九州-帕劳海脊13°20′N海山铁锰结壳生长过程中Si、Al、Ca的含量变化及对碎屑物质供给的指示

黄威, 胡邦琦, 姜学钧, 路晶芳, 侯方辉, 崔汝勇, 李攀峰

黄威,胡邦琦,姜学钧,等. 九州-帕劳海脊13°20′N海山铁锰结壳生长过程中Si、Al、Ca的含量变化及对碎屑物质供给的指示[J]. 海洋地质与第四纪地质,2023,43(5): 26-35. DOI: 10.16562/j.cnki.0256-1492.2023070402
引用本文: 黄威,胡邦琦,姜学钧,等. 九州-帕劳海脊13°20′N海山铁锰结壳生长过程中Si、Al、Ca的含量变化及对碎屑物质供给的指示[J]. 海洋地质与第四纪地质,2023,43(5): 26-35. DOI: 10.16562/j.cnki.0256-1492.2023070402
HUANG Wei,HU Bangqi,JIANG Xuejun,et al. Variations in content of Si, Al, and Ca during the growth of ferromanganese crusts on the 13°20′N seamount of Kyushu-Palau Ridge and indication to the supply of detrital materials[J]. Marine Geology & Quaternary Geology,2023,43(5):26-35. DOI: 10.16562/j.cnki.0256-1492.2023070402
Citation: HUANG Wei,HU Bangqi,JIANG Xuejun,et al. Variations in content of Si, Al, and Ca during the growth of ferromanganese crusts on the 13°20′N seamount of Kyushu-Palau Ridge and indication to the supply of detrital materials[J]. Marine Geology & Quaternary Geology,2023,43(5):26-35. DOI: 10.16562/j.cnki.0256-1492.2023070402

九州-帕劳海脊13°20′N海山铁锰结壳生长过程中Si、Al、Ca的含量变化及对碎屑物质供给的指示

基金项目: 崂山实验室科技创新项目(LSKJ202203602);国家自然科学基金面上项目“菲律宾海盆底层水体性质对中更新世气候转型的响应机制”(41976192);中国地质调查局地质调查项目(DD20221720,DD20230647)
详细信息
    作者简介:

    黄威(1981—),男,高级工程师,研究方向为海底成矿作用与物质循环,E-mail:huangw@mail. cgs.gov.cn

  • 中图分类号: P736.3

Variations in content of Si, Al, and Ca during the growth of ferromanganese crusts on the 13°20′N seamount of Kyushu-Palau Ridge and indication to the supply of detrital materials

  • 摘要: 作为深海铁锰结壳的重要组成部分,碎屑物质类型多样,不仅影响关键金属富集成矿,而且还可以指示结壳形成过程中的古海洋环境和重大地质历史事件。本文对九州-帕劳海脊13°20′N海山铁锰结壳样品进行了扫描电镜和激光剥蚀微区分析,并结合前期研究工作,发现大颗粒的碎屑物质主要由亚洲大陆风尘来源的石英、长石或两者的聚集体,以及主要分布在结壳外层的有孔虫壳体所组成,而细颗粒的碎屑物质包括陆源风尘沉降和周边岛弧物质风化搬运共同带入的黏土矿物,以及各种形态的生物体及其残片。结壳形成的早期其碎屑物质的供给量处于高峰阶段,晚期则降低到谷底,该趋势与Si、Al在结壳各层位中的含量分布特征一致,且可能有相当数量的细颗粒生物硅进入了铁锰氧化物纹层。结壳内早期被动增生的钙质生物体在中后期会遭受破碎和溶解,但其中的Ca并没有完全从结壳内迁移出去,而是大量被铁锰氧化物所吸附。结壳中的Ca主要赋存在细颗粒碎屑物质中,使得Ca在各层位全样样品和铁锰氧化物微区纹层中的含量极为相近,这与Si、Al的特征完全不同。研究区结壳样品属于典型开阔大洋海山型结壳,但因为受亚洲大陆风尘物质和硅藻供给的影响,其内部关键金属的富集在一定程度上受到了制约。
    Abstract: The detrital materials in diverse types are important components of deep-sea ferromanganese crusts. Detrital materials not only enrich the critical metals such as Co, Ni, Cu, Mn, REE and Y, but also record the oceanographic conditions and significant geological events during the growth of the crusts. Ferromanganese crust samples from the 13°20′N seamount of Kyushu-Palau Ridge were studied in detail using scanning electron microscopy and laser ablation-inductively coupled plasma-mass spectrometry based on previous research works. Results reveal that the large grain detrital materials in the samples are composed of mainly the aggregates of quartz and feldspar, and the foraminiferal fossils are mainly distributed in the outer part of the samples. The fine grain detrital materials include clay minerals, various forms of the fossil organisms and their fragments. The quartz and feldspar within the crusts are mainly derived from the Asian continental eolian dust, while the clay minerals are supplied by the eolian dust from the Asian continent and the weathering material from the surrounding island arc. The supply of detrital materials is at a high peak stage in the early stage of crust formation while it decreases to the lowest point in the later stage, which is consistent with the distribution characteristics of Si and Al contents in every part of the crusts, and a considerable amount of biogenic silica nanofossils may have incorporated into the ferromanganese oxide microlayers. The passively accreted Ca biogenic material within the crusts in the early stage suffers from fragmentation and dissolution in the middle and late stages, but the Ca in the inner part does not migrate out of the crusts completely. It is instead adsorbed by ferromanganese oxide microlayers in large quantities. The Ca contents in the bulk parts and the ferromanganese oxide microlayers are very similar to those in the three parts of the crust samples, which is due probably to that Ca in the crust is mainly distributed in fine grain detrital materials. The contents characteristics of Ca is completely different from Si and Al. The crust samples in the study area belong to normal open oceanic seamount-type crusts, but the enrichment of these critical metals is constrained by the supply of eolian dust from the Asian continent and the diatom from the surrounding seas.
  • 图  1   结壳样品位置

