A review on genesis of authigenic carbonate fluorapatite in marine sediments
-
摘要:
自生碳氟磷灰石(CFA)是海洋沉积物中重要的磷汇,也是海底沉积型磷矿的主要含磷矿物。解析CFA的成因对了解地质历史时期海洋生产力变化、磷循环模式及其全球气候环境效应等具有重要的科学意义。本文在比较全面地收集、整理已有海洋沉积物中自生碳氟磷灰石成因研究相关文献和资料的基础上,通过综合性的比较分析,全面地总结了有关海洋沉积物中CFA形成的物质来源、形成环境及沉淀机制的认识,分析了包括有机质的微生物降解、铁羟基氧化物对磷酸盐的吸附与释放、鱼类硬质碎屑的溶解、大型硫化细菌对多聚磷酸盐的储存与释放等有关磷富集的过程,揭示了氧化还原条件的波动等对磷富集的影响。同时,本文强调磷酸钙(CaP)前体的存在及与CFA形成之间可能的关系,阐释CaP前体在碳酸钙表面的界面耦合溶解-沉淀机制可作为CFA交代成因的微观证据,并明确了交代成因CFA的多种鉴别标志。最后,希望依靠海洋科技的进步以及多学科的交叉研究,提出未来进一步深入研究海洋沉积物中自生CFA成因与分布的重要方向。
Abstract:Authigenic carbon fluorapatite (CFA) is a crucial phosphorus sink in marine sediments and is the primary phosphorus-bearing mineral in submarine phosphorites. Understanding the genesis of CFA is of great scientific significance for understanding the changes in marine productivity, phosphorus cycling, and global climate and environmental effects throughout geological history. We overviewed the material sources, formation environment, and precipitation mechanisms of CFA in marine sediments. The enrichment of phosphorus in porewater involves the microbial decomposition of organic matter, the adsorption and release of phosphate by ferric oxyhydroxides, and the storage and utilization of polyphosphates by large sulfide bacteria. Fluctuations in redox conditions exert a significant influence on these processes. The formation of calcium phosphate (CaP) precursor phase is an important pathway for CFA precipitation. Moreover, the interface coupled dissolution and precipitation (ICDP) mechanism of CaP on calcium carbonate surfaces reveals the alteration genesis of CFA from a microscopic perspective. Based on these findings, future research directions for investigating the genesis of authigenic CFA in marine sediments are also proposed.
-
-
磷主要以碎屑磷、颗粒有机磷和颗粒无机磷等形式从表层水体流失。在沉降的过程中,颗粒态磷可以通过再矿化转化为溶解态,不稳定的颗粒无机磷可以转化为自生颗粒无机磷。沉降到海底沉积物中的有机磷部分可以矿化再生,不稳定的颗粒磷通过“汇转换”形成自生CFA(详细内容请见正文)。DIP:溶解无机磷,DOP:溶解有机磷。
Figure 1. Transformations between P pools in water column and sediments [9,14]
Phosphorus is lost from surface waters in mainly the forms of particulate organic P (POP), labile particulate inorganic P (labile PIP), and authigenic PIP. During the sedimentation, PIP and POP may undergo regeneration into DIP, and labile PIP can be transformed into authigenic PIP. In seafloor sediments, a fraction of POP can undergo regeneration, leading to the release of DIP into the seawater. Additionally, unstable forms of particulate phosphorus have the potential to be transformed into authigenic carbon fluorapatite (CFA) through the process known as “sink switching” (see the text for more details). DIP: dissolved inorganic phosphorus; DOP: dissolved organic phosphorus.
