SE向,T4和T8方向偏NW向。
A3站(图9c)落平时输沙以偏E向为主(18~46 g·m−1·s−1),涨平时输沙以偏SE向为主(10~54 g·m−1·s−1),涨潮时输沙以偏W向为主(12~59 g·m−1·s−1),落潮时输沙以偏N向和偏NE向为主(5~44 g·m−1·s−1)。整体来看(图10c),A3站潮平均单宽输沙率为4.7 g·m−1·s−1,方向为77°,其中,拉格朗日输沙率(T1+T2)为5.2 g·m−1·s−1,方向为50°;垂向净环流的贡献项T5为2.4 g·m−1·s−1,方向为166°;T3、T4数量级相当,T6、T7、T8数量级最小,T4、T7方向偏E向,T6偏SE向,T3、T8偏SW向。
A4站(图9d)涨潮时输沙偏SE向,单宽输沙率为8~49 g·m−1·s−1;涨平时输沙偏NW向,单宽输沙率为19~52 g·m−1·s−1;落潮时输沙偏NW向,单宽输沙率为29~56 g·m−1·s−1;落平时输沙偏N向和偏NE向,单宽输沙率为11~51 g·m−1·s−1。A4站潮平均单宽输沙率为5.2 g·m−1·s−1,方向为94°,其中,拉格朗日输沙率(T1+T2)为5.2 g·m−1·s−1,方向为91°,其他各分量数量级较小,T3和T7方向相反,数量级相当;T4数量级与T3和T7相当,方向为偏NW向;T5数量级比T3大,方向为偏W向;T6数量级与T3相当,方向为偏NE向;T8数量级比T3小,方向为偏SE向。
A5站(图9e)落潮时输沙偏NW向,单宽输沙率为50~88 g·m−1·s−1;落平时单宽输沙率为32~78 g·m−1·s−1,方向自偏NW向顺时针旋转至偏SE向;涨潮时输沙偏SE向,单宽输沙率为37~105 g·m−1·s−1;涨平时单宽输沙率为7~55 g·m−1·s−1,输沙偏NW向。A5站潮平均单宽输沙率为7.7 g·m−1·s−1,方向为102°,其中,拉格朗日输沙率(T1+T2)为8.8 g·m−1·s−1,方向86°;垂向净环流的贡献项T5为2.5 g·m−1·s−1,方向208°;其他各分量数量级较小,其中T4数量级最大,方向偏E向,T3、T6、T7、T8数量级相当,T3、T7方向偏NE向,T6、T8方向偏SW向。
整体来看,渤海湾南部各站位潮平均单宽输沙率以拉格朗日输沙贡献最显著,在湾口泥质区南部和东南部水深15~25 m的海域,垂向净环流的影响较大,有抵消一部分拉格朗日输沙率的作用,且对潮平均单宽输沙率的影响比湾内和25 m以深海域的大,其中对A2站的拉格朗日输沙率的抵消作用最大,这跟A2站垂向净环流输沙率较大,且方向与拉格朗日输沙率相反有关。其他分量数量级较小,对潮平均单宽输沙率贡献较小。由于本次观测站位非同步连续观测,时间跨度较大,部分站位观测的是小潮时期的输沙率(A1、A2、A3站),另一部分站位观测的是大潮时期的输沙率(A4、A5站),因此对各站位之间输沙率的比较还需要未来进一步开展同步观测调查。
3.2 水体层化混合过程与输沙率之间的相关性
水体的垂向混合状态可以用Richardson数来体现[6, 33-34],其计算公式如下:
$$ Ri =\frac{-\left(\dfrac{g}{\rho}\right)\left(\dfrac{\partial\rho}{\partial z}\right)}{\left(\dfrac{\partial u}{\partial z}\right)^2} $$ (12) 其中,分子表示水体密度梯度导致的层化强度,分母表示水体剪切力所导致的湍动混合程度,Ri>0.25,代表水体以层化为主,Ri<0.25,代表水体以混合为主。结果如图11所示,结合图5的温盐结构来看,A1、A2、A3、A4站受近岸高温低盐水体影响,这4个站位的密度结构不稳定,层化强度和Ri值多数时刻为负,相应时刻对应的混合程度较高。Ri值整体以小于0.25为主,说明渤海湾南部海域水体以混合为主,单宽输沙率降低的时刻,与水体层化程度和Ri值增加的时刻相吻合,如A1站的0时、14时、20时,A2站的5时、18时、23时,A3站的4时、14时,A4站的5时、17时、23时,A5站的6时、11时、12时、17时、18时、22时,可见水体的层化程度加强对各站位悬浮体输运均有一定的抑制作用,这与黄河口、加利福尼亚北部的大陆架和福宁湾海域前人研究结论相符[6, 35-36]。
4. 结论
(1)受周边径流高温淡水影响,夏季渤海湾南部及黄河三角洲北部15 m以浅海域水体温度较高,盐度较低;15~20 m范围内高温淡水与低温盐水交汇,水体盐度明显升高;20 m以深海域主要受渤海中部低温高盐水舌入侵影响,水体温度偏低。高温淡水以羽状流的方式自近岸向渤海中部传输。渤海湾内和湾口处高浊度悬浮体多出现在涨急和落急时期,较高的流速对底质的再悬浮作用加强,距底5 m水深范围内SSC值较高,其中湾内和湾口的底层SSC值最高,黄河口外NE向剖面20 m以深海域SSC值最小。