    地形数据采用GEBCO 2022版,成图软件为GMT6.2,因此与文献[8]采用的GEBCO 2015版数据成图地形特征略有不同。黑色正方形代表结壳采样位置。

    Figure  1.   Location of ferromanganese crusts in the study area

    The terrain data in this map are from GEBCO 2022 version and the mapping software is GMT6.2, thus the topographic features are slightly different from the data within GEBCO 2015 version used in reference [8].Black square symbol indicates the sampling location of ferromanganese crusts.

    图  2   结壳内主要碎屑物质的扫描电镜形貌、X射线能谱及主要元素半定量分析结果

    黄色十字线为能谱分析位置。a:石英,b:钠长石,c:斜长石,d:有孔虫。

    Figure  2.   Scanning electron microscope images, X-ray energy dispersive spectra, and semi-quantitative contents of major elements of detrital materials in the ferromanganese crust samples

    Yellow cross symbols indicate the points of energy dispersive X-ray spectroscopy analysis. a: Quartz; b: albite; c: plagioclase; d: foraminifer.

    图  3   结壳样品的纵剖面激光剥蚀微区线扫描图谱

    Figure  3.   LA-ICP-MS results of line vertical profile showing the variation of element Si, Al, Ca, Mn and Fe in polished thin ferromanganese crust sample

    图  4   结壳不同层位主要碎屑元素的全样样品和铁锰氧化物微区成分对比

    Figure  4.   Comparison of bulk sub-samples and ferromanganese oxide layers in compositions of major detrital elements in the different parts of the crust sample

    图  5   全球不同海域结壳全样样品的碎屑元素含量对比

    NPCZ、PCZ、南太平洋、印度洋、北冰洋和CCM内结壳主要碎屑元素含量数据引自文献[35]。PCZ:太平洋结壳主要成矿带;NPCZ:北太平洋结壳非主要成矿带;CCM:加利福尼亚大陆边缘。

    Figure  5.   The average contents of the detrital elements in the ferromanganese crusts from the research area and other global oceans

    The average contents of the detrital elements in the ferromanganese crusts from the NPCZ, PCZ, South Pacific, Indian Ocean, Atlantic Ocean, Arctic Ocean, and CCM are from the reference[35]. PCZ: Pacific Prime Crust Zone; NPCZ: North Pacific non-PCZ; CCM: California continental margin.

  • [1]

    Hein J R, Koschinsky A. 13.11-deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 273-291.

    [2]

    Halbach P E, Jahn A, Cherkashov G. Marine Co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources[M]//Sharma R. Deep-Sea Mining. Cham: Springer International Publishing, 2017: 65-141.

