西太平洋暖池区沉积物源示踪研究进展

颜钰, 蒋富清, 曾志刚

颜钰,蒋富清,曾志刚. 西太平洋暖池区沉积物源示踪研究进展[J]. 海洋地质与第四纪地质,2023,43(5): 148-159. DOI: 10.16562/j.cnki.0256-1492.2023071402
引用本文: 颜钰,蒋富清,曾志刚. 西太平洋暖池区沉积物源示踪研究进展[J]. 海洋地质与第四纪地质,2023,43(5): 148-159. DOI: 10.16562/j.cnki.0256-1492.2023071402
YAN Yu,JIANG Fuqing,ZENG Zhigang. Research progress of tracing sediment sources in the Western Pacific Warm Pool[J]. Marine Geology & Quaternary Geology,2023,43(5):148-159. DOI: 10.16562/j.cnki.0256-1492.2023071402
Citation: YAN Yu,JIANG Fuqing,ZENG Zhigang. Research progress of tracing sediment sources in the Western Pacific Warm Pool[J]. Marine Geology & Quaternary Geology,2023,43(5):148-159. DOI: 10.16562/j.cnki.0256-1492.2023071402

西太平洋暖池区沉积物源示踪研究进展

基金项目: 国家自然科学基金“西太平洋暖池8.5 Ma以来风尘输入变化及其古气候效应”(42076049),“西太平洋俯冲体系中岩浆活动及其对热液物质供给的制约”(91958213),“深海界面过程和化能生态系统”(42221005);崂山实验室科技创新项目“新生代西太平洋环境演化的沉积记录及机制”(LSKJ20224200);中国科学院战略性先导科技专项“印太交汇区海洋物质能量中心形成演化过程与机制”(XDB42000000),“热液/冷泉区岩浆物质贡献与流体化学过程”(XDB42020402);泰山学者工程专项(ts201511061)
详细信息
    作者简介:

    颜钰(1996—),女,博士,主要从事海洋沉积学研究,E-mail:yanyu@qdio.ac.cn

    通讯作者:

    蒋富清(1972—),男,研究员,主要从事海洋沉积学研究,E-mail:fqjiang@qdio.ac.cn

  • 中图分类号: P736

Research progress of tracing sediment sources in the Western Pacific Warm Pool

  • 摘要: 从沉积物中提取示踪指标是研究西太平洋暖池区古环境和古气候演化的有效途径之一,而准确识别沉积物的源区是其中的关键。目前已通过不同的物源示踪指标,如黏土矿物、石英单矿物、常量元素、稀土元素以及碎屑组分的放射性成因Sr-Nd同位素等,对西太平洋暖池北部和西部第四纪以来的沉积物来源进行了研究,结果表明暖池区沉积物主要来源于亚洲大陆和火山岛弧,部分来源于澳大利亚和/或新几内亚。本文系统归纳和总结了上述示踪指标在西太平洋暖池区的物源研究进展和成果,以及研究中存在的问题,并对西太平洋暖池沉积物源研究提出了几点建议。
    Abstract: Extracting tracer indicators from sediments is one of the effective ways to study the paleoenvironment and paleoclimate evolution in the Western Pacific Warm Pool (WPWP), and the key is to accurately identify the source region of sediments. The sources of sediments in the northern and western WPWP since the Quaternary have been studied using different source tracers, such as clay minerals, quartz, major elements, REE and Sr-Nd isotope of clastic components. Results show that the sediments of the WPWP originate mainly from the Asian continent and volcanic island arcs, and some originate from Australia and/or New Guinea. This paper systematically summarizes the sources and tracing methods of sediments in the WPWP, points out the issues in the current researches, and puts forward the prospects for the identification of sediment sources in the future.
  • 西太平洋暖池区是全球海洋能量最集中的区域,对调节现代全球气候发挥着极为重要的作用[1-3],同时作为亚洲大陆沉积物重要的“汇”又可以为源区气候变化提供高分辨率且连续的沉积记录。其巨厚的沉积物记录了晚新生代以来众多分辨率较高的海洋环境变化信息(海平面变化、热带辐合带(ITCZ)迁移历史等),使西太平洋暖池区成为研究晚新生代古气候和古环境演化的理想海区。

    已有研究者开展了暖池区黏土矿物[4-7]、石英单矿物[8-9]、常量元素[10]、稀土元素[11-13]以及同位素[6, 14-16]等指标的研究,并取得了丰硕的成果(表1图1)。目前大部分研究者认为暖池区沉积物主要来源于亚洲大陆和火山岛弧,尽管不同区域的具体物源组成往往存在显著差异[7, 16, 17]。目前对暖池区沉积物源区的研究主要集中在北缘和西缘,时间跨度也较短,尚缺乏较长时间跨度的研究(表1)。

    表  1  西太平洋暖池区各站位指标信息
    Table  1.  Core locations and palaeoclimate proxies of the Western Pacific Warm Pool sites
    位置 站号 位置 代用指标 时间跨度 沉积物源区 参考文献
    暖池北缘 PC631 12°30′N、134°60′E 黏土矿物 600 ka 亚洲中西部沙漠与火山岛弧 [6]
    暖池北缘 MD06-3047 17°00.44′N、124°47.93′E 常量元素 700 ka 火山碎屑物质和陆源风尘物质 [10]
    暖池北缘 PV090510 16°47.79′N、138°5.55′E 黏土矿物 1.95 Ma 中亚大陆和马里亚纳岛弧 [5]
    暖池北缘 PV090102 17°55.24′N、135°52.68′E Sr-Nd同位素 2.1 Ma 中国中西部沙漠和火山岛弧 [15]
    石英 塔克拉玛干沙漠、蒙古戈壁和
    火山岛弧
    [9]
    黏土矿物 亚洲大陆和火山岛弧 [4]
    黏土矿物 中国黄土和火山岛弧 [20]
    暖池北缘 表层 稀土元素 主要来源于周围火山物质,
    少部分陆源
    [13]
    暖池北缘 表层 石英 塔克拉玛干沙漠、蒙古戈壁和
    火山岛弧
    [8]
    暖池西北缘 Ph05-5 16°2.96′N、124°20.69′E Sr-Nd同位素 50 ka 中国中西部沙漠、中国黄土和吕宋岛 [14]
    暖池西缘 DY12 9°11.94′N、136°8.40′E 稀土元素 22 ka 新几内亚和亚洲大陆 [11]
    暖池西缘 KX21-2 1°25.01′S、157°58.91′E 黏土矿物 370 ka 新几内亚 [7]
    常量元素 380 ka 新几内亚 [17]
    暖池西缘 MD06-3050 15°57.09′N、124°46.77′E 黏土矿物 500 ka 中国东部沙漠、黄土和火山岛弧 [21]
    暖池西缘 U1489 02°07.19′ N、141°01.67′E 常量元素、稀土元素 4 Ma 主要来源于新几内亚 [12]
    暖池西缘 ODP 768
    ODP 769
    ODP 771
    8°N、121°13.158′ E
    8°47.136′N、121°17.652′E
    8°40.692′N、120°40.782′ E
    Sr-Nd同位素 亚洲大陆和火山岛弧 [22]
    暖池西缘 表层 87Sr/ 86Sr 亚洲大陆和火山岛弧 [23]
    暖池核心 PC932 5°53’N、177°26’W Sr-Nd同位素 1.1 Ma 1.2~0.9 Ma:澳大利亚大陆和中南美洲;
    0.9~0.8 Ma:亚洲大陆
    [16]
    几乎整个
    暖池区
    DSDP 65 04°21.21'N、176°59.16'E 常量元素、稀土元素 只给出数据,未分析源区 [24]
    DSDP 76 14°05.90'S、145°39.64'W
    DSDP 166 03°45.70'N、175°04.80'W
    DSDP 199 13°30.80'N、156°10.30'E
    DSDP 288 05°58.35'S、161°49.53'E
    DSDP 317 11°00.09'S、162°15.78'W
    ODP 807 03°36.42'N、156°37.49'E
    ODP 869 11°00.09'N、164°44.97'E
    KH68-4-18-3 01°59.5'N、170°00.5'W
    KH68-4-20-2 02°28.4'S、169°59.7'W
    KH71-5-10-2 04°58.5'S、146°03.5'W
    KH71-5-12-3 11°01.4'S、146°01.5'W
    KH73-4-5 12°23.2'N、151°48'E
    KH73-4-9 07°49.9'S、172°48.6'E
    KH80-3-30 09°50.6'N、153°13.5'E
    KH84-1-17A 20°05.1'N、143°35'E
    下载: 导出CSV 
    | 显示表格
    图  1  西太平洋暖池区洋流模式及周边物源区示意图
    黄色圆点代表本文提及的暖池区站位;红色实线代表28 ℃等温线;白色箭头代表表层流流向;深蓝色箭头代表底层水流向[18-19];红色箭头代表东亚冬季风,黄色箭头代表盛行西风带,紫色箭头代表澳大利亚冬季风,绿色箭头代表潜在源区沉积物的输入量。NEC:北赤道流,NECC:北赤道逆流,SEC:南赤道流,KC:黑潮,MC:棉兰老流,UCDW:上层绕极深层水,LCDW:下层绕极深层水,EAWM:东亚冬季风,PW:盛行西风带,AWM:澳大利亚冬季风。
    Figure  1.  Map of ocean currents and potential provenance of Western Pacific Warm Pool
    Yellow dots represent stations in the Western Pacific Warm Pool mentioned in this article. The solid red line represents the 28 ℃ isotherm. The surface flow and bottom water trajectories [18-19] are shown with white and blue arrows, respectively. The East Asian Winter Monsoon, Prevailing Westerlies and Australian Winter Monsoon are shown with red, yellow, and purple arrows, respectively. Also shown are the sediment inputs from potential source areas with green arrows. NEC: North Equatorial Current, NECC: North Equatorial Counter Current, SEC: South Equatorial Current, KC: Kuroshio Current, MC: Mindanao Current, UCDW: Upper Circumpolar Deep Water, LCDW: Lower Circumpolar Deep Water, EAWM: East Asian Winter Monsoon, PW: Prevailing Westerlies, AWM: Australian Winter Monsoon.

