浮游有孔虫表层水种不同形态类型壳体的Sr/Ca记录

贾奇, 李铁刚, 熊志方, 秦秉斌

贾奇,李铁刚,熊志方,等. 浮游有孔虫表层水种不同形态类型壳体的Sr/Ca记录[J]. 海洋地质与第四纪地质,2023,43(4): 10-16. DOI: 10.16562/j.cnki.0256-1492.2023071401
引用本文: 贾奇,李铁刚,熊志方,等. 浮游有孔虫表层水种不同形态类型壳体的Sr/Ca记录[J]. 海洋地质与第四纪地质,2023,43(4): 10-16. DOI: 10.16562/j.cnki.0256-1492.2023071401
JIA Qi,LI Tiegang,XIONG Zhifang,et al. Comparison in Sr/Ca ratios of different morphotypes of surface dwelling planktonic foraminifera species[J]. Marine Geology & Quaternary Geology,2023,43(4):10-16. DOI: 10.16562/j.cnki.0256-1492.2023071401
Citation: JIA Qi,LI Tiegang,XIONG Zhifang,et al. Comparison in Sr/Ca ratios of different morphotypes of surface dwelling planktonic foraminifera species[J]. Marine Geology & Quaternary Geology,2023,43(4):10-16. DOI: 10.16562/j.cnki.0256-1492.2023071401

浮游有孔虫表层水种不同形态类型壳体的Sr/Ca记录

基金项目: 国家自然科学基金项目“晚中新世以来印度洋-太平洋暖池水体交换过程及其气候效应”(41830539);崂山实验室科技创新项目“新生代西太平洋环境演化的沉积记录及机制”(LSKJ202204200);泰山学者工程专项——泰山学者特聘专家计划(ts20190963)
详细信息
    作者简介:

    贾奇(1989—),女,副研究员,主要从事古海洋学与古环境研究,E-mail:qjia@fio.org.cn

    通讯作者:

    李铁刚(1965—),男,研究员,主要从事古海洋学与古环境研究, E-mail:tgli@fio.org.cn

  • 中图分类号: P736

Comparison in Sr/Ca ratios of different morphotypes of surface dwelling planktonic foraminifera species

  • 摘要: 浮游有孔虫表层水种Globigerinoides ruber (白色)和Trilobatus sacculifer壳体是过去海洋环境信息的重要载体,其壳体Sr/Ca比值在重建古海洋环境变化中具有较大潜力,因此本文旨在探讨G. ruber(白色)和T. sacculifer的不同形态类型Sr/Ca比的差异及其影响因素。对取自西菲律宾海的MD06-3047B沉积物岩芯中G. ruber的两种形态类型,即G. ruber(sensu stricto, s.s.)和G. ruber(sensu lato, s.l.),以及T. sacculifer 的两种形态类型,即T. sacculifer (with sac)和T. sacculifer (without sac)壳体的Sr/Ca进行了测试分析。结果显示,MIS 3期(~48 ka)以来,MD06-3047B岩芯中G. ruber s.s.和G. ruber s.l. 的Sr/Ca差异较小;而T. sacculifer (with sac)和T. sacculifer (without sac)的Sr/Ca存在显著差异,且前者显著高于后者。通过与同站位表层海水温度和盐度等记录的对比,发现研究区G.ruber s.s.、G. ruber s.l.和T. sacculifer (without sac)壳体的Sr/Ca可能主要受控于海水温度,而T. sacculifer (with sac)壳体Sr/Ca受到海水盐度的影响。
    Abstract: Surface-dwelling foraminifera species Globigerinoides ruber (white) and Trilobatus sacculifer are the main proxy carriers for past oceanic environments. The Sr/Ca ratios of foraminifera play an important role in reflecting paleo-oceanic environmental changes. To understand the potential differences between the Sr/Ca ratios of these different morphotypes of G. ruber (white) and T. sacculifer and relevant affecting factors, we compared the Sr/Ca measurements of the two basic morphotypes of G. ruber (G. ruber sensu stricto and G. ruber sensu lato) and T. sacculifer (with sac and without sac) via the analysis of surface and downcore samples of sediment from Core MD06-3047B in the Western Philippine Sea. Results reveal that the Sr/Ca ratios of the two morphotypes of G. ruber (white) show a little difference since MIS 3 (~48 ka), while those of two types of T. sacculifer are significantly different from each other, of which that of T. sacculifer (without sac) is generally greater than that of the with-sac type. By comparing the seawater temperature and salinity from the same site, we found that the Sr/Ca ratios of G. ruber s.s., G. ruber s.l. and T. sacculifer (without sac) in our study area might be affected mainly by seawater temperature, and those of T. sacculifer (with sac) are mainly affected by surface salinity.
  • 浮游有孔虫壳体元素组成作为重要的海洋环境参数替代性指标,在古海洋学研究中发挥着重要的作用。随着浮游有孔虫壳体元素比值测试技术的快速发展,通过对浮游有孔虫壳体元素比值的分析,取得了一系列重要成果[1-3]。其中,Globigerinoides ruber(白色)和Trilobatus sacculifer壳体作为定量重建地质历史时期表层海水温度和盐度的重要信息载体,得到了广泛的研究和应用[1, 4-5]。然而,在利用G. ruberT. sacculifer壳体进行测试时,通常忽略G. ruberT. sacculifer不同形态类型的壳体对重建结果的可能影响。