    [3]

    Josso P, van Peer T, Horstwood M S A, et al. Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts[J]. Earth and Planetary Science Letters, 2021, 553: 116651. doi: 10.1016/j.jpgl.2020.116651

    [4]

    Yuan W, Zhou H Y, Yang Z Y, et al. Magnetite magnetofossils record biogeochemical remanent magnetization in hydrogenetic ferromanganese crusts[J]. Geology, 2020, 48(3): 298-302. doi: 10.1130/G46881.1

    [5] 冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999

    FENG Shizuo, LI Fengqi, LI Shaojing. An Introduction to Marine Sciences[M]. Beijing: Higher Education Press, 1999.

    [6]

    Li Y H, Schoonmaker J E. 9.1-chemical composition and mineralogy of marine sediments[M]//Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 1-32.

    [7] 陶平, 邵秘华, 鲍永恩, 等. 海洋地球化学[M]. 北京: 科学出版社, 2020

    TAO Ping, SHAO Mihua, BAO Yong’en, et al. Marine Geochemistry[M]. Beijing: Science Press, 2020.

    [8] 黄威, 胡邦琦, 宋维宇, 等. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素[J]. 海洋地质与第四纪地质, 2022, 42(5): 137-148 doi: 10.16562/j.cnki.0256-1492.2022052401

    HUANG Wei, HU Bangqi, SONG Weiyu, et al. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 137-148. doi: 10.16562/j.cnki.0256-1492.2022052401

    [9] 朱碧, 朱志勇, 吕苗, 等. Iolite软件处理LA-ICP-MS线扫描数据适用性研究[J]. 岩矿测试, 2017, 36(1): 14-21 doi: 10.15898/j.cnki.11-2131/td.2017.01.003

    ZHU Bi, ZHU Zhiyong, LÜ Miao, et al. Application of iolite in data reduction of laser ablation-inductively coupled plasma-mass spectrometry line-scan analysis[J]. Rock and Mineral Analysis, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003

    [10]

    Wang X H, Gan L, Wiens M, et al. Distribution of microfossils within polymetallic nodules: biogenic clusters within manganese layers[J]. Marine Biotechnology, 2012, 14(1): 96-105. doi: 10.1007/s10126-011-9393-4

    [11]

    Wu Y H, Liao L, Wang C S, et al. A comparison of microbial communities in deep-sea polymetallic nodules and the surrounding sediments in the Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2013, 79: 40-49. doi: 10.1016/j.dsr.2013.05.004

    [12]

    Bruland K W, Middag R, Lohan M C. 8.2-controls of trace metals in seawater[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014, 8: 19-51.

    [13]

    Anonymous. A fresh look at element distribution in the North Pacific Ocean[J]. EOS Transactions American Geophysical Union, 1997, 78(21): 221.

    [14]

    Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer International Publishing, 2017: 23-63.

    [15]

    Peacock C L, Sherman D M. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules[J]. American Mineralogist, 2007, 92(7): 1087-1092. doi: 10.2138/am.2007.2378

    [16]

    Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    [17]

    Wan S M, Yu Z J, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 326-328: 152-159. doi: 10.1016/j.palaeo.2012.02.015

    [18]

    Yu Z J, Wan S M, Colin C, et al. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: New insights from high-resolution clay mineral records in the West Philippine Sea[J]. Earth and Planetary Science Letters, 2016, 446: 45-55. doi: 10.1016/j.jpgl.2016.04.022

    [19] 徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海晚中新世末期以来古海洋环境演化的新型铁锰结壳记录[J]. 中国科学D辑: 地球科学, 2007, 37(4): 512-520

    XU Zhaokai, LI Anchun, JIANG Fuqing, et al. Paleoenvironments recorded in a new-type ferromanganese crust from the east Philippine Sea[J]. Journal of China University of Geosciences, 2006, 17(1): 34-42.

    [20] 王薇, 徐兆凯, 冯旭光, 等. 西菲律宾海现代风尘物质组成特征及其物源指示意义[J]. 地球科学, 2020, 45(2): 559-568

    WANG Wei, XU Zhaokai, FENG Xuguang, et al. Composition characteristics and provenance implication of modern dust in the west Philippine Sea[J]. Earth Science, 2020, 45(2): 559-568.