    本文旨在回顾西太平洋暖池区代表性地质记录,重点从不同示踪指标所指示的暖池区沉积物的来源出发,分析不同古气候示踪指标记录源区变化的异同,探讨暖池区沉积物来源研究中存在的问题,以期获得关于西太平洋暖池区沉积物来源的更全面的认识,并为后续的研究工作提供建议和展望。

    西太平洋暖池区一般指热带西太平洋多年平均海表温度(SST)在28 ℃以上的暖水区[25]图1)。该区域北邻亚洲大陆,南邻澳大利亚大陆,东部与南、北美洲隔东太平洋相望,可能成为这些大陆风尘物质的“汇”;此外,西太平洋暖池区还与南沙群岛、美拉尼西亚群岛等岛屿相接,可能接收这些岛屿河流输入的物质。西太平洋暖池区沉积环境相对稳定[26],沉积物中蕴含着丰富的区域环境以及全球气候变化信息,这些信息通过黏土矿物[4-7]、石英单矿物[8-9]、常量元素[10]、稀土元素[11-13]以及同位素[6, 14-16]等记录下来。

    暖池区洋流系统非常复杂,南赤道流(SEC)可将南太平洋热带水(SPTW)和南极中层水(AAIW)输送至暖池区,并在澳大利亚南岸分叉形成向北的新几内亚沿岸流和向南的东澳大利亚流。北赤道流(NEC)在菲律宾沿岸也会分叉形成向北的黑潮(KC)和向南的棉兰老流(MC)。除了对暖池形成非常重要的南北赤道流,暖池区还有北赤道逆流(NECC)、南赤道逆流(SECC)、上层绕极深层水(UCDW)、下层绕极深层水(LCDW)、赤道潜流(EUC)、次表层南赤道逆流(SSCC)、次表层北赤道逆流(NSCC)和赤道中层流(EIC)等一系列洋流,这些洋流不仅对热量的输送意义重大,而且对沉积物的搬运也可能起着一定的作用。暖池区风场也比较复杂,东亚冬季风和盛行西风可以将来源于亚洲大陆的沉积物携带至暖池区并沉降下来[9, 15];澳大利亚季风可以将来源于澳大利亚的沉积物输送至暖池区[27];此外,东北信风和东南信风也可以将中南美洲的沉积物搬运至暖池区[16]

    复杂的地理位置、洋流系统和风场等决定了西太平洋暖池区沉积物的来源也相对复杂。已有研究表明,西太平洋暖池区风尘沉积物主要来源于亚洲大陆,尤其是中国中西部沙漠和中国东部沙漠[6, 15],中国黄土对暖池区风尘沉积物也有一定量的贡献[21]。新几内亚这一降水丰富的地区也会通过河流向西太平洋暖池输送陆源碎屑物质[7]。中南美洲与西太平洋暖池隔东太平洋相望,因此,中南美洲的沉积物可以通过风等搬运介质到达西太平洋暖池区[16]。另外,由于澳大利亚位于澳大利亚冬季风的上风向,澳大利亚也可以将沉积物输送至西太平洋暖池区[16]。除以上源区外,构造活动对暖池区沉积物的来源也产生了很大的影响,由于晚新生代以来火山活动频发[14],因而研究区附近的火山岛弧物质也会向西太平洋暖池提供一定量的碎屑沉积物[6, 9, 14-15]

    目前,大部分研究者认为西太平洋暖池区黏土矿物主要来源于亚洲大陆和火山岛弧[5-6],其西南部物源还包括新几内亚[7],各物源区黏土矿物含量见表2。不同源区的黏土矿物组合有不同的特征(图2),其中澳大利亚大陆高岭石含量较高[28],伊利石结晶度指数较高,变化范围为0.38°~1.48°Δ2θ[29-30];新几内亚和吕宋岛蒙皂石含量较高,伊利石和绿泥石含量较低[7, 31-32];亚洲大陆的伊利石和绿泥石含量较高[33-36],伊利石结晶度指数较低,变化范围为0.22°~0.42°Δ2θ[37]。亚洲大陆还可以进一步划分为中国中西部沙漠、中国北方沙漠和中国东部沙漠3个风尘源区[38],这3个风尘源区黏土矿物的组成也存在一定的差异[39]图3)。中国中西部沙漠伊利石/高岭石比值(平均为9.4)较高,高岭石/绿泥石比值(平均为0.4)较低;中国东部沙漠伊利石/高岭石比值(平均为5.0)较低,高岭石/绿泥石比值(平均为0.7)较高;中国北方沙漠伊利石/高岭石比值(平均为8.2)和高岭石/绿泥石比值(平均为0.6)介于中国中西部沙漠和中国东部沙漠之间。

    表  2  西太平洋暖池区沉积物潜在源区的黏土矿物组成
    Table  2.  Clay minerals composition of the Western Pacific Warm Pool and potential provenance
    伊利石/%蒙皂石/%绿泥石/%高岭石/%参考文献
    亚洲大陆6732010[33]
    6731911[35]
    6732010[36]
    6714109[34]
    澳大利亚大陆24171445[28]
    新几内亚117388[7]
    吕宋岛18829[31]
    18649[32]
    注:黏土矿物含量均已经过Biscay(1965)因子校正[40]
    下载: 导出CSV 
    | 显示表格
    图  2  西太平洋暖池沉积物潜在源区黏土矿物端元图
    潜在源区包括亚洲大陆[33-36]、澳大利亚大陆[28]、新几内亚[7]和吕宋岛[31-32]
    Figure  2.  Ternary diagram of clay minerals in sediments from the potential source areas of the Western Pacific Warm Pool
    The potential source areas include Asian continent[33-36], Australia continent [28], New Guinea [7], and Luzon Island [31-32].
    图  3  亚洲大陆不同源区高岭石/绿泥石比值-伊利石/高岭石比值二元图[39]
    Figure  3.  Kaolinite to chlorite ratio versus illite to kaolinite ratio from different sources of the Asian continent [39]