(2)渤海湾泥质区南部海域夏季单宽输沙率具有潮周期性特点。湾内海域涨潮和涨平期以向湾内近岸输沙为主,落潮和落平期以向湾外输沙为主,整体以向湾内近岸输沙为主,潮平均单宽输沙率为7.8 g·m−1·s−1,方向为280°。湾口A2站涨落潮流输沙方向相反,整体以SE向朝湾外近岸输沙为主,潮平均单宽输沙率为7.2 g·m−1·s−1,方向为328°。湾外A3站涨潮和涨平时期输沙方向基本相反,大小相当,落潮和落平时期输沙方向以偏E和偏NE向为主,潮平均单宽输沙率为4.7 g·m−1·s−1,方向为77°。黄河口SE向的2个站位涨潮时输沙偏SE向,涨平时输沙偏NW向,落潮时输沙偏NW向,落平时输沙偏N向和偏NE向,两站潮平均单宽输沙率方向以偏N向为主,A4站潮平均单宽输沙率为5.2 g·m−1·s−1,方向为94°,A5站潮平均单宽输沙率为7.7 g·m−1·s−1,方向为102°。
(3)渤海湾泥质区南部各站位夏季潮平均单宽输沙率以拉格朗日输沙贡献最显著,在湾口泥质区南部和东南部水深15~25 m海域,垂向净环流的影响较大,有抵消一部分拉格朗日输沙率的作用,且对潮平均单宽输沙率的影响比湾内和25 m以深海域的大,其他分量数量级较小,对潮平均单宽输沙率贡献较小。
(4)渤海湾泥质区南部海域夏季水体以混合为主,各站位水体层化程度加强对各站位悬浮体输运均有一定的抑制作用。
-
图 1 西太平洋暖池区洋流模式及周边物源区示意图
黄色圆点代表本文提及的暖池区站位;红色实线代表28 ℃等温线;白色箭头代表表层流流向;深蓝色箭头代表底层水流向[18-19];红色箭头代表东亚冬季风,黄色箭头代表盛行西风带,紫色箭头代表澳大利亚冬季风,绿色箭头代表潜在源区沉积物的输入量。NEC:北赤道流,NECC:北赤道逆流,SEC:南赤道流,KC:黑潮,MC:棉兰老流,UCDW:上层绕极深层水,LCDW:下层绕极深层水,EAWM:东亚冬季风,PW:盛行西风带,AWM:澳大利亚冬季风。
Figure 1. Map of ocean currents and potential provenance of Western Pacific Warm Pool
Yellow dots represent stations in the Western Pacific Warm Pool mentioned in this article. The solid red line represents the 28 ℃ isotherm. The surface flow and bottom water trajectories [18-19] are shown with white and blue arrows, respectively. The East Asian Winter Monsoon, Prevailing Westerlies and Australian Winter Monsoon are shown with red, yellow, and purple arrows, respectively. Also shown are the sediment inputs from potential source areas with green arrows. NEC: North Equatorial Current, NECC: North Equatorial Counter Current, SEC: South Equatorial Current, KC: Kuroshio Current, MC: Mindanao Current, UCDW: Upper Circumpolar Deep Water, LCDW: Lower Circumpolar Deep Water, EAWM: East Asian Winter Monsoon, PW: Prevailing Westerlies, AWM: Australian Winter Monsoon.
图 2 西太平洋暖池沉积物潜在源区黏土矿物端元图
潜在源区包括亚洲大陆[33-36]、澳大利亚大陆[28]、新几内亚[7]和吕宋岛[31-32]。
Figure 2. Ternary diagram of clay minerals in sediments from the potential source areas of the Western Pacific Warm Pool
The potential source areas include Asian continent[33-36], Australia continent [28], New Guinea [7], and Luzon Island [31-32].
图 4 西太平洋暖池沉积物潜在源区石英的δ18O值-结晶度指数二元图
潜在源区包括塔克拉玛干沙漠[43-44]、蒙古戈壁[43-44]、毛乌素沙漠[43-44]、腾格里沙漠[43-44]、巴丹吉林沙漠[43-44]和火山岛弧[8]。
Figure 4. δ18O values and crystallinity index of quartz in the sediment of possible sources of the Western Pacific Warm Pool
The potential source areas include Taklimakan Desert[43-44], Mongolian Gobi[43-44], Mu Us Desert[43-44], Tengger Desert[43-44], Badain Jaran Desert[43-44], and volcanic materials[8].