    大部分海洋沉积物样品中G. ruber壳体存在两种形态类型,分别为狭义种(sensu stricto, s.s.)和广义种(sensu lato, s.l.)。根据分类学标准,G. ruber s.s. 壳体的主要形态为:一个近球形房室对称地生长于原有结构上,而形成具有高角度拱形的较大口孔;而G. ruber s.l. 壳体具有相对紧凑的结构特征:一个扁平的房室不对称地生长于原有结构之上,从而形成具有中等角度的拱形和相对较小的口孔[6]。研究发现浮游有孔虫G.ruber壳体的两种形态类型具有不同的稳定同位素组成,且G. ruber s.s.的生活水深浅于G. ruber s.l.,因此两种形态类型的G. ruber壳体记录的海洋环境信息可能存在差异[4, 7-8]。此外,也有研究发现热带和亚热带海区G. ruber s.s.和G. ruber s.l.壳体的元素比值也存在差异[4, 9]

    T. sacculifer作为另外一个重要的浮游有孔虫混合层水种,其壳体在古海洋学研究中也得到了广泛的应用[10-11]。尽管从分类学角度来看,T. sacculifer的分类更加复杂,但其在形态方面的主要区分依据为是否具有最后一个似袋状房室[12]。因此,T. sacculifer从形态学上可以分为T. sacculifer(with sac)和T. sacculifer(without sac)。Elderfield等[11]和 Anand等[13]通过对取自大西洋的沉积岩芯以及沉积物捕获器样品的分析,发现T. sacculifer(with sac)和T. sacculifer(without sac)壳体的元素比值同样存在一定的差异。

    已有研究表明有孔虫壳体的Sr/Ca比值在第四纪以来存在着明显的冰期-间冰期变化特征,可能是指示海水Sr/Ca水平的潜在替代性指标[14-15]。此外,有孔虫壳体Sr/Ca比值的变化可能可以指示第四纪冰期旋回中的海平面变化[16]。也有研究发现浮游有孔虫壳体的Sr/Ca受海水温度和盐度等因素的影响[17]。因此,有孔虫壳体Sr/Ca是古海洋学研究的潜在指标之一。本文通过西菲律宾海MD06-3047B岩芯中G. ruber s.s.和G. ruber s.l.以及T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca比值的测试分析,探讨它们之间是否存在着显著性差异,并分析不同形态类型壳体Sr/Ca比的影响因素,为未来利用两个浮游有孔虫表层水种在该区域开展古海洋学工作提供借鉴。