    目前,对黏土矿物的源区识别主要以黏土矿物含量、黏土矿物特征参数及黏土矿物含量比值为主,以黏土矿物形貌特征和能谱分析为辅。大部分研究者认为暖池区黏土矿物主要来源于亚洲大陆和火山岛弧,但对其来源于亚洲大陆的哪个具体源区仍存在争议。Seo等使用伊利石/高岭石比值和高岭石/绿泥石比值对暖池边缘PC631孔沉积物进行物源识别,高的伊利石/高岭石比值以及低的高岭石/绿泥石比值表明黏土矿物主要来源于中国中西部沙漠,低的伊利石/高岭石比值以及高的高岭石/绿泥石比值表明黏土矿物主要来源于中国东部沙漠[6]。靳宁对暖池边缘区PV090102孔的伊利石结晶度指数和化学指数进行研究分析,认为该孔伊利石主要来源于中国黄土,蒙皂石主要来源于周围火山岛弧[20]。Wan等则认为西太平洋暖池边缘区MD06-3050孔黏土矿物中的伊利石、绿泥石和高岭石主要来源于中国东部沙漠和黄土,蒙皂石主要来源于吕宋岛火成岩的风化作用[21]。Wu等通过对黏土矿物含量、黏土矿物形貌特征和能谱的分析,认为暖池边缘区KX21-2孔黏土矿物来源于新几内亚岛[7]

    对暖池区黏土矿物源区的认识不同可能是多种原因造成的。首先,站位的选择不同是最主要的原因,这是由于研究区的地理位置(如距离源区的远近,受洋流、风场影响等情况)会对黏土矿物的输入产生影响,如位于新几内亚岛附近的KX21-2孔黏土矿物主要来源于新几内亚岛,这是因为新几内亚的河流携带大量黏土矿物输入研究区造成的[7]。其次,所选样品的时间尺度也是影响源区不同的重要原因。再次,黏土矿物的差异沉降(如颗粒分选、絮凝作用)也会对源区的判断产生影响。此外,不同实验室以及不同站位之间样品前处理方法和使用的仪器也不尽相同,这些差别造成了不同的系统误差,并且增加了不同站位之间对比的难度。

    石英作为物理化学性质稳定的重要风尘沉积物,可以用来识别源区[41]。目前,对石英单矿物源区的识别主要以氧同位素和结晶度指数为主,粒度和形貌特征为辅。由于石英的氧同位素分馏只受其形成时温度的影响[42],并且可以用来区分具体源区(如塔克拉玛干沙漠、蒙古戈壁、毛乌素沙漠、腾格里沙漠和巴丹吉林沙漠)[43]图4),因此是很好的源区识别指标。

    图  4  西太平洋暖池沉积物潜在源区石英的δ18O值-结晶度指数二元图
    潜在源区包括塔克拉玛干沙漠[43-44]、蒙古戈壁[43-44]、毛乌素沙漠[43-44]、腾格里沙漠[43-44]、巴丹吉林沙漠[43-44]和火山岛弧[8]
    Figure  4.  δ18O values and crystallinity index of quartz in the sediment of possible sources of the Western Pacific Warm Pool
    The potential source areas include Taklimakan Desert[43-44], Mongolian Gobi[43-44], Mu Us Desert[43-44], Tengger Desert[43-44], Badain Jaran Desert[43-44], and volcanic materials[8].

    目前对暖池区碎屑沉积物中石英来源的研究较少,仅有几篇文章对暖池边缘区风尘石英源区进行了研究。如朱潇等和Yan等分别对暖池北缘区域表层和2.1 Ma以来沉积物中的石英进行了研究,通过研究石英的粒度、形貌特征、氧同位素和结晶度指数等指标,并与可能源区进行对比,认为暖池北缘石英主要来源于塔克拉玛干沙漠、蒙古戈壁和周围火山岛弧物质[8-9]

    尽管不同源区石英的氧同位素和结晶度指数存在差异,但并不具备“排他性”,无法较好地对塔克拉玛干沙漠和蒙古戈壁来源的石英单矿物进行区分(图4)。但相比于其他古气候示踪指标,石英单矿物对沉积物源区的识别不仅更加具体(可以区分具体沙漠),而且更加稳定,因此今后可以尝试开展暖池区其他位置石英单矿物的研究。遗憾的是,目前对于暖池区石英单矿物的研究很少,这可能是由于有些站位石英含量极低,无法提取足量的石英单矿物进行测试导致的。

    常量元素在陆地风尘以及深海沉积物源区识别等研究中得到了广泛的应用,是示踪地质历史时期沉积物来源的可靠手段,目前对暖池区及其潜在源区的沉积物元素地球化学研究已取得了丰硕的成果(表3)。一些化学性质不活泼的常量元素(如Ti、Al)在风化、搬运、沉积以及沉积后成壤成岩过程中基本不受表生过程的影响,能够反映碎屑源区的地球化学特征,可以作为物源示踪的可靠指标[45-46]。目前常用的常量元素分析方法主要有直接对比法[12, 17]、典型元素比值法[10, 47]和R型因子分析法[10]

    表  3  西太平洋暖池及其潜在源区沉积物常量元素组成
    Table  3.  Major elements composition of sediments in the Western Pacific Warm Pool and potential provenances %
    SiO2TiO2Al2O3FeOFe2O3MnOMgOCaONa2OK2OP2O5LOIH2O参考文献
    太平洋中部50.140.5614.546.491.333.223.125.463.361.70[48]
    中北太平洋50.300.5212.5010.01.853.522.08-3.020.83[48]
    51.280.417.885.410.752.4614.48-1.570.47[24]
    西太平洋暖池北缘0.5914.065.990.202.8411.753.371.540.03[10]
    亚洲大陆(黄土)59.320.6712.474.7880.0892.137.231.422.430.158.73[49]
    亚洲大陆(古土壤)61.850.73613.485.2530.0972.054.631.302.570.137.11[49]
    吕宋岛57.000.7718.537.130.152.166.153.580.921.151.991.25[50]
    新几内亚0.7116.377.550.273.028.842.931.620.22[51]
    73.730.5313.812.870.110.642.3253.342.510.15[52]
    澳大利亚49.950.4610.454.600.071.9313.370.512.390.11[52]
    下载: 导出CSV 
    | 显示表格

    由于常量元素相对稳定,因此可以将沉积物的常量元素组成直接与潜在源区进行对比,进而对沉积物源区进行识别。已有研究者通过直接对比法对暖池区沉积物的来源进行识别,并取得了一定成果[12, 17]。如Wu等通过对380 ka以来西太平洋暖池西缘KX21-2孔沉积物中的常量元素进行研究,并与潜在源区进行对比,认为该孔沉积物主要来源于新几内亚[17]

    由于Ti、Al等元素在沉积过程中相对稳定,一般不参与生物介质,主要赋存于铝硅酸盐碎屑矿物中,可以代表碎屑来源物质[10, 45-46]。因此利用某元素与Ti或Al元素的比值可以消除沉积物中粒度变化对该元素的影响,进而判断此元素在海洋环境中的物源和转化过程[47, 53- 54]。典型元素比值法(如Fe/Al)已被成功应用于识别暖池区沉积物的来源[10],徐兆凯等通过将西太平洋暖池北缘700 ka以来MD06-3047孔的Fe/Al比值与潜在源区进行对比,认为暖池区北缘沉积物主要来源于亚洲大陆和周围火山岛弧[10]

    R型因子分析是根据沉积物中某些元素的赋存特征,如Fe、Mg和Ti主要赋存于表生环境下地球化学性质比较稳定的火山碎屑物质中,Al和K主要代表了陆源风尘物质的影响,Na含量的高值往往对应着火山活动的影响,Mn可能与热液作用和/或早期成岩作用有关来区分沉积物的源区[10]。R型因子分析已被成功应用于识别暖池区沉积物的来源,徐兆凯等通过对西太平洋暖池北缘MD06-3047孔沉积物常量元素的R型因子分析,认为700 ka以来该孔沉积物主要来自于附近火山碎屑物质及陆源风尘物质,生物作用和热液活动的影响相对较小[10]

    尽管不同源区沉积物的常量元素存在差异,但其差异并不显著,因而在物源示踪时存在多解性,其结论的可靠性需要更多的示踪指标来验证。此外,不同研究使用的样品是否进行了前处理,前处理方法的差异也会对结果产生较大影响。在后续的研究中,需要加强各实验室的沟通和数据对比,进一步开展暖池区相同前处理方法对常量元素的研究,并尽量结合其他指标,使源区识别结果更加可靠。