图 5 西太平洋暖池与潜在源区沉积物87Sr/86Sr-εNd (0)关系图
潜在源区包括:中国黄土[59-61]、中国北方沙漠[38]、中国中西部沙漠[38]、中国东部沙漠[38]、澳大利亚大陆[62]和火山岛弧[63-80];暖池区数据包括暖池北缘[15]和暖池核心区[16]。
Figure 5. 87Sr/86Sr vs εNd (0) values of the detrital fraction of the Western Pacific Warm Pool sediments and potential source areas
The potential source areas include Chinese Loess Plateau[59-61], northern Chinese deserts[38], western and central Chinese deserts[38], eastern Chinese deserts[38], Australia continent[62], and volcanic materials[63-80]. Western Pacific Warm Pool data include the northern margin of the Western Pacific Warm Pool[15] and the core area of the Western Pacific Warm Pool[16].
表 1 西太平洋暖池区各站位指标信息
Table 1 Core locations and palaeoclimate proxies of the Western Pacific Warm Pool sites
位置 站号 位置 代用指标 时间跨度 沉积物源区 参考文献 暖池北缘 PC631 12°30′N、134°60′E 黏土矿物 600 ka 亚洲中西部沙漠与火山岛弧 [6] 暖池北缘 MD06-3047 17°00.44′N、124°47.93′E 常量元素 700 ka 火山碎屑物质和陆源风尘物质 [10] 暖池北缘 PV090510 16°47.79′N、138°5.55′E 黏土矿物 1.95 Ma 中亚大陆和马里亚纳岛弧 [5] 暖池北缘 PV090102 17°55.24′N、135°52.68′E Sr-Nd同位素 2.1 Ma 中国中西部沙漠和火山岛弧 [15] 石英 塔克拉玛干沙漠、蒙古戈壁和
火山岛弧[9] 黏土矿物 亚洲大陆和火山岛弧 [4] 黏土矿物 中国黄土和火山岛弧 [20] 暖池北缘 表层 稀土元素 主要来源于周围火山物质,
少部分陆源[13] 暖池北缘 表层 石英 塔克拉玛干沙漠、蒙古戈壁和
火山岛弧[8] 暖池西北缘 Ph05-5 16°2.96′N、124°20.69′E Sr-Nd同位素 50 ka 中国中西部沙漠、中国黄土和吕宋岛 [14] 暖池西缘 DY12 9°11.94′N、136°8.40′E 稀土元素 22 ka 新几内亚和亚洲大陆 [11] 暖池西缘 KX21-2 1°25.01′S、157°58.91′E 黏土矿物 370 ka 新几内亚 [7] 常量元素 380 ka 新几内亚 [17] 暖池西缘 MD06-3050 15°57.09′N、124°46.77′E 黏土矿物 500 ka 中国东部沙漠、黄土和火山岛弧 [21] 暖池西缘 U1489 02°07.19′ N、141°01.67′E 常量元素、稀土元素 4 Ma 主要来源于新几内亚 [12] 暖池西缘 ODP 768
ODP 769
ODP 7718°N、121°13.158′ E
8°47.136′N、121°17.652′E
8°40.692′N、120°40.782′ ESr-Nd同位素 亚洲大陆和火山岛弧 [22] 暖池西缘 表层 87Sr/ 86Sr 亚洲大陆和火山岛弧 [23] 暖池核心 PC932 5°53’N、177°26’W Sr-Nd同位素 1.1 Ma 1.2~0.9 Ma:澳大利亚大陆和中南美洲;
0.9~0.8 Ma:亚洲大陆[16] 几乎整个
暖池区DSDP 65 04°21.21'N、176°59.16'E 常量元素、稀土元素 只给出数据,未分析源区 [24] DSDP 76 14°05.90'S、145°39.64'W DSDP 166 03°45.70'N、175°04.80'W DSDP 199 13°30.80'N、156°10.30'E DSDP 288 05°58.35'S、161°49.53'E DSDP 317 11°00.09'S、162°15.78'W ODP 807 03°36.42'N、156°37.49'E ODP 869 11°00.09'N、164°44.97'E KH68-4-18-3 01°59.5'N、170°00.5'W KH68-4-20-2 02°28.4'S、169°59.7'W KH71-5-10-2 04°58.5'S、146°03.5'W KH71-5-12-3 11°01.4'S、146°01.5'W KH73-4-5 12°23.2'N、151°48'E KH73-4-9 07°49.9'S、172°48.6'E KH80-3-30 09°50.6'N、153°13.5'E KH84-1-17A 20°05.1'N、143°35'E 表 2 西太平洋暖池区沉积物潜在源区的黏土矿物组成
Table 2 Clay minerals composition of the Western Pacific Warm Pool and potential provenance
表 3 西太平洋暖池及其潜在源区沉积物常量元素组成
Table 3 Major elements composition of sediments in the Western Pacific Warm Pool and potential provenances
% SiO2 TiO2 Al2O3 FeO Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI H2O 参考文献 太平洋中部 50.14 0.56 14.54 6.49 1.33 3.22 3.12 5.46 3.36 1.70 [48] 中北太平洋 50.30 0.52 12.50 10.0 1.85 3.52 2.08 - 3.02 0.83 [48] 51.28 0.41 7.88 5.41 0.75 2.46 14.48 - 1.57 0.47 [24] 西太平洋暖池北缘 0.59 14.06 5.99 0.20 2.84 11.75 3.37 1.54 0.03 [10] 亚洲大陆(黄土) 59.32 0.67 12.47 4.788 0.089 2.13 7.23 1.42 2.43 0.15 8.73 [49] 亚洲大陆(古土壤) 61.85 0.736 13.48 5.253 0.097 2.05 4.63 1.30 2.57 0.13 7.11 [49] 吕宋岛 57.00 0.77 18.53 7.13 0.15 2.16 6.15 3.58 0.92 1.15 1.99 1.25 [50] 新几内亚 0.71 16.37 7.55 0.27 3.02 8.84 2.93 1.62 0.22 [51] 73.73 0.53 13.81 2.87 0.11 0.64 2.325 3.34 2.51 0.15 [52] 澳大利亚 49.95 0.46 10.45 4.60 0.07 1.93 13.37 0.51 2.39 0.11 [52] 表 4 西太平洋暖池及其潜在源区沉积物稀土元素组成