    [21]

    Jiang F Q, Frank M, Li T G, et al. Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(5): 1538-1551. doi: 10.1002/ggge.20116

    [22]

    Hein J R, Koschinsk A, Bau M, et al. Cobalt-Rich Ferromanganese Crusts in the Pacific[M]. Routledge: Handbook of Marine Mineral Deposits, 2000: 239-279.

    [23]

    Mizell K, Hein J R, Lam P J, et al. Geographic and oceanographic influences on ferromanganese crust composition along a pacific ocean meridional Transect, 14 N to 14S[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(2): e2019GC008716.

    [24]

    Hein J R, Konstantinova N, Mikesell M, et al. Arctic deep water ferromanganese-oxide deposits reflect the unique characteristics of the arctic ocean[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(11): 3771-3800. doi: 10.1002/2017GC007186

    [25]

    Zawadzki D, Maciąg Ł, Blasco I, et al. Geochemistry and mineralogy of ferromanganese crusts from the Western Cocos-Nazca Spreading Centre, Pacific[J]. Minerals, 2022, 12(5): 538. doi: 10.3390/min12050538

    [26]

    Usui A, Graham I J, Ditchburn R G, et al. Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate, northwest Pacific Ocean[J]. Island Arc, 2007, 16(3): 420-430. doi: 10.1111/j.1440-1738.2007.00592.x

    [27] 唐艺, 万世明, 赵德博, 等. 三千万年以来西太平洋黏土矿物记录的亚洲干旱及构造-气候驱动[J]. 中国科学: 地球科学, 2023, 53(6): 1373-1391

    TANG Yi, WAN Shiming, ZHAO Debo, et al. Evolution of Asian drying since 30 Ma revealed by clay minerals record in the West Pacific and its tectonic-climatic forcing[J]. Science China Earth Sciences, 2023, 66(6): 1365-1382.

    [28]

    Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific[J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044

    [29] 李铁刚, 熊志方, 翟滨. 低纬度西太平洋硅藻席沉积与碳循环[M]. 北京: 海洋出版社, 2015

    LI Tiegang, XIONG Zhifang, ZHAI Bin. Laminated Diatom Mat Deposits from the Low-Latitude Western Pacific Linked to Global Carbon Cycle[M]. Beijing: China Ocean Press, 2015.

    [30]

    Broecker W S. A need to improve reconstructions of the fluctuations in the calcite compensation depth over the course of the Cenozoic[J]. Paleoceanography, 2008, 23(1): PA1204.

    [31]

    Van Andel T H. Mesozoic/cenozoic calcite compensation depth and the global distribution of calcareous sediments[J]. Earth and Planetary Science Letters, 1975, 26(2): 187-194. doi: 10.1016/0012-821X(75)90086-2

    [32]

    Wang X H, Schröder H C, Wiens M, et al. Manganese/polymetallic nodules: Micro-structural characterization of exolithobiontic- and endolithobiontic microbial biofilms by scanning electron microscopy[J]. Micron, 2009, 40(3): 350-358. doi: 10.1016/j.micron.2008.10.005

    [33]

    Wang X H, Schloßmacher U, Natalio F, et al. Evidence for biogenic processes during formation of ferromanganese crusts from the Pacific Ocean: Implications of biologically induced mineralization[J]. Micron, 2009, 40(5-6): 526-535. doi: 10.1016/j.micron.2009.04.005

    [34]

    Usui A, Hino H, Suzushima D, et al. Modern precipitation of hydrogenetic ferromanganese minerals during on-site 15-year exposure tests[J]. Scientific Reports, 2020, 10(1): 3558. doi: 10.1038/s41598-020-60200-5

    [35]

    Mizell K, Hein J R, Au M, et al. Estimates of metals contained in abyssal manganese nodules and ferromanganese crusts in the global ocean based on regional variations and genetic types of nodules[M]//Sharma R. Perspectives on Deep-Sea Mining: Sustainability, Technology, Environmental Policy and Management. Cham: Springer International Publishing, 2022, 53-80.

    [36]

    Conrad T, Hein J R, Paytan A, et al. Formation of Fe-Mn crusts within a continental margin environment[J]. Ore Geology Reviews, 2017, 87: 25-40. doi: 10.1016/j.oregeorev.2016.09.010

图(5)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  52
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 修回日期:  2023-07-26
  • 录用日期:  2023-07-26
  • 网络出版日期:  2023-09-12
  • 刊出日期:  2023-10-27

目录

    /

    返回文章
    返回