    稀土元素组成及配分模式主要受控于源岩,稀土元素在风化过程中不活泼,因此是海洋沉积物物源示踪的理想指标[55-56]。由于陆源碎屑中稀土元素含量(REE)比海水高得多,且富集轻稀土,因此轻稀土的富集一般被认为是陆源碎屑输入的标志[57]。已有研究者通过对稀土元素的研究,对西太平洋暖池区沉积物的源区进行了识别(表4),徐兆凯等发现暖池区北缘表层沉积物重稀土元素富集程度远大于1,轻稀土元素富集程度略大于1,认为研究区沉积物主要来源于周围火山物质,少量来源于陆源物质[13]。Liu等通过对22 ka以来西太平洋暖池区西缘DY12孔稀土元素进行研究,并与潜在源区对比分析,认为研究区沉积物主要来源于新几内亚和亚洲大陆[11]。Peng等通过对4 Ma以来西太平洋暖池区西缘U1489孔稀土元素进行研究,认为其主要来源于新几内亚[12]

    表  4  西太平洋暖池及其潜在源区沉积物稀土元素组成
    Table  4.  REE composition of sediments in the Western Pacific Warm Pool and potential provenances 10−6
    西太平洋暖池太平洋中部中北太平洋亚洲大陆吕宋岛新几内亚澳大利亚
    核心北缘南缘其他黄土古土壤
    La19.010275.943.3156.6294.7944.3732.3135.471311.091.26
    Ce21.367.641.358.5100.6895.2641.8364.5757.5927.522.712.28
    Pr4.5829.819.812.837.328.8412.588.169.054.12.7840.36
    Nd20.312386.356.4168.8115.4451.6628.1432.0418.411.961.57
    Sm4.5228.618.113.337.6827.6111.845.706.624.533.020.39
    Eu1.217.154.643.358.166.732.921.121.351.40.940.10
    Gd5.0432.622.114.740.4228.9712.965.116.184.893.270.51
    Tb0.894.813.322.246.744.381.940.790.950.730.530.08
    Dy5.2229.921.913.739.4926.6111.994.575.534.343.390.47
    Ho1.116.154.792.729.025.32.430.931.120.950.720.10
    Er3.3117.414.17.5424.0814.856.912.613.092.632.050.27
    Tm0.502.371.951.033.412.050.960.430.500.290.036
    Yb3.0914.612.26.7220.7212.876.122.703.092.42.050.21
    Lu0.472.191.911.033.151.930.920.410.460.370.310.03
    Y39.918617570.8334.81144.3768.2829.1734.232821.053.60
    参考文献[24][48][48][24][49][49][50][51][58]
    下载: 导出CSV 
    | 显示表格

    可以发现,不同研究者对暖池区沉积物的来源存在争议,这可能是由于不同研究者选取的研究站位以及时间尺度不同造成的。稀土元素分析结果的多解性也是造成暖池区沉积物源区存在争议的重要因素之一。此外,不同研究的前处理方法也不尽相同,这些差别造成了不同的系统误差,并且增加了不同站位之间对比的难度。

    放射性成因的Sr和Nd同位素组成是沉积物源区的良好替代指标,它不仅可以将亚洲大陆来源、澳大利亚大陆来源和西太平洋火山岛弧来源的沉积物进行区分,而且可以将亚洲大陆来源的沉积物源区进一步划分为中国中西部沙漠、中国北方沙漠和中国东部沙漠的沉积物[38]

    目前对西太平洋暖池区沉积物中放射性成因Sr和Nd同位素的研究多集中于暖池北缘,研究结果表明,亚洲大陆是暖池区碎屑组分的重要源区[6, 14-15, 22-23]图5)。Seo等通过对暖池区PC631孔0.6 Ma以来放射性成因Sr、Nd同位素进行研究,进一步将暖池风尘源区细化为中国中部沙漠[6]。对暖池区不同粒级碎屑组分的放射性成因Sr、Nd同位素分析结果表明,位于西太平洋暖池北部边缘PV090102孔沉积物中的亚洲风尘主要来源于中国中西部沙漠[15],位于暖池西北边缘的Ph05-5孔沉积物中的亚洲风尘也主要来源于中国中西部沙漠,但有少部分来源于中国黄土[14]。对暖池核心区放射性成因Sr、Nd同位素也有一定的研究,如Seo等通过对暖池核心区PC932孔放射性成因Sr、Nd同位素进行研究,认为1.1~0.8 Ma研究区沉积物来源于澳大利亚大陆和中南美洲,0.8 Ma以来沉积物主要来源于亚洲大陆[16]

    图  5  西太平洋暖池与潜在源区沉积物87Sr/86Sr-εNd (0)关系图
    潜在源区包括:中国黄土[59-61]、中国北方沙漠[38]、中国中西部沙漠[38]、中国东部沙漠[38]、澳大利亚大陆[62]和火山岛弧[63-80];暖池区数据包括暖池北缘[15]和暖池核心区[16]
    Figure  5.  87Sr/86Sr vs εNd (0) values of the detrital fraction of the Western Pacific Warm Pool sediments and potential source areas
    The potential source areas include Chinese Loess Plateau[59-61], northern Chinese deserts[38], western and central Chinese deserts[38], eastern Chinese deserts[38], Australia continent[62], and volcanic materials[63-80]. Western Pacific Warm Pool data include the northern margin of the Western Pacific Warm Pool[15] and the core area of the Western Pacific Warm Pool[16].

    不同研究者对西太平洋暖池风尘来源认识的差异可能是多种原因造成的,其中最重要的原因可能是不同研究者选取的研究站位以及时间尺度不同。不同研究选取的样品粒级不同,也会对放射性成因Sr-Nd同位素以及源区的判断造成影响。此外,放射性成因Sr-Nd同位素对源区的判别有时不具备“排他性”,如无法将中国中西部沙漠、中国东部沙漠和中国黄土完全区分,使得对源区的识别具有多解性。

    近年来,通过多种物源指标,如黏土矿物、石英单矿物、常量元素、稀土元素以及碎屑组分的放射性成因Sr-Nd同位素等,已在西太平洋暖池区北部和西部第四纪以来的沉积物源识别方面取得了重要进展。研究表明,暖池区沉积物主要来源于亚洲大陆和火山岛弧,部分源于澳大利亚和/或新几内亚。

    然而,目前暖池区沉积物源研究中还存在一些问题,有待今后的研究工作改进:

    (1)在样品处理时,不同实验室采取的前处理方法存在差异,使用的试剂存在差别;在样品选择时,不同研究对测试样品粒级的选择不同;在样品分析时,不同研究采用的分析仪器也存在较大差异;这些差异都给物源对比分析带来了困难。

    (2)尽管不同源区沉积物的特征存在差异,但不同研究者采用的物源示踪指标和样品的代表性往往会对物源判别的准确性和可靠性产生影响,导致在进行物源识别时会出现多解性。建议在今后的研究中对研究区和潜在源区的沉积物,通过多物源示踪指标开展系统研究,以增加沉积物源区识别的准确性和可靠性。

    (3)目前对西太平洋暖池区沉积物来源的研究是孤立的,并且不同研究样品的时间跨度和时间尺度不同,不利于开展系统的对比研究,建议今后对暖池区沉积物源区示踪工作开展同一时间尺度的横向对比研究。

  • 图  1   西太平洋暖池区洋流模式及周边物源区示意图

    黄色圆点代表本文提及的暖池区站位;红色实线代表28 ℃等温线;白色箭头代表表层流流向;深蓝色箭头代表底层水流向[18-19];红色箭头代表东亚冬季风,黄色箭头代表盛行西风带,紫色箭头代表澳大利亚冬季风,绿色箭头代表潜在源区沉积物的输入量。NEC:北赤道流,NECC:北赤道逆流,SEC:南赤道流,KC:黑潮,MC:棉兰老流,UCDW:上层绕极深层水,LCDW:下层绕极深层水,EAWM:东亚冬季风,PW:盛行西风带,AWM:澳大利亚冬季风。

    Figure  1.   Map of ocean currents and potential provenance of Western Pacific Warm Pool

    Yellow dots represent stations in the Western Pacific Warm Pool mentioned in this article. The solid red line represents the 28 ℃ isotherm. The surface flow and bottom water trajectories [18-19] are shown with white and blue arrows, respectively. The East Asian Winter Monsoon, Prevailing Westerlies and Australian Winter Monsoon are shown with red, yellow, and purple arrows, respectively. Also shown are the sediment inputs from potential source areas with green arrows. NEC: North Equatorial Current, NECC: North Equatorial Counter Current, SEC: South Equatorial Current, KC: Kuroshio Current, MC: Mindanao Current, UCDW: Upper Circumpolar Deep Water, LCDW: Lower Circumpolar Deep Water, EAWM: East Asian Winter Monsoon, PW: Prevailing Westerlies, AWM: Australian Winter Monsoon.