    MD06-3047B岩芯(17º00.44′N、124º47.93′E)位于吕宋岛以东约240 km的西菲律宾海本哈姆高原(图1a),水深2510 m。该沉积岩芯沉积连续, 没有发现明显的沉积间断以及浊流沉积层,沉积柱状样主要由黄色粉砂质泥组成。根据前人研究,西菲律宾海现代碳酸盐溶跃面深度约为3400 m [18],MD06-3047B孔位于海区溶跃面深度之上,因此该沉积物岩芯中有孔虫保存程度较好[19]。在本次研究中,我们选取钻孔岩芯上部60 cm,按4 cm间隔取样,取得15个层位的样品。每个层位样品分别挑选30~50枚粒径范围为250~300 μm的G. ruber s.s.、G. ruber s.l.、T. sacculifer(with sac)和T. sacculifer(without sac)壳体(图2)。并对这59个有孔虫样品(G. ruber s.s.有一层位缺失)进行Sr/Ca比值测试。尽管G. ruberT. sacculifer的生活水深存在差异,但两者的平均钙化深度均位于混合层内[7, 13],该层内海水温度和盐度随深度的变化较小(图1b)。

    图  1  MD06-3047B孔站位信息
    a:年均表层海水温度信息,b:MD06-3047B孔附近的垂向温度与盐度信息。数据引自WOA13[20]
    Figure  1.  The location of Site MD06-3047B
    a: The annual mean sea surface temperature, b: profiles of water temperature and salinity around Site MD06-3047B. The data are from World Ocean Atlas 2013[20].
    图  2  G. ruberT. sacculifer不同形态类型壳体的显微照片
    Figure  2.  Microphotographs of G. ruber and T. sacculifer morphotypes

    有孔虫壳体的清洗主要依据Barker等[21]的方法。首先,将有孔虫壳体在显微镜下压碎,保证每个房室均被打开;分别对每一个有孔虫样品用去离子水进行超声清洗5次、乙醇(优级纯)超声清洗2 次、去离子水清洗2 次,用以去除黏土等;用加热的H2O2缓冲溶液进行氧化处理,并用去离子水进行清洗,以去除有机质等;在镜下剔出非有孔虫壳体碎片的杂物(暗色矿物、絮尘等);转移并进行淋洗保存等待上机测试。元素测试在中国科学院海洋研究所电感耦合等离子发射光谱仪(ICP-OES)上进行。通过对标准溶液(Sr/Ca=1.20 mmol/mol)进行45次重复测试分析,得到Sr/Ca测试的标准偏差为1.1% (1σ)。

    为了从统计学角度分析G.ruberT. sacculifer不同形态类型壳体的Sr/Ca比值差异,我们依照Antonarakou等[8]的方法,对MD06-3047B岩芯中上述4类有孔虫壳体的Sr/Ca测试结果进行韦尔奇检验。首先,假设相比较的两组数据均值结果相当,如果G.ruber s.s.和G. ruber s.l.或T. sacculifer(with sac)和T. sacculifer(without sac)壳体的Sr/Ca结果相当,即接受虚假设(H=H0),说明G.ruberT. sacculifer不同形态类型的Sr/Ca比值的差异不大;相反,如果对比结果存在显著差异,即拒绝虚假设(H=Ha),说明不同形态类型壳体的Sr/Ca存在显著差异。

    MD06-3047B孔的年龄框架由Jia等建立[19],主要依据全球大洋底栖有孔虫氧同位素堆叠曲线[22],并辅以粉红色G. ruber末现面(~120 ka)作为参考点[23]而确立。本次研究的样品时间跨度约48 ka,覆盖了MIS 3-1。图3所示为MD06-3047B孔MIS 3期以来的G.ruber s.s. 和G. ruber s.l. 以及T. sacculifer(with sac)和T. sacculifer(without sac)壳体的Sr/Ca比值。48 ka以来 G.ruber s.s.和G. ruber s.l.壳体的Sr/Ca整体上具有相同的变化趋势,其差值变化范围为−0.006~0.022 mmol/mol,平均差值约0.006 mmol/mol。G. ruber(白色)的两种形态类型壳体的Sr/Ca比值并没有表现出明显的阶段性高低变化规律,但G.ruber s.l.壳体Sr/Ca波动幅度相对较大。T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca比值存在差异,整体上T. sacculifer(with sac)壳体的Sr/Ca比值相对较高,两者的差值变化范围为−0.008~0.034 mmol/mol,平均约0.017mmol/mol。