图 2 海洋沉积物中Porg 和PFe(FeOOH·HPO42−)向CFA转换[8]
在沉积物-水界面,FeOOH从海水中吸附HPO42−和F−。随着沉积物中有机质的分解,HPO42−、CO32− 被释放到孔隙水中,同时FeOOH还原溶解释放出Fe2+、HPO42− 和F−,导致孔隙水中这些离子的浓度增加,促使自生CFA的沉淀。FeOOH的还原产生的Fe2+向下在沉积物缺氧带与硫化物一起沉淀为FeS;向上在氧化带被重新氧化成FeOOH。有机质分解形成的HPO42−一部分会向沉积物-水界面扩散,被FeOOH重新吸收。
Figure 2. Schematic diagram of “sink switch” in marine sediments [8]
At the sediment-water interface, FeOOH can absorb HPO42− and F− from seawater. Upon the decomposition of organic matter, HPO42−and CO32− are released into the pore water. The reductive dissolution of FeOOH releases Fe2+, HPO42−, and F−, leading to an increase in their concentrations within pore waters and the subsequent precipitation of authigenic carbon fluorapatite (CFA). The reduction of FeOOH results in the production of Fe2+ ions, which can either precipitate as FeS in the anoxic zone or be re-oxidized back into FeOOH in the oxidized zone. HPO42− released from the decomposition of organic matter diffuses up toward the sediment-water interface, where it is reabsorbed by FeOOH.
图 3 大型硫化细菌 Beggiatoa 对磷酸盐的吸收和释放[44]
a-b:在有氧、低硫化物浓度的环境下,Beggiatoa吸收磷酸盐并以poly-P的形式储存,环境中的磷酸盐浓度减少;c-d:在缺氧-硫化环境,Beggiatoa分解poly-P,并以磷酸盐的形式释放,环境中的磷酸盐浓度增加。Pi代表无机磷酸盐。
Figure 3. Proposed phosphate uptake by and release from Beggiatoa [44]
a-b: Under oxic conditions, phosphate is taken by Beggiatoa and accumulated as polyphosphate. c-d: When the conditions change to anoxia and exposure to sulfide increases, Beggiatoa decomposes polyphosphate and release phosphate. This leads to an increase in phosphate in the medium.
图 5 CFA交代方解石的图像[75]
左边的图像为扫描电子显微镜(SEM)图像,右边的图像为左图中对应点位的能量色散谱(EDS)。有孔虫的碳酸钙壳壁(深灰色)显示出被CFA交代的特征:CFA以隐晶质胶结物(CFA cement,白色)的形式存在于基质中,碳酸钙壳壁部分残余(深灰色);在有孔虫外壳上CFA沿平行于房室壁的孔洞依次排列,形成线脉状(CFA lining,浅灰色)。在有孔虫的空腔内CFA形成结晶体(CFA crystals,白色-浅灰色)。
Figure 5. Images of authigenic carbon fluorapatite (CFA) replacement of calcite in foraminifera tests [75]
The left panels represent the scanning electron microscopy (SEM) images and the right panels are Energy Dispersive Spectroscopy (EDS) point analyses. The calcium carbonate shell wall of foraminifera (dark gray) shows features of replacement by CFA: CFA is present in the matrix as cryptocrystalline cement (CFA cement, white), with partial remnants of the calcium carbonate shell wall (dark gray); on the foraminiferal shell CFA is sequentially arranged along the pores parallel to the atrial wall, forming a linear vein (CFA lining, light gray). CFA crystals (CFA crystals, white-light gray) in the cavity of foraminifera.
图 6 CFA的不同形成机制及形成环境[77]
CFA的结构CO32– 的 δ13C 值为CFA的不同形成机制提供了鉴别依据,结构SO42–的 δ34SPAS值反映了CFA在沉积物中的形成环境。交代成因CFA既可以形成于硫酸盐还原条件下,又可以形成于开阔海水中或硫酸盐还原-氧化界面。在封闭盆地或早期成岩过程中,硫酸盐还原作用为主导,由于孔隙水与海水无法及时交换,导致剩余在孔隙水中的SO42–其δ34S偏重;而在硫酸盐氧化-还原界面,在大型硫化细菌的参与下形成的SO42–其δ34S偏轻(见2.4.1节)。
Figure 6. Different formation mechanisms and environments of authigenic carbon fluorapatite (CFA) [77]
The δ13C values of structural CO32- of CFA can be used to distinguish the precipitation mechanism of CFA. The δ34SPAS value of structural SO42- reflects the environment of CFA formation in the sediment. Alternative CFA can be formed under sulfate reduction conditions, as well as in open seawater or at sulfate reduction-oxidation interfaces (see 2.4.1).