    图  2   西太平洋暖池沉积物潜在源区黏土矿物端元图

    潜在源区包括亚洲大陆[33-36]、澳大利亚大陆[28]、新几内亚[7]和吕宋岛[31-32]

    Figure  2.   Ternary diagram of clay minerals in sediments from the potential source areas of the Western Pacific Warm Pool

    The potential source areas include Asian continent[33-36], Australia continent [28], New Guinea [7], and Luzon Island [31-32].

    图  3   亚洲大陆不同源区高岭石/绿泥石比值-伊利石/高岭石比值二元图[39]

    Figure  3.   Kaolinite to chlorite ratio versus illite to kaolinite ratio from different sources of the Asian continent [39]

    图  4   西太平洋暖池沉积物潜在源区石英的δ18O值-结晶度指数二元图

    潜在源区包括塔克拉玛干沙漠[43-44]、蒙古戈壁[43-44]、毛乌素沙漠[43-44]、腾格里沙漠[43-44]、巴丹吉林沙漠[43-44]和火山岛弧[8]

    Figure  4.   δ18O values and crystallinity index of quartz in the sediment of possible sources of the Western Pacific Warm Pool

    The potential source areas include Taklimakan Desert[43-44], Mongolian Gobi[43-44], Mu Us Desert[43-44], Tengger Desert[43-44], Badain Jaran Desert[43-44], and volcanic materials[8].

    图  5   西太平洋暖池与潜在源区沉积物87Sr/86Sr-εNd (0)关系图

    潜在源区包括:中国黄土[59-61]、中国北方沙漠[38]、中国中西部沙漠[38]、中国东部沙漠[38]、澳大利亚大陆[62]和火山岛弧[63-80];暖池区数据包括暖池北缘[15]和暖池核心区[16]

    Figure  5.   87Sr/86Sr vs εNd (0) values of the detrital fraction of the Western Pacific Warm Pool sediments and potential source areas

    The potential source areas include Chinese Loess Plateau[59-61], northern Chinese deserts[38], western and central Chinese deserts[38], eastern Chinese deserts[38], Australia continent[62], and volcanic materials[63-80]. Western Pacific Warm Pool data include the northern margin of the Western Pacific Warm Pool[15] and the core area of the Western Pacific Warm Pool[16].

    表  1   西太平洋暖池区各站位指标信息

    Table  1   Core locations and palaeoclimate proxies of the Western Pacific Warm Pool sites

    位置 站号 位置 代用指标 时间跨度 沉积物源区 参考文献
    暖池北缘 PC631 12°30′N、134°60′E 黏土矿物 600 ka 亚洲中西部沙漠与火山岛弧 [6]
    暖池北缘 MD06-3047 17°00.44′N、124°47.93′E 常量元素 700 ka 火山碎屑物质和陆源风尘物质 [10]
    暖池北缘 PV090510 16°47.79′N、138°5.55′E 黏土矿物 1.95 Ma 中亚大陆和马里亚纳岛弧 [5]
    暖池北缘 PV090102 17°55.24′N、135°52.68′E Sr-Nd同位素 2.1 Ma 中国中西部沙漠和火山岛弧 [15]
    石英 塔克拉玛干沙漠、蒙古戈壁和
    火山岛弧
    [9]
    黏土矿物 亚洲大陆和火山岛弧 [4]
    黏土矿物 中国黄土和火山岛弧 [20]
    暖池北缘 表层 稀土元素 主要来源于周围火山物质,
    少部分陆源
    [13]
    暖池北缘 表层 石英 塔克拉玛干沙漠、蒙古戈壁和
    火山岛弧
    [8]
    暖池西北缘 Ph05-5 16°2.96′N、124°20.69′E Sr-Nd同位素 50 ka 中国中西部沙漠、中国黄土和吕宋岛 [14]
    暖池西缘 DY12 9°11.94′N、136°8.40′E 稀土元素 22 ka 新几内亚和亚洲大陆 [11]
    暖池西缘 KX21-2 1°25.01′S、157°58.91′E 黏土矿物 370 ka 新几内亚 [7]
    常量元素 380 ka 新几内亚 [17]
    暖池西缘 MD06-3050 15°57.09′N、124°46.77′E 黏土矿物 500 ka 中国东部沙漠、黄土和火山岛弧 [21]
    暖池西缘 U1489 02°07.19′ N、141°01.67′E 常量元素、稀土元素 4 Ma 主要来源于新几内亚 [12]
    暖池西缘 ODP 768
    ODP 769
    ODP 771
    8°N、121°13.158′ E
    8°47.136′N、121°17.652′E
    8°40.692′N、120°40.782′ E
    Sr-Nd同位素 亚洲大陆和火山岛弧 [22]
    暖池西缘 表层 87Sr/ 86Sr 亚洲大陆和火山岛弧 [23]
    暖池核心 PC932 5°53’N、177°26’W Sr-Nd同位素 1.1 Ma 1.2~0.9 Ma:澳大利亚大陆和中南美洲;
    0.9~0.8 Ma:亚洲大陆
    [16]
    几乎整个
    暖池区
    DSDP 65 04°21.21'N、176°59.16'E 常量元素、稀土元素 只给出数据,未分析源区 [24]
    DSDP 76 14°05.90'S、145°39.64'W
    DSDP 166 03°45.70'N、175°04.80'W
    DSDP 199 13°30.80'N、156°10.30'E
    DSDP 288 05°58.35'S、161°49.53'E
    DSDP 317 11°00.09'S、162°15.78'W
    ODP 807 03°36.42'N、156°37.49'E
    ODP 869 11°00.09'N、164°44.97'E
    KH68-4-18-3 01°59.5'N、170°00.5'W
    KH68-4-20-2 02°28.4'S、169°59.7'W
    KH71-5-10-2 04°58.5'S、146°03.5'W
    KH71-5-12-3 11°01.4'S、146°01.5'W
    KH73-4-5 12°23.2'N、151°48'E
    KH73-4-9 07°49.9'S、172°48.6'E
    KH80-3-30 09°50.6'N、153°13.5'E
    KH84-1-17A 20°05.1'N、143°35'E
    下载: 导出CSV

    表  2   西太平洋暖池区沉积物潜在源区的黏土矿物组成

    Table  2   Clay minerals composition of the Western Pacific Warm Pool and potential provenance

    伊利石/%蒙皂石/%绿泥石/%高岭石/%参考文献
    亚洲大陆6732010[33]
    6731911[35]
    6732010[36]
    6714109[34]
    澳大利亚大陆24171445[28]
    新几内亚117388[7]
    吕宋岛18829[31]
    18649[32]
    注:黏土矿物含量均已经过Biscay(1965)因子校正[40]
    下载: 导出CSV

    表  3   西太平洋暖池及其潜在源区沉积物常量元素组成

    Table  3   Major elements composition of sediments in the Western Pacific Warm Pool and potential provenances %

    SiO2TiO2Al2O3FeOFe2O3MnOMgOCaONa2OK2OP2O5LOIH2O参考文献
    太平洋中部50.140.5614.546.491.333.223.125.463.361.70[48]
    中北太平洋50.300.5212.5010.01.853.522.08-3.020.83[48]
    51.280.417.885.410.752.4614.48-1.570.47[24]
    西太平洋暖池北缘0.5914.065.990.202.8411.753.371.540.03[10]
    亚洲大陆(黄土)59.320.6712.474.7880.0892.137.231.422.430.158.73[49]
    亚洲大陆(古土壤)61.850.73613.485.2530.0972.054.631.302.570.137.11[49]
    吕宋岛57.000.7718.537.130.152.166.153.580.921.151.991.25[50]
    新几内亚0.7116.377.550.273.028.842.931.620.22[51]
    73.730.5313.812.870.110.642.3253.342.510.15[52]
    澳大利亚49.950.4610.454.600.071.9313.370.512.390.11[52]
    下载: 导出CSV