    图  3  MD06-3047B孔G. ruber s.s.、G. ruber s.l.、T. sacculifer(with sac)和T. sacculifer(without sac)壳体的Sr/Ca比值,以及G. ruberT. sacculifer不同形态类型壳体Sr/Ca差值
    Figure  3.  Shell Sr/Ca of G. ruber s.s., G. ruber s.l., T. sacculifer (with sac), and T. sacculifer (without sac) from Core MD06-3047B, and the difference in shell Sr/Ca between morphotypes of the species

    图3所示,G.ruber s.s.和G. ruber s.l.壳体Sr/Ca变化趋势较为一致,平均差值仅约0.006 mmol/mol,小于Sr/ Ca比值的测试误差(± 0.011 mmol/mol)。T. sacculifer(with sac)和T. sacculifer(without sac)壳Sr/Ca平均差值为约0.017 mmol/mol,大于测试误差(± 0.011 mmol/mol)。同时,统计学韦尔奇检验结果也显示G.ruber s.s.和G. ruber s.l. 壳体Sr/Ca平均值差异结果不具有显著差异;而T. sacculifer(with sac)和T. sacculifer(without sac)壳Sr/Ca平均值差异显著(p<0.05,表1)。综上,我们判断在MD06-3047B站位的附近海区G. ruber不同形态类型壳体Sr/ Ca比值的差异较小;而T. sacculifer不同形态类型壳体Sr/Ca的差异较大。因此,在西菲律宾海区对浮游有孔虫表层水种Sr/Ca比值进行测试分析时,如在样品量不足的情况下,可以选择G. ruber的不同形态类型壳体,但需要尽量选择T. sacculifer(with sac)或T. sacculifer(without sac)的单一形态类型壳体,以免造成结果偏差。

    表  1  MD06-3047B孔G. ruber s.s.和G. ruber s.l.以及T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca平均值(mmol/mol)以及韦尔奇检验结果(p<0.05)
    Table  1.  Mean shell Sr/Ca (mmol/mol) of G. ruber s.s., G. ruber s.l., T. sacculifer (with sac), and T. sacculifer (without sac) of Core MD06-3047B with the results of the Welch’s t-test at p<0.05 level
    Sr/Ca Sr/Ca
    G.ruber s.s. 1.393 G.sacculifer (without sac) 1.383
    G.ruber s.l. 1.387 G.sacculifer (with sac) 1.401
    H H0 H Ha
    注:其中H = H0表示接受虚假设,H = Ha表示拒绝虚假设。
    下载: 导出CSV 
    | 显示表格

    浮游有孔虫壳体Sr/Ca主要受到海水Sr/Ca、海水温度、盐度和溶解作用等因素的影响[17, 24-27]。根据前人关于海水Sr/Ca的冰期-间冰期变化特征的研究可知,海水Sr/Ca在冰期时高,而在间冰期时低[28-29]。这一特征与我们的结果并不完全一致(图4),特别是MIS 3期的Sr/Ca整体低于MIS 1期。此外,不同形态类型壳体的Sr/Ca变化并没有表现出完全一致的变化,也说明其他因素在其中发挥作用。因此,海水Sr/Ca可能不是影响研究区浮游有孔虫壳体Sr/Ca变化特征的唯一因素。有研究表明,G.ruber壳体Sr/Ca可能受到海水温度和盐度的影响,而受pH的影响较小[26],随着海水温度和盐度的升高,G.ruber壳体Sr/Ca呈增大趋势。T. sacculifer壳体Sr/Ca同样受到温度和盐度的影响[27],海水温度升高,T. sacculifer壳体Sr/Ca越大,而盐度越高,Sr/Ca越小。