Table 4 REE composition of sediments in the Western Pacific Warm Pool and potential provenances
10−6 西太平洋暖池 太平洋中部 中北太平洋 亚洲大陆 吕宋岛 新几内亚 澳大利亚 核心 北缘 南缘 其他 黄土 古土壤 La 19.0 102 75.9 43.3 156.62 94.79 44.37 32.31 35.47 13 11.09 1.26 Ce 21.3 67.6 41.3 58.5 100.68 95.26 41.83 64.57 57.59 27.5 22.71 2.28 Pr 4.58 29.8 19.8 12.8 37.3 28.84 12.58 8.16 9.05 4.1 2.784 0.36 Nd 20.3 123 86.3 56.4 168.8 115.44 51.66 28.14 32.04 18.4 11.96 1.57 Sm 4.52 28.6 18.1 13.3 37.68 27.61 11.84 5.70 6.62 4.53 3.02 0.39 Eu 1.21 7.15 4.64 3.35 8.16 6.73 2.92 1.12 1.35 1.4 0.94 0.10 Gd 5.04 32.6 22.1 14.7 40.42 28.97 12.96 5.11 6.18 4.89 3.27 0.51 Tb 0.89 4.81 3.32 2.24 6.74 4.38 1.94 0.79 0.95 0.73 0.53 0.08 Dy 5.22 29.9 21.9 13.7 39.49 26.61 11.99 4.57 5.53 4.34 3.39 0.47 Ho 1.11 6.15 4.79 2.72 9.02 5.3 2.43 0.93 1.12 0.95 0.72 0.10 Er 3.31 17.4 14.1 7.54 24.08 14.85 6.91 2.61 3.09 2.63 2.05 0.27 Tm 0.50 2.37 1.95 1.03 3.41 2.05 0.96 0.43 0.50 0.29 0.036 Yb 3.09 14.6 12.2 6.72 20.72 12.87 6.12 2.70 3.09 2.4 2.05 0.21 Lu 0.47 2.19 1.91 1.03 3.15 1.93 0.92 0.41 0.46 0.37 0.31 0.03 Y 39.9 186 175 70.8 334.81 144.37 68.28 29.17 34.23 28 21.05 3.60 参考文献 [24] [48] [48] [24] [49] [49] [50] [51] [58] -
[1] Webster P J, Magana V O. Monsoons: Processes, predictability, and the prospects for prediction[J]. Journal of Geophysical Research-Atmospheres, 1998, 103: 14451-14510. doi: 10.1029/97JC02719
[2] Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297: 222-226. doi: 10.1126/science.1071627
[3] Visser K, Thunell R, Stott L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation[J]. Nature, 2003, 421: 152-155. doi: 10.1038/nature01297
[4] 颜钰, 蒋富清, 曾志刚, 等. 近2.1 Ma以来帕里西-维拉海盆黏土矿物输入变化及其对中更新世气候转型的响应[J]. 海洋地质与第四纪地质, 2022, 42(6): 150-161 YAN Yu, JIANG Fuqing, ZENG Zhigang, et al. Variations in clay mineral input in the Parece Vela Basin since the last 2.1 Ma and their response to the mid-Pleistocene transition[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 150-161.
[5] Ming J, Li A, Huang J, et al. Assemblage characteristics of clay minerals and its implications to evolution of eolian dust input to the Parece Vela Basin since 1.95 Ma[J]. Chinese Journal of Oceanology and Limnology, 2014, 32: 174-186. doi: 10.1007/s00343-014-3066-x
[6] Seo I, Lee Y I, Yoo C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust[J]. Journal of Geophysical Research-Atmospheres, 2014, 119: 11492-11504. doi: 10.1002/2014JD022025
[7] Wu J, Liu Z, Zhou C. Late Quaternary glacial cycle and precessional period of clay mineral assemblages in the Western Pacific Warm Pool[J]. Chinese Science Bulletin, 2012, 57: 3748-3760. doi: 10.1007/s11434-012-5277-x
[8] 朱潇, 蒋富清, 冯旭光, 等. 菲律宾海沉积物中石英的来源及其搬运方式[J]. 海洋与湖沼, 2018, 49(6): 1190-1202 ZHU Xiao, JIANG Fuqing, Feng Xuguang, et al. The provenance and transportation of quartz in the Philippine Sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(6): 1190-1202.