-
[1] Föllmi K B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits[J]. Earth-Science Reviews, 1996, 40(1-2):55-124. doi: 10.1016/0012-8252(95)00049-6
[2] Ashley K, Cordell D, Mavinic D. A brief history of phosphorus: From the philosopher's stone to nutrient recovery and reuse[J]. Chemosphere, 2011, 84(6):737-746. doi: 10.1016/j.chemosphere.2011.03.001
[3] Tyrrell T. The relative influences of nitrogen and phosphorus on oceanic primary production[J]. Nature, 1999, 400(6744):525-531. doi: 10.1038/22941
[4] Bjerrum C J, Canfield D E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides[J]. Nature, 2002, 417(6885):159-162. doi: 10.1038/417159a
[5] 周强, 姜允斌, 郝记华, 等. 磷的生物地球化学循环研究进展[J]. 高校地质学报, 2021, 27(2):183-199 doi: 10.16108/j.issn1006-7493.2020002 ZHOU Qiang, JIANG Yunbin, HAO Jihua, et al. Advances in the study of biogeochemical cycles of phosphorus[J]. Geological Journal of China Universities, 2021, 27(2):183-199.] doi: 10.16108/j.issn1006-7493.2020002
[6] McElroy M B. Marine biological controls on atmospheric CO2 and climate[J]. Nature, 1983, 302(5906):328-329. doi: 10.1038/302328a0
[7] Algeo T J, Ingall E. Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3-4):130-155. doi: 10.1016/j.palaeo.2007.02.029
[8] Ruttenberg K C. The global phosphorus cycle[M]//Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014, 10:499-558.
[9] Defforey D, Paytan A. Phosphorus cycling in marine sediments: Advances and challenges[J]. Chemical Geology, 2018, 477:1-11. doi: 10.1016/j.chemgeo.2017.12.002
[10] Froelich P N, Bender M L, Luedtke N A, et al. The marine phosphorus cycle[J]. American Journal of Science, 1982, 282(4):474-511. doi: 10.2475/ajs.282.4.474
[11] Arning E T, Lückge A, Breuer C, et al. Genesis of phosphorite crusts off Peru[J]. Marine Geology, 2009, 262(1-4):68-81. doi: 10.1016/j.margeo.2009.03.006
[12] Delaney M L. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle[J]. Global Biogeochemical Cycles, 1998, 12(4):563-572. doi: 10.1029/98GB02263
[13] Tribble J S, Arvidson R S, Lane M III, et al. Crystal chemistry, and thermodynamic and kinetic properties of calcite, dolomite, apatite, and biogenic silica: applications to petrologic problems[J]. Sedimentary Geology, 1995, 95(1-2):11-37. doi: 10.1016/0037-0738(94)00094-B
[14] Paytan A, McLaughlin K. The oceanic phosphorus cycle[J]. ChemInform, 2007, 38(20):563-576.
[15] Filippelli G M, Delaney M L. Phosphorus geochemistry of equatorial Pacific sediments[J]. Geochimica et Cosmochimica Acta, 1996, 60(9):1479-1495. doi: 10.1016/0016-7037(96)00042-7
[16] 刘世荣, 胡瑞忠, 周国富, 等. 织金新华磷矿碎屑磷灰石的矿物成分研究[J]. 矿物学报, 2008, 28(3):244-250 doi: 10.16461/j.cnki.1000-4734.2008.03.004 LIU Shirong, HU Ruizhong, ZHOU Guofu, et al. Study on the mineral composition of the clastic phosphate in Zhijin phosphate deposits, China[J]. Acta Mineralogica Sinica, 2008, 28(3):244-250.] doi: 10.16461/j.cnki.1000-4734.2008.03.004
[17] Hughes J M, Rakovan J F. Structurally robust, chemically diverse: apatite and apatite supergroup minerals[J]. Elements, 2015, 11(3):165-170. doi: 10.2113/gselements.11.3.165
[18] Jarvis I. Phosphorite geochemistry: state-of-the-art and environmental concerns[J]. Eclogae Geologicae Helvetiae, 1994, 87(3):643-700.