    图  4  MD06-3047B孔G. ruberT. sacculifer不同形态类型壳体Sr/Ca与表层海水温度和盐度记录[19]的对比
    MIS为氧同位素期次,T–I为末次冰消期。
    Figure  4.  Comparison of shell Sr/Ca of G. ruber and T. sacculifer morphotypes with sea surface temperature and salinity[19] from Core MD06-3047B
    MIS: marine isotope stage, T–I: the last deglacial stage.

    图3图4所示,同一粒径范围下,MIS 3期以来G. ruber两种形态类型的壳体Sr/ Ca十分相似,说明两者的变化可能受到相同影响因素的控制。而T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca存在显著差异(本文3.1节),可能指示二者受不同因素的影响。进一步将G.ruber s.s.、G. ruber s.l.、T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca进行对比可发现(图4),G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体Sr/Ca呈现较为一致的变化趋势,并两两进行线性相关分析,发现三组记录之间具有较好的相关性,因此这两个种的3种形态类型壳体Sr/Ca的记录可能受到相同因素的影响。为方便分析,将这三组记录进行堆叠平均(Sr/Castack),并与同站位48 ka以来的表层海水温度和盐度等古海洋学记录[19]进行对比和线性相关分析。结果显示Sr/Castack与表层海水温度呈现线性正相关(图5a),从整体趋势上,G.ruber s.s.、G. ruber s.l.和T. sacculifer (without sac)的Sr/Ca的增大对应表层海水温度的升高(图4)。而Sr/Castack与表层海水盐度替代性指标(δ18Osw-ice)之间不具有明显的相关性(图5b),并且G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体Sr/Ca与表层海水盐度的变化趋势也存在较大差异(图4)。因此,研究区G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体的Sr/Ca变化可能主要受到表层海水温度的影响,而受到盐度的影响较小。其中,Sr/Ca的高值并未完全出现在MIS 1期,而整体出现在末次冰消期,即MIS 2期向MIS 1期的过渡阶段(图4)。这可能是由于太平洋区域存在显著的末次冰消期表层海水温度显著增暖的特征[30]。此外,MD06-3047B孔年龄框架由底栖有孔虫氧同位素建立,而根据前人工作,研究区SST在变化特征上超前于底栖有孔虫氧同位素的变化[31]

    图  5  MD06-3047B孔浮游有孔虫表层水种Sr/Ca与表层海水温度和盐度记录[19]的线性相关分析
    SST为表层海水温度,δ18Osw-ice为表层海水盐度替代性指标(高值指示高盐),Sr/CastackG.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体Sr/Ca记录的堆叠结果。
    Figure  5.  Linear correlation of shell Sr/Ca ratio of planktonic surface-water-dwelling foraminifer species and sea surface temperature and salinity[19] from Core MD06-3047B
    SST: sea surface temperature, δ18Osw-ice: the proxy of sea surface salinity (high δ18Osw-ice means higher salinity), Sr/Castack: the stack of Sr/Ca records of G.ruber s.s., G. ruber s.l., and T. sacculifer (without sac).

    由于T. sacculifer(with sac)壳体Sr/Ca与G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)的变化趋势存在明显差异(图4),故将其单独进行分析。如图5c图5d所示,T. sacculifer (with sac)壳体Sr/Ca与表层海水温度记录无显著相关性,而与表层海水盐度呈反相关。因此,T. sacculifer(with sac)壳体的Sr/Ca可能主要受表层海水盐度的影响,这一关系与Dissard等的研究结果一致[27]