[9] Yan Y, Jiang F Q, Zeng Z G, et al. Response of eolian quartz in the Parece Vela Basin sediment to the mid-Pleistocene transition[J]. Journal of Asian Earth Sciences, 2022, 236(15): 105332. doi: 10.1016/j.jseaes.2022.105332
[10] 徐兆凯, 李铁刚, 于心科, 等. 近700 ka来西菲律宾海沉积物来源和东亚冬季风演化的常量元素记录[J]. 科学通报, 2013, 58(11): 1048-1056 doi: 10.1360/csb2013-58-11-1048 XU Zhaokai, LI Tiegang, YU Xinke, et al. Sediment provenance and evolution of the East Asian winter monsoon since 700 ka recorded by major elements in the West Philippine Sea[J]. Chinese Science Bulletin, 2013, 58(11): 1048-1056. doi: 10.1360/csb2013-58-11-1048
[11] Liu J, Yan W, Xu W, et al. Sediment provenance in the western Pacific warm pool from the last glacial maximum to the early Holocene: Implications for ocean circulation and climatic change[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2018, 493: 55-63. doi: 10.1016/j.palaeo.2017.12.040
[12] Peng N, Dang H, Wu J, et al. Tectonic and climatic controls on the Plio-Pleistocene evolution of sediment discharge from Papua New Guinea[J]. Marine Geology, 2021, 441: 106627. doi: 10.1016/j.margeo.2021.106627
[13] 徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海沉积物的地球化学特征与物质来源[J]. 科学通报, 2008, 53: 695-702 XU Zhaokai, LI Anchun, JIANG Fuqing, et al. The geochemical characteristics and material sources in the eastern Philippine Sea[J]. Chinese Science Bulletin, 2008, 53: 695-702.
[14] Jiang F, Zhou Y, Nan Q, et al. Contribution of Asian dust and volcanic material to the western Philippine Sea overthe last 220 kyr as inferred from grain size and Sr-Nd isotopes[J]. Journal of Geophysical Research-Oceans, 2016, 121: 6911-6928. doi: 10.1002/2016JC012000
[15] Jiang F Q, Zhu X, Li T G, et al. Increased dust deposition in the Parece Vela Basin since the mid-Pleistocene inferred from radiogenic Sr and Nd isotopes[J]. Global and Planetary Change, 2019, 173: 83-95. doi: 10.1016/j.gloplacha.2018.12.011
[16] Seo I, Lee Y I, Kim W, et al. Movement of the Intertropical Convergence Zone during the mid-pleistocene transition and the response of atmospheric and surface ocean circulations in the central equatorial Pacific[J]. Geochemistry Geophysics Geosystems, 2015, 16: 3973-3981. doi: 10.1002/2015GC006077
[17] Wu J, Liu Z, Zhou C. Provenance and supply of Fe-enriched terrigenous sediments in the western equatorial Pacific and their relation to precipitation variations during the late Quaternary[J]. Global and Planetary Change, 2013, 108: 56-71. doi: 10.1016/j.gloplacha.2013.06.002
[18] Lee I T, Ogawa Y. Bottom-current deposits in the Miocene-Pliocene Misaki Formation, Izu forearc area, Japan[J]. Island Arc, 1998, 7(3): 315-329. doi: 10.1111/j.1440-1738.1998.00192.x
[19] Kawabe M, Fujio S, Yanagimoto D, et al. Water masses and currents of deep circulation southwest of the Shatsky Rise in the western North Pacific[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(10): 1675-1687. doi: 10.1016/j.dsr.2009.06.003
[20] 靳宁. 帕里西维拉海盆西北部海域粘土矿物分布特征研究[D]. 青岛: 中国科学院海洋研究所, 2006 JIN Ning. Clay mineral distribution in the sediments of the northwest Parece Vela Basin[D]. QingDao: Institute of Oceanology, Chinese Academy of Sciences, 2006.
[21] Wan S, Yu Z, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2012, 326-328(2): 152-159.
[22] Mahoney J B. Nd and Sr isotopic signatures of fine-grained clastic sediments: A case study of western Pacific marginal basins[J]. Sedimentary Geology, 2005, 182: 183-199. doi: 10.1016/j.sedgeo.2005.07.009
[23] Asahara Y, Tanaka T, Kamioka H, et al. Asian continental nature of 87Sr/ 86Sr ratios in North Central Pacific sediments[J]. Earth and Planetary Science Letters, 1995, 133: 105-116. doi: 10.1016/0012-821X(95)00048-H
[24] Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4: 535-539. doi: 10.1038/ngeo1185
[25] Yan X H, Ho C R, Zheng Q N. Temperature and size variabilities of the Western Pacific Warm Pool[J]. Science, 1992, 258(5088): 1643-1645. doi: 10.1126/science.258.5088.1643
[26] Rosenthal Y, Holbourn A E, Kulhanek D K, et al. Western Pacific Warm Pool[C]//Proceedings of the International Ocean Discovery Program. College Station, TX: International Ocean Discovery Program, 2018: 1-42.https://doi.org/10.14379/iodp.proc.363. 2018.