[19] Pan Y, Fleet M E. Compositions of the apatite-group minerals: Substitution mechanisms and controlling factors[J]. Reviews in Mineralogy & Geochemistry, 2002, 48(1):13-49.
[20] Nathan Y, Sass E. Stability relations of apatites and calcium carbonates[J]. Chemical Geology, 1981, 34(1-2):103-111. doi: 10.1016/0009-2541(81)90075-9
[21] Piper D Z, Perkins R B. Geochemistry of a marine phosphate deposit: A signpost to phosphogenesis[M]//Treatise on Geochemistry. 2nd ed. Amsterdam Elsevier, 2014, 13: 293-312.
[22] Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanography, 1992, 37(7):1460-1482. doi: 10.4319/lo.1992.37.7.1460
[23] Ruttenberg K C, Berner R A. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments[J]. Geochimica et Cosmochimica Acta, 1993, 57(5):991-1007. doi: 10.1016/0016-7037(93)90035-U
[24] Benitez-Nelson R C. The biogeochemical cycling of phosphorus in marine systems[J]. Earth-Science Reviews, 2000, 51(1-4):109-135. doi: 10.1016/S0012-8252(00)00018-0
[25] Filippelli G M. Phosphate rock formation and marine phosphorus geochemistry: The deep time perspective[J]. Chemosphere, 2011, 84(6):759-766. doi: 10.1016/j.chemosphere.2011.02.019
[26] Faul K L, Paytan A, Delaney M L. Phosphorus distribution in sinking oceanic particulate matter[J]. Marine Chemistry, 2005, 97(3-4):307-333. doi: 10.1016/j.marchem.2005.04.002
[27] Ruttenberg K C. Reassessment of the oceanic residence time of phosphorus[J]. Chemical Geology, 1993, 107(3-4):405-409. doi: 10.1016/0009-2541(93)90220-D
[28] Howarth R W, Jensen H, Marino R, et al. Transport to and processing of P in near-shore and oceanic waters[M]//Phosphorus in the Global Environment. Chichester: John Wiley & Sons, 1995, 54:323-345.
[29] Slomp C P, Epping E H G, Helder W, et al. A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments[J]. Journal of Marine Research, 1996, 54(6):1179-1205. doi: 10.1357/0022240963213745
[30] Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7):1075-1090. doi: 10.1016/0016-7037(79)90095-4
[31] Glud R N. Oxygen dynamics of marine sediments[J]. Marine Biology Research, 2008, 4(4):243-289. doi: 10.1080/17451000801888726
[32] 郑旻, 罗敏, 潘彬彬, 等. 海洋沉积物溶解氧消耗研究进展[J]. 地球科学进展, 2023, 38(3):236-255 ZHENG Min, LUO Min, PAN Binbin, et al. Research progress of oxygen consumption in marine sediments[J]. Advances in Earth Science, 2023, 38(3):236-255.]