    通过对西太平洋暖池北部边缘海区MD06-3047B孔中浮游有孔虫表层水种G.ruberG.ruber s.s.与G. ruber s.l.)和T. sacculiferT. sacculifer(with sac)与T. sacculifer(without sac))壳体的Sr/ Ca进行分析,发现MIS 3期以来,G. ruber不同形态类型壳体的Sr/ Ca差异较小;而T. sacculifer不同形态类型壳体的Sr/ Ca相差较大。因此,在利用G. ruberT. sacculifer 壳体的Sr/Ca结果重建古海洋信息的过程中,如在样品量有限的条件下,可以选择G. ruber壳体不同形态类型进行测试,但应尽量选择T. sacculifer单一形态类型壳体。不同形态类型壳体Sr/Ca与海水温度和盐度古海洋学记录对比显示,研究区G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体Sr/Ca可能主要受海水温度的影响;T. sacculifer(with sac)壳体Sr/Ca主要受到盐度的影响。

    致谢:感谢中法合作MARCO POLO 2航次的全体工作人员在取样过程中提供的帮助。

  • 图  1   MD06-3047B孔站位信息

    a:年均表层海水温度信息,b:MD06-3047B孔附近的垂向温度与盐度信息。数据引自WOA13[20]

    Figure  1.   The location of Site MD06-3047B

    a: The annual mean sea surface temperature, b: profiles of water temperature and salinity around Site MD06-3047B. The data are from World Ocean Atlas 2013[20].

    图  2   G. ruberT. sacculifer不同形态类型壳体的显微照片

    Figure  2.   Microphotographs of G. ruber and T. sacculifer morphotypes

    图  3   MD06-3047B孔G. ruber s.s.、G. ruber s.l.、T. sacculifer(with sac)和T. sacculifer(without sac)壳体的Sr/Ca比值,以及G. ruberT. sacculifer不同形态类型壳体Sr/Ca差值

    Figure  3.   Shell Sr/Ca of G. ruber s.s., G. ruber s.l., T. sacculifer (with sac), and T. sacculifer (without sac) from Core MD06-3047B, and the difference in shell Sr/Ca between morphotypes of the species

    图  4   MD06-3047B孔G. ruberT. sacculifer不同形态类型壳体Sr/Ca与表层海水温度和盐度记录[19]的对比

    MIS为氧同位素期次,T–I为末次冰消期。

    Figure  4.   Comparison of shell Sr/Ca of G. ruber and T. sacculifer morphotypes with sea surface temperature and salinity[19] from Core MD06-3047B

    MIS: marine isotope stage, T–I: the last deglacial stage.

    图  5   MD06-3047B孔浮游有孔虫表层水种Sr/Ca与表层海水温度和盐度记录[19]的线性相关分析

    SST为表层海水温度,δ18Osw-ice为表层海水盐度替代性指标(高值指示高盐),Sr/CastackG.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体Sr/Ca记录的堆叠结果。

    Figure  5.   Linear correlation of shell Sr/Ca ratio of planktonic surface-water-dwelling foraminifer species and sea surface temperature and salinity[19] from Core MD06-3047B

    SST: sea surface temperature, δ18Osw-ice: the proxy of sea surface salinity (high δ18Osw-ice means higher salinity), Sr/Castack: the stack of Sr/Ca records of G.ruber s.s., G. ruber s.l., and T. sacculifer (without sac).

    表  1   MD06-3047B孔G. ruber s.s.和G. ruber s.l.以及T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca平均值(mmol/mol)以及韦尔奇检验结果(p<0.05)

    Table  1   Mean shell Sr/Ca (mmol/mol) of G. ruber s.s., G. ruber s.l., T. sacculifer (with sac), and T. sacculifer (without sac) of Core MD06-3047B with the results of the Welch’s t-test at p<0.05 level

    Sr/Ca Sr/Ca
    G.ruber s.s. 1.393 G.sacculifer (without sac) 1.383
    G.ruber s.l. 1.387 G.sacculifer (with sac) 1.401
    H H0 H Ha
    注:其中H = H0表示接受虚假设,H = Ha表示拒绝虚假设。
    下载: 导出CSV
  • [1]

    Mohtadi M, Steinke S, Lückge A, et al. Glacial to Holocene surface hydrography of the tropical eastern Indian Ocean[J]. Earth and Planetary Science Letters, 2010, 292(1-2): 89-97. doi: 10.1016/j.jpgl.2010.01.024

    [2]

    Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297(5579): 222-226. doi: 10.1126/science.1071627

    [3]

    Koutavas A, Joanides S. El Niño-southern oscillation extrema in the Holocene and Last Glacial Maximum[J]. Paleoceanography, 2012, 27(4): PA4208.