    表  4   西太平洋暖池及其潜在源区沉积物稀土元素组成

    Table  4   REE composition of sediments in the Western Pacific Warm Pool and potential provenances 10−6

    西太平洋暖池太平洋中部中北太平洋亚洲大陆吕宋岛新几内亚澳大利亚
    核心北缘南缘其他黄土古土壤
    La19.010275.943.3156.6294.7944.3732.3135.471311.091.26
    Ce21.367.641.358.5100.6895.2641.8364.5757.5927.522.712.28
    Pr4.5829.819.812.837.328.8412.588.169.054.12.7840.36
    Nd20.312386.356.4168.8115.4451.6628.1432.0418.411.961.57
    Sm4.5228.618.113.337.6827.6111.845.706.624.533.020.39
    Eu1.217.154.643.358.166.732.921.121.351.40.940.10
    Gd5.0432.622.114.740.4228.9712.965.116.184.893.270.51
    Tb0.894.813.322.246.744.381.940.790.950.730.530.08
    Dy5.2229.921.913.739.4926.6111.994.575.534.343.390.47
    Ho1.116.154.792.729.025.32.430.931.120.950.720.10
    Er3.3117.414.17.5424.0814.856.912.613.092.632.050.27
    Tm0.502.371.951.033.412.050.960.430.500.290.036
    Yb3.0914.612.26.7220.7212.876.122.703.092.42.050.21
    Lu0.472.191.911.033.151.930.920.410.460.370.310.03
    Y39.918617570.8334.81144.3768.2829.1734.232821.053.60
    参考文献[24][48][48][24][49][49][50][51][58]
    下载: 导出CSV
  • [1]

    Webster P J, Magana V O. Monsoons: Processes, predictability, and the prospects for prediction[J]. Journal of Geophysical Research-Atmospheres, 1998, 103: 14451-14510. doi: 10.1029/97JC02719

    [2]

    Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297: 222-226. doi: 10.1126/science.1071627

    [3]

    Visser K, Thunell R, Stott L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation[J]. Nature, 2003, 421: 152-155. doi: 10.1038/nature01297

    [4] 颜钰, 蒋富清, 曾志刚, 等. 近2.1 Ma以来帕里西-维拉海盆黏土矿物输入变化及其对中更新世气候转型的响应[J]. 海洋地质与第四纪地质, 2022, 42(6): 150-161

    YAN Yu, JIANG Fuqing, ZENG Zhigang, et al. Variations in clay mineral input in the Parece Vela Basin since the last 2.1 Ma and their response to the mid-Pleistocene transition[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 150-161.

    [5]

    Ming J, Li A, Huang J, et al. Assemblage characteristics of clay minerals and its implications to evolution of eolian dust input to the Parece Vela Basin since 1.95 Ma[J]. Chinese Journal of Oceanology and Limnology, 2014, 32: 174-186. doi: 10.1007/s00343-014-3066-x

    [6]

    Seo I, Lee Y I, Yoo C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust[J]. Journal of Geophysical Research-Atmospheres, 2014, 119: 11492-11504. doi: 10.1002/2014JD022025

    [7]

    Wu J, Liu Z, Zhou C. Late Quaternary glacial cycle and precessional period of clay mineral assemblages in the Western Pacific Warm Pool[J]. Chinese Science Bulletin, 2012, 57: 3748-3760. doi: 10.1007/s11434-012-5277-x

    [8] 朱潇, 蒋富清, 冯旭光, 等. 菲律宾海沉积物中石英的来源及其搬运方式[J]. 海洋与湖沼, 2018, 49(6): 1190-1202

    ZHU Xiao, JIANG Fuqing, Feng Xuguang, et al. The provenance and transportation of quartz in the Philippine Sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(6): 1190-1202.

    [9]

    Yan Y, Jiang F Q, Zeng Z G, et al. Response of eolian quartz in the Parece Vela Basin sediment to the mid-Pleistocene transition[J]. Journal of Asian Earth Sciences, 2022, 236(15): 105332. doi: 10.1016/j.jseaes.2022.105332

    [10] 徐兆凯, 李铁刚, 于心科, 等. 近700 ka来西菲律宾海沉积物来源和东亚冬季风演化的常量元素记录[J]. 科学通报, 2013, 58(11): 1048-1056 doi: 10.1360/csb2013-58-11-1048

    XU Zhaokai, LI Tiegang, YU Xinke, et al. Sediment provenance and evolution of the East Asian winter monsoon since 700 ka recorded by major elements in the West Philippine Sea[J]. Chinese Science Bulletin, 2013, 58(11): 1048-1056. doi: 10.1360/csb2013-58-11-1048

    [11]

    Liu J, Yan W, Xu W, et al. Sediment provenance in the western Pacific warm pool from the last glacial maximum to the early Holocene: Implications for ocean circulation and climatic change[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2018, 493: 55-63. doi: 10.1016/j.palaeo.2017.12.040

    [12]

    Peng N, Dang H, Wu J, et al. Tectonic and climatic controls on the Plio-Pleistocene evolution of sediment discharge from Papua New Guinea[J]. Marine Geology, 2021, 441: 106627. doi: 10.1016/j.margeo.2021.106627

    [13] 徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海沉积物的地球化学特征与物质来源[J]. 科学通报, 2008, 53: 695-702

    XU Zhaokai, LI Anchun, JIANG Fuqing, et al. The geochemical characteristics and material sources in the eastern Philippine Sea[J]. Chinese Science Bulletin, 2008, 53: 695-702.

    [14]

    Jiang F, Zhou Y, Nan Q, et al. Contribution of Asian dust and volcanic material to the western Philippine Sea overthe last 220 kyr as inferred from grain size and Sr-Nd isotopes[J]. Journal of Geophysical Research-Oceans, 2016, 121: 6911-6928. doi: 10.1002/2016JC012000

    [15]

    Jiang F Q, Zhu X, Li T G, et al. Increased dust deposition in the Parece Vela Basin since the mid-Pleistocene inferred from radiogenic Sr and Nd isotopes[J]. Global and Planetary Change, 2019, 173: 83-95. doi: 10.1016/j.gloplacha.2018.12.011

    [16]

    Seo I, Lee Y I, Kim W, et al. Movement of the Intertropical Convergence Zone during the mid-pleistocene transition and the response of atmospheric and surface ocean circulations in the central equatorial Pacific[J]. Geochemistry Geophysics Geosystems, 2015, 16: 3973-3981. doi: 10.1002/2015GC006077

    [17]

    Wu J, Liu Z, Zhou C. Provenance and supply of Fe-enriched terrigenous sediments in the western equatorial Pacific and their relation to precipitation variations during the late Quaternary[J]. Global and Planetary Change, 2013, 108: 56-71. doi: 10.1016/j.gloplacha.2013.06.002

    [18]

    Lee I T, Ogawa Y. Bottom-current deposits in the Miocene-Pliocene Misaki Formation, Izu forearc area, Japan[J]. Island Arc, 1998, 7(3): 315-329. doi: 10.1111/j.1440-1738.1998.00192.x

    [19]

    Kawabe M, Fujio S, Yanagimoto D, et al. Water masses and currents of deep circulation southwest of the Shatsky Rise in the western North Pacific[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(10): 1675-1687. doi: 10.1016/j.dsr.2009.06.003

    [20] 靳宁. 帕里西维拉海盆西北部海域粘土矿物分布特征研究[D]. 青岛: 中国科学院海洋研究所, 2006

    JIN Ning. Clay mineral distribution in the sediments of the northwest Parece Vela Basin[D]. QingDao: Institute of Oceanology, Chinese Academy of Sciences, 2006.

    [21]

    Wan S, Yu Z, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2012, 326-328(2): 152-159.