[33] Suess E. Phosphate regeneration from sediments of the Peru continental margin by dissolution of fish debris[J]. Geochimica et Cosmochimica Acta, 1981, 45(4):577-588. doi: 10.1016/0016-7037(81)90191-5
[34] Schenau S J, De Lange G J. Phosphorus regeneration vs. burial in sediments of the Arabian Sea[J]. Marine Chemistry, 2001, 75(3):201-217. doi: 10.1016/S0304-4203(01)00037-8
[35] Omelon S, Ariganello M, Bonucci E, et al. A review of phosphate mineral nucleation in biology and geobiology[J]. Calcified Tissue International, 2013, 93(4):382-396. doi: 10.1007/s00223-013-9784-9
[36] Atlas E, Culberson C, Pytkowicz R M. Phosphate association with Na+, Ca2+ and Mg2+ in seawater[J]. Marine Chemistry, 1976, 4(3):243-254. doi: 10.1016/0304-4203(76)90011-6
[37] Slomp C P, Van Cappellen P. The global marine phosphorus cycle: sensitivity to oceanic circulation[J]. Biogeosciences, 2007, 4(2):155-171. doi: 10.5194/bg-4-155-2007
[38] Froelich P N, Arthur M A, Burnett W C, et al. Early diagenesis of organic matter in Peru continental margin sediments: Phosphorite precipitation[J]. Marine Geology, 1988, 80(3-4):309-343. doi: 10.1016/0025-3227(88)90095-3
[39] Schulz H N, Schulz H D. Large sulfur bacteria and the formation of phosphorite[J]. Science, 2005, 307(5708):416-418. doi: 10.1126/science.1103096
[40] Arning E T. Phosphogenesis in coastal upwelling systems—bacterially-induced phosphorite formation[D]. Bremen: Technische Universität Bergakademie Freiberg, 2008.
[41] Berndmeyer C, Birgel D, Brunner B, et al. The influence of bacterial activity on phosphorite formation in the Miocene Monterey Formation, California[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 317-318:171-181. doi: 10.1016/j.palaeo.2012.01.004
[42] Cosmidis J, Benzerara K, Menguy N, et al. Microscopy evidence of bacterial microfossils in phosphorite crusts of the Peruvian shelf: Implications for phosphogenesis mechanisms[J]. Chemical Geology, 2013, 359:10-22. doi: 10.1016/j.chemgeo.2013.09.009
[43] Diaz J, Ingall E, Benitez-Nelson C, et al. Marine polyphosphate: A key player in geologic phosphorus sequestration[J]. Science, 2008, 320(5876):652-655. doi: 10.1126/science.1151751
[44] Brock J, Schulz-Vogt H N. Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain[J]. The ISME Journal, 2011, 5(3):497-506. doi: 10.1038/ismej.2010.135
[45] Mänd K, Kirsimäe K, Lepland A, et al. Authigenesis of biomorphic apatite particles from Benguela upwelling zone sediments off Namibia: The role of organic matter in sedimentary apatite nucleation and growth[J]. Geobiology, 2018, 16(6):640-658. doi: 10.1111/gbi.12309
[46] Williams L A, Reimers C. Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: Preliminary report[J]. Geology, 1983, 11(5):267-269. doi: 10.1130/0091-7613(1983)11<267:ROBMIO>2.0.CO;2
[47] Arning E T, Birgel D, Brunner B, et al. Bacterial formation of phosphatic laminites off Peru[J]. Geobiology, 2009, 7(3):295-307. doi: 10.1111/j.1472-4669.2009.00197.x
[48] Lumiste K, Mänd K, Bailey J, et al. Constraining the conditions of phosphogenesis: Stable isotope and trace element systematics of Recent Namibian phosphatic sediments[J]. Geochimica et Cosmochimica Acta, 2021, 302:141-159. doi: 10.1016/j.gca.2021.03.022
[49] McArthur J M, Benmore R A, Coleman M L, et al. Stable isotopic characterisation of francolite formation[J]. Earth and Planetary Science Letters, 1986, 77(1):20-34. doi: 10.1016/0012-821X(86)90129-9
[50] Paytan A, Kastner M, Campbell D, et al. Sulfur isotopic composition of Cenozoic seawater sulfate[J]. Science, 1998, 282(5393):1459-1462. doi: 10.1126/science.282.5393.1459
[51] 马芮, 苏莉, 宋宇昊, 等. 多聚磷酸盐: 菌体内多功能调控子和环境压力守护者[J]. 微生物学通报, 2017, 44(7):1736-1746 MA Rui, SU Li, SONG Yuhao, et al. Inorganic polyphosphate: the multifunctional regulator and the guardian of environmental stresses in bacteria[J]. Microbiology China, 2017, 44(7):1736-1746.]