    [4]

    Steinke S, Chiu H Y, Yu P S, et al. Mg/Ca ratios of two Globigerinoides ruber (white) morphotypes: Implications for reconstructing past tropical/subtropical surface water conditions[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(11): Q11005.

    [5]

    Gussone N, Eisenhauer A, Tiedemann R, et al. Reconstruction of Caribbean Sea surface temperature and salinity fluctuations in response to the Pliocene closure of the Central American Gateway and radiative forcing, using δ44/40Ca, δ18O and Mg/Ca ratios[J]. Earth and Planetary Science Letters, 2004, 227(3-4): 201-214. doi: 10.1016/j.jpgl.2004.09.004

    [6]

    Wang L J. Isotopic signals in two morphotypes of Globigerinoides ruber (white) from the South China Sea: implications for monsoon climate change during the last glacial cycle[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 161(3-4): 381-394. doi: 10.1016/S0031-0182(00)00094-8

    [7]

    Kawahata H. Stable isotopic composition of two morphotypes of Globigerinoides ruber (white) in the subtropical gyre in the North Pacific[J]. Paleontological Research, 2005, 9(1): 27-35. doi: 10.2517/prpsj.9.27

    [8]

    Antonarakou A, Kontakiotis G, Mortyn P G, et al. Biotic and geochemical (δ18O, δ13C, Mg/Ca, Ba/Ca) responses of Globigerinoides ruber morphotypes to upper water column variations during the last deglaciation, Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2015, 170: 69-93. doi: 10.1016/j.gca.2015.08.003

    [9]

    Steinke S, Kienast M, Groeneveld J, et al. Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea: toward resolving seasonality[J]. Quaternary Science Reviews, 2008, 27(7-8): 688-700. doi: 10.1016/j.quascirev.2007.12.003

    [10]

    Wara M W, Ravelo A C, Delaney M L. Permanent El Niño-like conditions during the Pliocene warm period[J]. Science, 2005, 309(5735): 758-761. doi: 10.1126/science.1112596

    [11]

    Elderfield H, Vautravers M, Cooper M. The relationship between shell size and Mg/Ca, Sr/Ca, δ18O, and δ13C of species of planktonic foraminifera[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(8): 1-13.

    [12]

    André A, Weiner A, Quillévéré F, et al. The cryptic and the apparent reversed: lack of genetic differentiation within the morphologically diverse plexus of the planktonic foraminifer Globigerinoides sacculifer[J]. Paleobiology, 2013, 39(1): 21-39. doi: 10.1666/0094-8373-39.1.21

    [13]

    Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 18(2): 1050.

    [14]

    Stoll H M, Schrag D P, Clemens S C. Are seawater Sr/Ca variations preserved in Quaternary foraminifera?[J]. Geochimica et Cosmochimica Acta, 1999, 63(21): 3535-3547. doi: 10.1016/S0016-7037(99)00129-5

    [15]

    Lea D W, Mashiotta T A, Spero H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 63(16): 2369-2379. doi: 10.1016/S0016-7037(99)00197-0

    [16] 陈萍, 方念乔, 胡超涌. 有孔虫壳体Sr/Ca对冰川旋回中海平面变化的响应[J]. 安徽理工大学学报: 自然科学版, 2008, 28(4): 8-11 [CHEN Ping, FANG Nianqiao, HU Chaoyong. Sr/Ca Ratio of foraminifera shell response to the change of sea level with glacial-interglacial cycles[J]. Journal of Anhui University of Science and Technology: Natural Science, 2008, 28(4): 8-11.