[27] Stuut J B W, De Deckker P, Saavedra-Pellitero M, et al. A 5.3-million-year history of monsoonal precipitation in northwestern Australia[J]. Geophysical Research Letters, 2019, 46(12): 6946-6954. doi: 10.1029/2019GL083035
[28] Gingele F X, Deckker P D, Hillenbrand C D. Clay mineral distribution in surface sediments between Indonesia and NW Australia——source and transport by ocean currents[J]. Marine Geology, 2001, 179: 135-146. doi: 10.1016/S0025-3227(01)00194-3
[29] Middleton A W, Uysal I T, Golding S D. Chemical and mineralogical characterisation of illite-smectite: Implications for episodic tectonism and associated fluid flow, central Australia[J]. Geochimica et Cosmochimica Acta, 2015, 148: 284-303. doi: 10.1016/j.gca.2014.09.035
[30] Baludikay B K, François C, Sforna M C, et al. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia) [J]. International Journal of Coal Geology, 2018, 191: 80-94. doi: 10.1016/j.coal.2018.03.007
[31] Liu Z, Tuo S, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation[J]. Marine Geology, 2008, 255(3-4): 149-155. doi: 10.1016/j.margeo.2008.08.003
[32] Liu Z, Zhao Y, Colin C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry, 2009, 24(11): 2195-2205. doi: 10.1016/j.apgeochem.2009.09.025
[33] Wan S, Li A, Clift P D, et al. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 254(3-4): 561-582. doi: 10.1016/j.palaeo.2007.07.009
[34] 郑洪汉. 中国黄土中粘土矿物的古气候记录[J]. 第四纪研究, 1985, 6(2): 41-47 ZHENG Honghan. Paleoclimatic records of Clay minerals in loess, China[J]. Quaternary Sinica, 1985, 6(2): 41-47.
[35] 师育新, 戴雪荣, 李节通, 等. 末次间冰期兰州黄土记录中的粘土矿物及其环境意义探讨[J]. 海洋地质与第四纪地质, 1997, 17(1): 87-94 SHI Yuxin, DAI Xuerong, LI Jietong, et al. Origin and significance of clay minerals in the last interglacial loess in LanZhpu area, North Central China[J]. Marine Geology & Quaternary Geology, 1997, 17(1): 87-94.
[36] 师育新, 戴雪荣, 宋之光, 等. 我国不同气候带黄土中粘土矿物组合特征分析[J]. 沉积学报, 2005, 23(4): 690-695 doi: 10.3969/j.issn.1000-0550.2005.04.019 SHI Yuxin, DAI Xuerong, SONG Zhiguang, et al. Characteristics of clay mineral assemblages and their spatial distribution of Chinese loess in different climatic zones[J]. Acta Sedimentologica Sinica, 2005, 23(4): 690-695. doi: 10.3969/j.issn.1000-0550.2005.04.019
[37] Ji J, Chen J, Lu H. Luochuan area, Loess Plateau, Central China[J]. Clays and Clay Minerals, 1999, 34: 525-532. doi: 10.1180/000985599546398
[38] Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust[J]. Geochemistry Geophysics Geosystems, 2007, 71: 3904-3914.
[39] Shen Z, Li X, Cao J, et al. Characteristics of clay minerals in asian dust and their environmental significance[J]. China Particuology, 2005, 3(5): 260-264. doi: 10.1016/S1672-2515(07)60198-5
[40] Biscaye P E. Mineralogy and sedementation of recent deep-sea clay in Atlantic ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803-825. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
[41] Hou S S, Yang S L, Sun J M, et al. Oxygen isotope compositions of quartz grains (4-16μm) from Chinese eolian deposits and their implications for provenance[J]. Science in China Series D: Earth Sciences, 2003, 46(10): 1003-1011.
[42] Chacko T, Cole D R, Horita J. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 1-81. doi: 10.2138/gsrmg.43.1.1
[43] Yan Y, Sun Y B, Chen H Y, et al. Oxygen isotope signatures of quartz from major Asian dust sources: Implications for changes in the provenance of Chinese loess[J]. Geochimica et Cosmochimica Acta, 2014, 139: 399-410. doi: 10.1016/j.gca.2014.04.043
[44] Sun Y B, Chen H Y, Tada R, et al. ESR signal intensity and crystallinity of quartz from Gobi and sandy deserts in East Asia and implication for tracing Asian dust provenance[J]. Geochemistry Geophysics Geosystems, 2013, 14(8): 2615-2627. doi: 10.1002/ggge.20162
[45] Taylor S R, Mclennan S M. The Continental Crust: Its composition and evolution, An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific Publications, 1985: 1-372.