[52] Goldhammer T, Brüchert V, Ferdelman T G, et al. Microbial sequestration of phosphorus in anoxic upwelling sediments[J]. Nature Geoscience, 2010, 3(8):557-561. doi: 10.1038/ngeo913
[53] Lomnitz U, Sommer S, Dale A W, et al. Benthic phosphorus cycling in the Peruvian oxygen minimum zone[J]. Biogeosciences, 2016, 13(5):1367-1386. doi: 10.5194/bg-13-1367-2016
[54] Glock N, Romero D, Roy A S, et al. A hidden sedimentary phosphate pool inside benthic foraminifera from the Peruvian upwelling region might nucleate phosphogenesis[J]. Geochimica et Cosmochimica Acta, 2020, 289:14-32. doi: 10.1016/j.gca.2020.08.002
[55] LeKieffre C, Bernhard J M, Mabilleau G, et al. An overview of cellular ultrastructure in benthic foraminifera: New observations of rotalid species in the context of existing literature[J]. Marine Micropaleontology, 2018, 138:12-32. doi: 10.1016/j.marmicro.2017.10.005
[56] Crawford R M. The protoplasmic ultrastructure of the vegetative cell of Melosira varians C. A. Agardh[J]. Journal of Phycology, 1973, 9(1):50-61. doi: 10.1111/j.0022-3646.1973.00050.x
[57] Ruttenberg K C, Dyhrman S T. Temporal and spatial variability of dissolved organic and inorganic phosphorus, and metrics of phosphorus bioavailability in an upwelling-dominated coastal system[J]. Journal of Geophysical Research:Oceans, 2005, 110(C10):C10S13.
[58] 张明亮, 郭伟, 沈俊, 等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报, 2017, 36(4):95-106 doi: 10.19509/j.cnki.dzkq.2017.0412 ZHANG Mingliang, GUO Wei, SHEN Jun, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4):95-106.] doi: 10.19509/j.cnki.dzkq.2017.0412
[59] Gächter R, Meyer J S, Mares A. Contribution of bacteria to release and fixation of phosphorus in lake sediments[J]. Limnology and Oceanography, 1988, 33(6):1542-1558.
[60] Ingall E, Jahnke R. Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis[J]. Marine Geology, 1997, 139(1-4):219-229. doi: 10.1016/S0025-3227(96)00112-0
[61] Krajewski K P, van Cappellen P, Trichet J, et al. Biological processes and apatite formation in sedimentary environments[J]. Eclogae Geologicae Helvetiae, 1994, 87(3):701-745.
[62] Borkiewicz O, Rakovan J, Cahill C L. Time-resolved in situ studies of apatite formation in aqueous solutions[J]. American Mineralogist, 2010, 95(8-9):1224-1236. doi: 10.2138/am.2010.3168
[63] Wang L J, Nancollas G H. Calcium orthophosphates: crystallization and dissolution[J]. Chemical Reviews, 2008, 108(11):4628-4669. doi: 10.1021/cr0782574
[64] Cappellen P V, Berner R A. Fluorapatite crystal growth from modified seawater solutions[J]. Geochimica et Cosmochimica Acta, 1991, 55(5):1219-1234. doi: 10.1016/0016-7037(91)90302-L
[65] Gunnars A, Blomqvist S, Martinsson C. Inorganic formation of apatite in brackish seawater from the Baltic Sea: an experimental approach[J]. Marine Chemistry, 2004, 91(1-4):15-26. doi: 10.1016/j.marchem.2004.01.008
[66] Rokidi S, Combes C, Koutsoukos P G. The calcium phosphate-calcium carbonate system: Growth of Octa calcium phosphate on calcium carbonates[J]. Crystal Growth & Design, 2011, 11(5):1683-1688.