    CHEN Ping, FANG Nianqiao, HU Chaoyong. Sr/Ca Ratio of foraminifera shell response to the change of sea level with glacial-interglacial cycles[J]. Journal of Anhui University of Science and Technology: Natural Science, 2008, 28(4): 8-11.

    [17]

    Cléroux C, Cortijo E, Anand P, et al. Mg/Ca and Sr/Ca ratios in planktonic foraminifera: Proxies for upper water column temperature reconstruction[J]. Paleoceanography, 2008, 23(3): PA3214.

    [18]

    Hilde T W C, Lee C S. Origin and evolution of the west Philippine basin: a new interpretation[J]. Tectonophysics, 1984, 102(1-4): 85-104. doi: 10.1016/0040-1951(84)90009-X

    [19]

    Jia Q, Li T G, Xiong Z F, et al. Hydrological variability in the western tropical Pacific over the past 700 kyr and its linkage to Northern Hemisphere climatic change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 493: 44-54. doi: 10.1016/j.palaeo.2017.12.039

    [20]

    Locarnini R A, Mishonov A V, Antonov J I, et al. World Ocean Atlas 2013, volume 1: temperature[M]//Levitus S, Technical A M. NOAA Atlas NESDIS 73. NOAA, 2013.

    [21]

    Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 8407.

    [22]

    Lisiecki L E, Raymo M E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): PA1003.

    [23]

    Thompson P R, Bé A W H, Duplessy J C, et al. Disappearance of pink-pigmented Globigerinoides ruber at 120, 000-yr Bp in the Indian and Pacific Oceans[J]. Nature, 1979, 280(5723): 554-558. doi: 10.1038/280554a0

    [24]

    Brown S J, Elderfield H. Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: evidence of shallow Mg-dependent dissolution[J]. Paleoceanography, 1996, 11(5): 543-551. doi: 10.1029/96PA01491

    [25]

    Elderfield H, Cooper M, Ganssen G. Sr/Ca in multiple species of planktonic foraminifera: Implications for reconstructions of seawater Sr/Ca[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(11): 1017.

    [26]

    Kısakürek B, Eisenhauer A, Böhm F, et al. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white)[J]. Earth and Planetary Science Letters, 2008, 273(3-4): 260-269. doi: 10.1016/j.jpgl.2008.06.026

    [27]

    Dissard D, Reichart G J, Menkes C, et al. Mg∕Ca, Sr∕Ca and stable isotopes from the planktonic foraminifera T. sacculifer: testing a multi-proxy approach for inferring paleotemperature and paleosalinity[J]. Biogeosciences, 2021, 18(2): 423-439. doi: 10.5194/bg-18-423-2021

    [28]

    Martin P A, Lea D W, Mashiotta T A, et al. Variation of foraminiferal Sr/Ca over Quaternary glacial-interglacial cycles: Evidence for changes in mean ocean Sr/Ca?[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(12): 1004.

    [29]

    Stoll H M, Schrag D P, Clemens S C. Are seawater Sr/Ca variations preserved in Quaternary foraminifera? [J], Geochimica et Cosmochimica Acta, 1999, 63(21): 3535-3547.

    [30]

    Kiefer T, Kienast M. Patterns of deglacial warming in the Pacific Ocean: a review with emphasis on the time interval of Heinrich event 1[J]. Quaternary Science Reviews, 2005, 24(7-9): 1063-1081. doi: 10.1016/j.quascirev.2004.02.021

    [31]

    Lea D W, Martin P A, Pak D K, et al. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Sci Rev, 2002, 21(1-3): 283-293. doi: 10.1016/S0277-3791(01)00081-6

图(5)  /  表(1)
计量
  • 文章访问数:  556
  • HTML全文浏览量:  94
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-08-07
  • 网络出版日期:  2023-09-12
  • 刊出日期:  2023-08-27

目录

/

返回文章
返回