    [22]

    Mahoney J B. Nd and Sr isotopic signatures of fine-grained clastic sediments: A case study of western Pacific marginal basins[J]. Sedimentary Geology, 2005, 182: 183-199. doi: 10.1016/j.sedgeo.2005.07.009

    [23]

    Asahara Y, Tanaka T, Kamioka H, et al. Asian continental nature of 87Sr/ 86Sr ratios in North Central Pacific sediments[J]. Earth and Planetary Science Letters, 1995, 133: 105-116. doi: 10.1016/0012-821X(95)00048-H

    [24]

    Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4: 535-539. doi: 10.1038/ngeo1185

    [25]

    Yan X H, Ho C R, Zheng Q N. Temperature and size variabilities of the Western Pacific Warm Pool[J]. Science, 1992, 258(5088): 1643-1645. doi: 10.1126/science.258.5088.1643

    [26]

    Rosenthal Y, Holbourn A E, Kulhanek D K, et al. Western Pacific Warm Pool[C]//Proceedings of the International Ocean Discovery Program. College Station, TX: International Ocean Discovery Program, 2018: 1-42.https://doi.org/10.14379/iodp.proc.363. 2018.

    [27]

    Stuut J B W, De Deckker P, Saavedra-Pellitero M, et al. A 5.3-million-year history of monsoonal precipitation in northwestern Australia[J]. Geophysical Research Letters, 2019, 46(12): 6946-6954. doi: 10.1029/2019GL083035

    [28]

    Gingele F X, Deckker P D, Hillenbrand C D. Clay mineral distribution in surface sediments between Indonesia and NW Australia——source and transport by ocean currents[J]. Marine Geology, 2001, 179: 135-146. doi: 10.1016/S0025-3227(01)00194-3

    [29]

    Middleton A W, Uysal I T, Golding S D. Chemical and mineralogical characterisation of illite-smectite: Implications for episodic tectonism and associated fluid flow, central Australia[J]. Geochimica et Cosmochimica Acta, 2015, 148: 284-303. doi: 10.1016/j.gca.2014.09.035

    [30]

    Baludikay B K, François C, Sforna M C, et al. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia) [J]. International Journal of Coal Geology, 2018, 191: 80-94. doi: 10.1016/j.coal.2018.03.007

    [31]

    Liu Z, Tuo S, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation[J]. Marine Geology, 2008, 255(3-4): 149-155. doi: 10.1016/j.margeo.2008.08.003

    [32]

    Liu Z, Zhao Y, Colin C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry, 2009, 24(11): 2195-2205. doi: 10.1016/j.apgeochem.2009.09.025

    [33]

    Wan S, Li A, Clift P D, et al. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 254(3-4): 561-582. doi: 10.1016/j.palaeo.2007.07.009

    [34] 郑洪汉. 中国黄土中粘土矿物的古气候记录[J]. 第四纪研究, 1985, 6(2): 41-47

    ZHENG Honghan. Paleoclimatic records of Clay minerals in loess, China[J]. Quaternary Sinica, 1985, 6(2): 41-47.

    [35] 师育新, 戴雪荣, 李节通, 等. 末次间冰期兰州黄土记录中的粘土矿物及其环境意义探讨[J]. 海洋地质与第四纪地质, 1997, 17(1): 87-94

    SHI Yuxin, DAI Xuerong, LI Jietong, et al. Origin and significance of clay minerals in the last interglacial loess in LanZhpu area, North Central China[J]. Marine Geology & Quaternary Geology, 1997, 17(1): 87-94.

    [36] 师育新, 戴雪荣, 宋之光, 等. 我国不同气候带黄土中粘土矿物组合特征分析[J]. 沉积学报, 2005, 23(4): 690-695 doi: 10.3969/j.issn.1000-0550.2005.04.019

    SHI Yuxin, DAI Xuerong, SONG Zhiguang, et al. Characteristics of clay mineral assemblages and their spatial distribution of Chinese loess in different climatic zones[J]. Acta Sedimentologica Sinica, 2005, 23(4): 690-695. doi: 10.3969/j.issn.1000-0550.2005.04.019

    [37]

    Ji J, Chen J, Lu H. Luochuan area, Loess Plateau, Central China[J]. Clays and Clay Minerals, 1999, 34: 525-532. doi: 10.1180/000985599546398

    [38]

    Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust[J]. Geochemistry Geophysics Geosystems, 2007, 71: 3904-3914.

    [39]

    Shen Z, Li X, Cao J, et al. Characteristics of clay minerals in asian dust and their environmental significance[J]. China Particuology, 2005, 3(5): 260-264. doi: 10.1016/S1672-2515(07)60198-5

    [40]

    Biscaye P E. Mineralogy and sedementation of recent deep-sea clay in Atlantic ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803-825. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    [41]

    Hou S S, Yang S L, Sun J M, et al. Oxygen isotope compositions of quartz grains (4-16μm) from Chinese eolian deposits and their implications for provenance[J]. Science in China Series D: Earth Sciences, 2003, 46(10): 1003-1011.

    [42]

    Chacko T, Cole D R, Horita J. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 1-81. doi: 10.2138/gsrmg.43.1.1

    [43]

    Yan Y, Sun Y B, Chen H Y, et al. Oxygen isotope signatures of quartz from major Asian dust sources: Implications for changes in the provenance of Chinese loess[J]. Geochimica et Cosmochimica Acta, 2014, 139: 399-410. doi: 10.1016/j.gca.2014.04.043

    [44]

    Sun Y B, Chen H Y, Tada R, et al. ESR signal intensity and crystallinity of quartz from Gobi and sandy deserts in East Asia and implication for tracing Asian dust provenance[J]. Geochemistry Geophysics Geosystems, 2013, 14(8): 2615-2627. doi: 10.1002/ggge.20162

    [45]

    Taylor S R, Mclennan S M. The Continental Crust: Its composition and evolution, An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific Publications, 1985: 1-372.

    [46]

    Norman M D, Deckker P D. Trace metals in lacustrine and marine sediments: A case study from the Gulf of Carpentaria, northern Australia[J]. Chemical Geology, 1990, 82(3-4): 299-318.

    [47]

    Cha H J, Choi M S, Lee C B, et al. Geochemistry of surface sediments in the southwestern East/Japan Sea[J]. Journal of Asian Earth Sciences, 2007, 29: 685-697. doi: 10.1016/j.jseaes.2006.04.009

    [48] 朱克超, 任江波, 王海峰, 等. 太平洋中部富REY深海粘土的地球化学特征及REY富集机制[J]. 地球科学: 中国地质大学学报, 2015, 40(6): 1052-1060 doi: 10.3799/dqkx.2015.087

    ZHU Kechao, REN Jiangbo, WANG Haifeng, et al. Enrichment mechanism of REY and geochemical characteristics of REY-Rich pelagic clay from the Central Pacific[J]. Earth Science: Journal of China University of Geosciences, 2015, 40(6): 1052-1060. doi: 10.3799/dqkx.2015.087

    [49]

    Gallet S, Jahn B, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications[J]. Chemical Geology, 1996, 133(1-4): 67-88. doi: 10.1016/S0009-2541(96)00070-8

    [50]

    Marini J C, Chauvel C, René C M. Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source[J]. Contributions to Mineralogy & Petrology, 2005, 149(2): 216-232. doi: 10.1007/s00410-004-0645-4

    [51] 林刚, 陈琳莹, 罗敏, 等. 西太平洋新不列颠海沟表层沉积物的地球化学特征及其物源指示[J]. 海洋地质与第四纪地质, 2019, 39(3): 12-27

    LIN Gang, CHEN Linying, LUO Min, et al. The geochemical characteristics of the surface sediments in the New Britain Trench of the Western Pacific Ocean and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 12-27.

    [52]

    Horz K H, Worthington T J, Winn K, et al. Late Quaternary tephra in the New Ireland Basin, Papua New Guinea[J]. Journal of Volcanology & Geothermal Research, 2004, 132(1): 73-95. doi: 10.1016/S0377-0273(03)00421-9

    [53] 徐兆凯, 李安春, 李铁刚, 等. 东菲律宾海表层沉积物常量元素组成及地质意义[J]. 海洋地质与第四纪地质, 2010, 30(6): 43-48

    XU Zhaokai, LI Anchun, LI Tiegang, et al. Major element compositions of surface sediments in the east Philippine Sea and its geologica implication[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 43-48.