[67] Wang L J, Ruiz-Agudo E, Putnis C V, et al. Kinetics of calcium phosphate nucleation and growth on calcite: implications for predicting the fate of dissolved phosphate species in alkaline soils[J]. Environmental Science & Technology, 2012, 46(2):834-842.
[68] Ren C, Li Y F, Zhou Q, et al. Phosphate uptake by calcite: Constraints of concentration and pH on the formation of calcium phosphate precipitates[J]. Chemical Geology, 2021, 579:120365. doi: 10.1016/j.chemgeo.2021.120365
[69] Sundby B, Gobeil C, Silverberg N, et al. The phosphorus cycle in coastal marine sediments[J]. Limnology & Oceanography, 1992, 37(6):1129-1145.
[70] Xu N, Yin H W, Chen Z G, et al. Mechanisms of phosphate retention by calcite: effects of magnesium and pH[J]. Journal of Soils and Sediments, 2014, 14(3):495-503. doi: 10.1007/s11368-013-0807-y
[71] Xu N, Chen M, Zhou K R, et al. Retention of phosphorus on calcite and dolomite: speciation and modeling[J]. RSC Advances, 2014, 4(66):35205-35214. doi: 10.1039/C4RA05461J
[72] Lamboy M. Phosphatization of calcium carbonate in phosphorites: microstructure and importance[J]. Sedimentology, 1993, 40(1):53-62. doi: 10.1111/j.1365-3091.1993.tb01090.x
[73] 潘家华, 刘淑琴, 罗照华, 等. 太平洋海山磷酸盐的产状、特征及成因意义[J]. 矿床地质, 2007, 26(2):195-203 doi: 10.16111/j.0258-7106.2007.02.006 PAN Jiahua, LIU Shuqin, LUO Zhaohua, et al. Modes of occurrence and characteristics of phosphorates on Pacific Guyots and their genetic significance[J]. Mineral Deposits, 2007, 26(2):195-203.] doi: 10.16111/j.0258-7106.2007.02.006
[74] Benninger L M, Hein J R. Diagenetic evolution of seamount phosphate[M]//Glenn C R, Prévôt L, Lucas J. Marine Authigenesis: from Global to Microbial. Tulsa, Oklahoma: SEPM, 2000:245-256.
[75] Benites M, Hein J R, Mizell K, et al. Miocene phosphatization of rocks from the summit of Rio Grande Rise, southwest Atlantic Ocean[J]. Paleoceanography and Paleoclimatology, 2021, 36(9):e2020PA004197. doi: 10.1029/2020PA004197
[76] McArthur J M, Coleman M L, Bremner J M. Carbon and oxygen isotopic composition of structural carbonate in sedimentary francolite[J]. Journal of the Geological Society, 1980, 137(6):669-673. doi: 10.1144/gsjgs.137.6.0669
[77] Benmore R A, Coleman M L, McArthur J M. Origin of sedimentary francolite from its sulphur and carbon isotope composition[J]. Nature, 1983, 302(5908):516-518. doi: 10.1038/302516a0
[78] 潘家华, 刘淑琴, 杨忆, 等. 太平洋水下海山磷酸盐的成因及形成环境[J]. 地球学报, 2004, 25(4):453-458 PAN Jiahua, LIU Shuqin, YANG Yi, et al. The origin and formation environment of phosphates on submarine guyots of the Pacific Ocean[J]. Acta Geoscientica Sinica, 2004, 25(4):453-458.]
[79] Birch G F. A model of penecontemporaneous phosphatization by diagenetic and authigenic mechanisms from the western margin of southern Africa[M]//Bentor Y. Marine Phosphorites—Geochemistry, Occurrence, Genesis. Jerusalem, Israel: SEPM, 1980: 70-100.