[46] Norman M D, Deckker P D. Trace metals in lacustrine and marine sediments: A case study from the Gulf of Carpentaria, northern Australia[J]. Chemical Geology, 1990, 82(3-4): 299-318.
[47] Cha H J, Choi M S, Lee C B, et al. Geochemistry of surface sediments in the southwestern East/Japan Sea[J]. Journal of Asian Earth Sciences, 2007, 29: 685-697. doi: 10.1016/j.jseaes.2006.04.009
[48] 朱克超, 任江波, 王海峰, 等. 太平洋中部富REY深海粘土的地球化学特征及REY富集机制[J]. 地球科学: 中国地质大学学报, 2015, 40(6): 1052-1060 doi: 10.3799/dqkx.2015.087 ZHU Kechao, REN Jiangbo, WANG Haifeng, et al. Enrichment mechanism of REY and geochemical characteristics of REY-Rich pelagic clay from the Central Pacific[J]. Earth Science: Journal of China University of Geosciences, 2015, 40(6): 1052-1060. doi: 10.3799/dqkx.2015.087
[49] Gallet S, Jahn B, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications[J]. Chemical Geology, 1996, 133(1-4): 67-88. doi: 10.1016/S0009-2541(96)00070-8
[50] Marini J C, Chauvel C, René C M. Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source[J]. Contributions to Mineralogy & Petrology, 2005, 149(2): 216-232. doi: 10.1007/s00410-004-0645-4
[51] 林刚, 陈琳莹, 罗敏, 等. 西太平洋新不列颠海沟表层沉积物的地球化学特征及其物源指示[J]. 海洋地质与第四纪地质, 2019, 39(3): 12-27 LIN Gang, CHEN Linying, LUO Min, et al. The geochemical characteristics of the surface sediments in the New Britain Trench of the Western Pacific Ocean and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 12-27.
[52] Horz K H, Worthington T J, Winn K, et al. Late Quaternary tephra in the New Ireland Basin, Papua New Guinea[J]. Journal of Volcanology & Geothermal Research, 2004, 132(1): 73-95. doi: 10.1016/S0377-0273(03)00421-9
[53] 徐兆凯, 李安春, 李铁刚, 等. 东菲律宾海表层沉积物常量元素组成及地质意义[J]. 海洋地质与第四纪地质, 2010, 30(6): 43-48 XU Zhaokai, LI Anchun, LI Tiegang, et al. Major element compositions of surface sediments in the east Philippine Sea and its geologica implication[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 43-48.
[54] 徐兆凯, 常凤鸣, 李铁刚, 等. 24ka来冲绳海槽北部沉积物来源的高分辨率常量元素记录[J]. 海洋地质与第四纪地质, 2012, 32(4): 73-82 XU Zhaokai, CHANG Fengming, LI Tiegang, et al. Provenance of sediments in the northern Okinawa Trough over the last 24 ka: high resolution record from major elements [J]. Marine Geology & Quaternary Geology, 2012, 32(4): 73-82.
[55] Rollinson H R. Using geochemical data: evalution, presentation, interpretation[M]. Singapore: Longman Singapur Press, 1993: 1-343.
[56] 蓝先洪, 张志珣, 王中波, 等. 东海外陆架晚第四纪沉积物的稀土元素组成及物源示踪[J]. 地球学报, 2014, 35(3): 305-313 LAN Xianhong, ZHANG Zhixun, WANG Zhongbo, et al. Distribution of rare earth elements in late Quaternary sediments on the outer shelf of the East China Sea and their source tracing[J]. Acta Geoscientia Sinica, 2014, 35(3): 305-313.
[57] 曹鹏, 石学法, 李魏然, 等. 安达曼海东南部海域表层沉积物稀土元素特征及其物源指示意义[J]. 海洋地质与第四纪地质, 2015, 35(5): 57-67 CAO Peng, SHI Xuefa, LI Weiran, et al. Rare earth element geochemistry of surface sediments in southeastern Andaman Sea and implications for provenance[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 57-67.
[58] Janssen C, Laube N, Bau M, et al. Fluid regime in faulting deformation of the Waratah Fault Zone, Australia, as inferred from major and minor element analyses and stable isotopic signatures[J]. Tectonophysics, 1998, 294(1-2): 109-130. doi: 10.1016/S0040-1951(98)00127-9
[59] Sun Y, An Z. Late Pliocene-Pleistocene changes in mass accumulation rates ofeolian deposits on the central Chinese Loess Plateau[J]. Journal of Geophysical Research, 2005, 110: D23101. doi: 10.1029/2005JD006064
[60] Wang Y X, Yang J D, Chen J, et al. The Sr and Nd isotopicvariations of the Chinese Loess Plateau during the past 7 Ma: implications for the EastAsian winter monsoon and source areas of loess[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 249: 351-361. doi: 10.1016/j.palaeo.2007.02.010
[61] Chen Z, Li G. Evolving sources of eolian detritus on the Chinese Loess Plateausince early Miocene: Tectonic and climatic controls[J]. Earth and Planetary Science Letters, 2013, 371-372: 220-225. doi: 10.1016/j.jpgl.2013.03.044
[62] Deckker D P. Airborne dust traffic from Australia in modern and Late Quaternary times[J]. Global and Planetary Change, 2020, 184: 103056. doi: 10.1016/j.gloplacha.2019.103056
[63] Bloomer S H, Hawkins J W. Petrology and geochemistry of boninite seriesvolcanic rocks from the Mariana Trench[J]. Contributions to Mineralogy and Petrology, 1987, 97: 361-377. doi: 10.1007/BF00371999
[64] Brounce M N, Kelley K A, Cottrell E. Variations in Fe3+ /ΣFe of Mariana arcbasalts and mantle wedgeƒO2[J]. Journal of Petrology, 2014, 55(12): 2513-2536. doi: 10.1093/petrology/egu065
[65] Fryer P B, Sinton J M, Philpotts J A. Basaltic glasses from the Mariana Trough [C]//Initial Reports of the Deep Sea Drilling Project, 60. Washington: US Government Printing Office, 1981: 601-609.