    [54] 徐兆凯, 常凤鸣, 李铁刚, 等. 24ka来冲绳海槽北部沉积物来源的高分辨率常量元素记录[J]. 海洋地质与第四纪地质, 2012, 32(4): 73-82

    XU Zhaokai, CHANG Fengming, LI Tiegang, et al. Provenance of sediments in the northern Okinawa Trough over the last 24 ka: high resolution record from major elements [J]. Marine Geology & Quaternary Geology, 2012, 32(4): 73-82.

    [55]

    Rollinson H R. Using geochemical data: evalution, presentation, interpretation[M]. Singapore: Longman Singapur Press, 1993: 1-343.

    [56] 蓝先洪, 张志珣, 王中波, 等. 东海外陆架晚第四纪沉积物的稀土元素组成及物源示踪[J]. 地球学报, 2014, 35(3): 305-313

    LAN Xianhong, ZHANG Zhixun, WANG Zhongbo, et al. Distribution of rare earth elements in late Quaternary sediments on the outer shelf of the East China Sea and their source tracing[J]. Acta Geoscientia Sinica, 2014, 35(3): 305-313.

    [57] 曹鹏, 石学法, 李魏然, 等. 安达曼海东南部海域表层沉积物稀土元素特征及其物源指示意义[J]. 海洋地质与第四纪地质, 2015, 35(5): 57-67

    CAO Peng, SHI Xuefa, LI Weiran, et al. Rare earth element geochemistry of surface sediments in southeastern Andaman Sea and implications for provenance[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 57-67.

    [58]

    Janssen C, Laube N, Bau M, et al. Fluid regime in faulting deformation of the Waratah Fault Zone, Australia, as inferred from major and minor element analyses and stable isotopic signatures[J]. Tectonophysics, 1998, 294(1-2): 109-130. doi: 10.1016/S0040-1951(98)00127-9

    [59]

    Sun Y, An Z. Late Pliocene-Pleistocene changes in mass accumulation rates ofeolian deposits on the central Chinese Loess Plateau[J]. Journal of Geophysical Research, 2005, 110: D23101. doi: 10.1029/2005JD006064

    [60]

    Wang Y X, Yang J D, Chen J, et al. The Sr and Nd isotopicvariations of the Chinese Loess Plateau during the past 7 Ma: implications for the EastAsian winter monsoon and source areas of loess[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 249: 351-361. doi: 10.1016/j.palaeo.2007.02.010

    [61]

    Chen Z, Li G. Evolving sources of eolian detritus on the Chinese Loess Plateausince early Miocene: Tectonic and climatic controls[J]. Earth and Planetary Science Letters, 2013, 371-372: 220-225. doi: 10.1016/j.jpgl.2013.03.044

    [62]

    Deckker D P. Airborne dust traffic from Australia in modern and Late Quaternary times[J]. Global and Planetary Change, 2020, 184: 103056. doi: 10.1016/j.gloplacha.2019.103056

    [63]

    Bloomer S H, Hawkins J W. Petrology and geochemistry of boninite seriesvolcanic rocks from the Mariana Trench[J]. Contributions to Mineralogy and Petrology, 1987, 97: 361-377. doi: 10.1007/BF00371999

    [64]

    Brounce M N, Kelley K A, Cottrell E. Variations in Fe3+ /ΣFe of Mariana arcbasalts and mantle wedgeƒO2[J]. Journal of Petrology, 2014, 55(12): 2513-2536. doi: 10.1093/petrology/egu065

    [65]

    Fryer P B, Sinton J M, Philpotts J A. Basaltic glasses from the Mariana Trough [C]//Initial Reports of the Deep Sea Drilling Project, 60. Washington: US Government Printing Office, 1981: 601-609.

    [66]

    Gribble R F, Stern R J, Bloomer S H, et al. MORB mantle and subduction components interact to generate basalts in thesouthern Mariana Trough back-arc basin[J]. Geochimica et Cosmochimica Acta, 1996, 60: 2153-2166. doi: 10.1016/0016-7037(96)00078-6

    [67]

    Gribble R F, Stern R J, Newman S, et al. Chemical andisotopic composition of lavas from the northern Mariana Trough: implications formagmagenesis in back-arc basins[J]. Journal of Petrology, 1998, 39: 125-154. doi: 10.1093/petroj/39.1.125

    [68]

    Hart S R, Glassley W E, Karig D E. Basalts and sea foor spreading behind theMariana island arc[J]. Earth and Planetary Science Letters, 1972, 15: 12-18. doi: 10.1016/0012-821X(72)90023-4

    [69]

    Hawkins J W, Lonsdale P F, Macdougall J D, et al. Petrology of theaxial ridge of the Mariana Trough back-arc spreading center[J]. Earth and Planetary Science Letters, 1990, 100: 226-250. doi: 10.1016/0012-821X(90)90187-3

    [70]

    Lonsdale P, Hawkins, J. Silicic volcanism at an of-axis geothermal feld inthe Mariana Trough back-arc basin[J]. Geological Society of America Bulletin, 1985, 96: 940-951. doi: 10.1130/0016-7606(1985)96<940:SVAAOG>2.0.CO;2

    [71]

    Mattey D P, Marsh N G, Tarney J. The geochemistry, mineralogy and petrologyof basalts from the west Philippine and Parece Vela Basins and from the Palau-Kyushuand West Mariana Ridges, deep sea drilling Project Leg 59[C]//Initial Reports of the Deep Sea Drilling Project, 59. Washington: US Government Printing Office, 1981: 753-802.

    [72]

    Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of theMariana arc-basin system: implications for the nature and distribution of subduction components[J]. Geochemistry Geophysics Geosystems, 2005, 6(7): 542-557.

    [73]

    Reagan M K, Meijer A. Geology and geochemistry of early arc-volcanic rocksfrom Guam[J]. Geological Society of America Bulletin, 1984, 95: 701-713. doi: 10.1130/0016-7606(1984)95<701:GAGOEA>2.0.CO;2

    [74]

    Sinton J M, Fryer P B. Mariana Trough lavas from 18°N: implications for theorigin of back arc basin basalts[J]. Journal of Geophysical Research, 1987, B92: 12782-12802.

    [75]

    Stern R J, Morris J D, Bloomer S M, et al. The source of the sub-duction component in convergent margin magmas: trace element and radiogenicisotope evidence from Eocene boninites, Mariana forearc[J]. Geochimica et Cosmochimica Acta, 1991, 55: 1467-1481. doi: 10.1016/0016-7037(91)90321-U

    [76]

    Stern R J, Tamura Y, Masuda H, et al. How the Mariana volcanic arc ends in the south[J]. Island Arc, 2013, 22: 133-148. doi: 10.1111/iar.12008

    [77]

    Straub S M. Contrasting compositions of Mariana Trough fallout tephra and Mariana island arc volcanics: a fractional crystallization link[J]. Bulletin of Volcanology, 1995, 57: 403-421. doi: 10.1007/BF00300985

    [78]

    Straub S M. Multiple sources of quaternary tephra layers in the Mariana Trough[J]. Journal of Volcanology and Geothermal Research, 1997, 76: 251-276. doi: 10.1016/S0377-0273(96)00075-3

    [79]

    Volpe A M, Macdougall J D, Hawkins J W. Mariana Trough basalts (MTB) traceelement and Sr-Nd isotopic evidence for mixing between MORB-like and Arc-likemelts[J]. Earth and Planetary Science Letters, 1987, 82: 241-254. doi: 10.1016/0012-821X(87)90199-3

    [80]

    Volpe A M, Macdougall J D, Lugmair G W, et al. Fine-scale isotopic variation in Mariana Trough basalts: evidence for heterogeneity and arecycled component in backarc basin mantle[J]. Earth And Planetary Science Letters, 1990, 100: 251-264. doi: 10.1016/0012-821X(90)90188-4

图(5)  /  表(4)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  54
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-08-13
  • 录用日期:  2023-08-13
  • 网络出版日期:  2023-10-29
  • 刊出日期:  2023-10-27

目录

/

返回文章
返回