[66] Gribble R F, Stern R J, Bloomer S H, et al. MORB mantle and subduction components interact to generate basalts in thesouthern Mariana Trough back-arc basin[J]. Geochimica et Cosmochimica Acta, 1996, 60: 2153-2166. doi: 10.1016/0016-7037(96)00078-6
[67] Gribble R F, Stern R J, Newman S, et al. Chemical andisotopic composition of lavas from the northern Mariana Trough: implications formagmagenesis in back-arc basins[J]. Journal of Petrology, 1998, 39: 125-154. doi: 10.1093/petroj/39.1.125
[68] Hart S R, Glassley W E, Karig D E. Basalts and sea foor spreading behind theMariana island arc[J]. Earth and Planetary Science Letters, 1972, 15: 12-18. doi: 10.1016/0012-821X(72)90023-4
[69] Hawkins J W, Lonsdale P F, Macdougall J D, et al. Petrology of theaxial ridge of the Mariana Trough back-arc spreading center[J]. Earth and Planetary Science Letters, 1990, 100: 226-250. doi: 10.1016/0012-821X(90)90187-3
[70] Lonsdale P, Hawkins, J. Silicic volcanism at an of-axis geothermal feld inthe Mariana Trough back-arc basin[J]. Geological Society of America Bulletin, 1985, 96: 940-951. doi: 10.1130/0016-7606(1985)96<940:SVAAOG>2.0.CO;2
[71] Mattey D P, Marsh N G, Tarney J. The geochemistry, mineralogy and petrologyof basalts from the west Philippine and Parece Vela Basins and from the Palau-Kyushuand West Mariana Ridges, deep sea drilling Project Leg 59[C]//Initial Reports of the Deep Sea Drilling Project, 59. Washington: US Government Printing Office, 1981: 753-802.
[72] Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of theMariana arc-basin system: implications for the nature and distribution of subduction components[J]. Geochemistry Geophysics Geosystems, 2005, 6(7): 542-557.
[73] Reagan M K, Meijer A. Geology and geochemistry of early arc-volcanic rocksfrom Guam[J]. Geological Society of America Bulletin, 1984, 95: 701-713. doi: 10.1130/0016-7606(1984)95<701:GAGOEA>2.0.CO;2
[74] Sinton J M, Fryer P B. Mariana Trough lavas from 18°N: implications for theorigin of back arc basin basalts[J]. Journal of Geophysical Research, 1987, B92: 12782-12802.
[75] Stern R J, Morris J D, Bloomer S M, et al. The source of the sub-duction component in convergent margin magmas: trace element and radiogenicisotope evidence from Eocene boninites, Mariana forearc[J]. Geochimica et Cosmochimica Acta, 1991, 55: 1467-1481. doi: 10.1016/0016-7037(91)90321-U
[76] Stern R J, Tamura Y, Masuda H, et al. How the Mariana volcanic arc ends in the south[J]. Island Arc, 2013, 22: 133-148. doi: 10.1111/iar.12008
[77] Straub S M. Contrasting compositions of Mariana Trough fallout tephra and Mariana island arc volcanics: a fractional crystallization link[J]. Bulletin of Volcanology, 1995, 57: 403-421. doi: 10.1007/BF00300985
[78] Straub S M. Multiple sources of quaternary tephra layers in the Mariana Trough[J]. Journal of Volcanology and Geothermal Research, 1997, 76: 251-276. doi: 10.1016/S0377-0273(96)00075-3
[79] Volpe A M, Macdougall J D, Hawkins J W. Mariana Trough basalts (MTB) traceelement and Sr-Nd isotopic evidence for mixing between MORB-like and Arc-likemelts[J]. Earth and Planetary Science Letters, 1987, 82: 241-254. doi: 10.1016/0012-821X(87)90199-3
[80] Volpe A M, Macdougall J D, Lugmair G W, et al. Fine-scale isotopic variation in Mariana Trough basalts: evidence for heterogeneity and arecycled component in backarc basin mantle[J]. Earth And Planetary Science Letters, 1990, 100: 251-264. doi: 10.1016/0012-821X(90)90188-4