Microbial vertical diversity in core sediments and its response to environmental factors near the hydrothermal field of the southern Okinawa Trough
-
摘要: 近年来,海底热液环境中的微生物及其环境适应机制已经成为海洋科学研究的热点。目前,相关的研究主要集中在表层沉积物及微生物的水平分布多样性方面,而对柱状沉积物中微生物垂直分布多样性研究却很少。本文基于西太平洋冲绳海槽南部热液区附近S2站位的柱状沉积物样品,通过对其不同层位的样品进行分离培养和16S rRNA基因高通量测序,揭示了样品中可培养微生物和总体微生物的垂直群落分布特征,同时结合对样品主量元素、微量元素、碳氮含量等指标的评估和冗余分析等统计学方法,讨论了微生物群落结构及其对环境因子的响应。研究发现该位点的柱状沉积物有机质含量较为贫乏,存在两个富含Cu-Zn-Pb的层;各个层位的沉积物中微生物类群均以变形菌为主要类群,同时表层沉积物表现出更高的微生物多样性。此外研究还表明柱状沉积物中有机碳含量与其微生物的群落组成有着更为密切的关系。总之, 本研究的结果和获得的菌种资源为进一步深入研究海底热液环境中微生物参与元素地球化学循环的过程提供了一定的基础。Abstract: In recent years, microbe and its adaptation mechanism in submarine hydrothermal environment have become the focus of marine science research. At present, relevant researches focus on the horizontal distribution diversity of surface sediments and microorganisms, and only few researches on the vertical distribution diversity of microorganisms in columnar sediments. Based on the columnar sediment samples from the S2 station in the southern hydrothermal area of the Okinawa Trough in the western Pacific Ocean, we revealed the vertical community distribution characteristics of culturable microorganisms and the overall microorganisms in the samples through isolation, culture, and high-throughput sequencing of 16S rRNA gene from the samples at different levels. At the same time, the microbial community structure and its response to environmental factors were discussed by using statistical methods such as the evaluation of major elements, trace elements, carbon and nitrogen contents, and redundancy analysis. Results show that the organic matter content of the core sediment at this site is relatively poor, and Cu-Zn-Pb is rich in two layers; the microbial community of each layer is composed of mainly Proteobacteria, while the surface sediments exhibit higher microbial diversity. Meanwhile, it indicated a closer relationship between the organic carbon content of core sediments and the composition of their microbial communities. This study obtained bacterial strain resources and provided a basis for further research into microbial participation in the geochemical cycle of elements in submarine hydrothermal environment.
-
据不完全统计,全球新发现的油气田60%来自海上,且未来油气总储量的40%将来自深水区,深水以及超深水油气勘探开发将逐渐成为油气增产和资源战略的新领域和新热点[1-4]。但如何有效规避勘探风险,提高钻井成功率,是深水油气勘探开发面临的重要挑战。对此,学者通过运用高分辨率层序地层学、三维地震属性、测井和钻井、地质露头等多种技术方法[5-15],识别深水沉积类型、分布和油气聚集关系,建立深水沉积体系下储层的识别与有利储层中油气资源的有效预测。其中,地震相-沉积相分析技术具有重要的科学指导意义。
地震相的概念是20世纪随地震地层学的兴起而逐渐推广的,其主要为沉积相在地震资料上表征的总和[16-18]。地震相分析是稀疏井网甚至无井条件下开展沉积相研究的最有效的方法。目前,国外比较流行的地震相分析主要有人工相面法、地震属性和波形分类法和基于地震切片的沉积地貌单元分析法[19-23];而国内主要采用传统地震相分析法[24-28]。
传统地震相分析在地震相-沉积相转换上存在较大误差与不确定性,例如,三角洲平原内大套洪泛平原泥岩和厚层状河道砂岩均表现出弱-空白反射;高孔渗含气砂岩和灰岩(或含灰质、钙质)均表现出强-极强振幅反射;陆架边缘三角洲和陆棚边缘进积楔都具有前积构型,但前者为低位域高含砂岩相,后者为高位域含泥岩相。针对这种情况,徐国强教授通过对南海北部珠江口盆地大量钻井的井震对比与岩性总结,提出地震反射波光滑性、地震反射整洁性和特殊波形3种新标识,来开展岩相辨别和沉积相转换,并以此推广至无井地区的地震岩相预测。
我国对北康盆地油气勘探程度较低且无钻井,国外钻井最深也仅到下中新统,对渐新统的探索几乎为零。而随着浅层可采油气资源量的不断减少,日益增长的油气需求迫使我们向深层勘探,面对成本高、风险大等问题,更加要求对实际地质情况的准确把握。本文通过开展二维地震资料综合解释,总结北康盆地晚渐新世典型地震岩相特征,并重建沉积体系。希望该研究对进一步深化北康盆地沉积认识以及为后续油气勘探工作提供基础支撑。
1. 沉积背景
北康盆地位于南海南部海域中部,南沙地块西南缘,盆地从西到东依次环绕南薇西盆地、曾母盆地、文莱-沙巴盆地、南沙海槽盆地(图1)。总面积约6×104 km2,最大沉积厚度约12000 m,水深范围100~1200 m,主体水深超过1000 m[29-37]。盆地分为3隆3坳共6个二级单元,发育齐全的新生代沉积地层,根据广州海洋地质调查局解释方案,划分出6个地质界面,T1界面为5.3 Ma,对应上新统和第四系的分界面;T2界面为10.5 Ma,对应中中新统和上中新统的分界面;T3界面为16.5 Ma,对应下中新统和中中新统的分界面;T4界面为32 Ma,对应下渐新统和上渐新统的分界面;T5界面为40.4 Ma,对应始新统和渐新统的分界面;Tg界面为58.7 Ma,是新生界的底界面(图2)。随“古南海消亡、新南海扩张”的南海构造演化史,北康盆地总体上经历了初始断陷期(湖相碎屑岩沉积)、继承性断陷期(河流、沼泽和滨浅湖相碎屑岩夹煤层沉积)、裂陷高潮期(海岸平原、浅海相沉积)和拗陷期(半深海-深海相沉积,局部发育生物礁)。其中,晚渐新世时,盆地经历裂陷高潮期,发育海岸平原富砂的砂泥互层夹煤层到浅海相砂泥互层沉积[38-44]。
2. 地震相分析
2.1 反射特征
传统地震相分析中的反射外形主要有丘状、席状、楔状以及侵蚀沟谷等。其中,丘状反射可进一步分为沉积型和非沉积型,沉积型的丘状反射外形具有明显的方向性,在横剖面上表现为丘状,在纵剖面上为楔状并呈现出向盆地方向收敛的形态;非沉积型的丘状反射不具有方向性,表现出原地生长发育的特征,例如泥底辟、火山岩体、剥蚀残丘等。席状反射表现为顶底面呈平行或亚平行的层状沉积体,分布范围广,沉积厚度大,发育于中陆棚、外陆棚、宽缓的陆坡和深海平原等非常开阔平坦的古地理环境。楔状反射主要有单边断陷同沉积楔状体和陆架边缘前积楔两大类,前者发育于盆地内大型断裂一侧,靠近断裂的凹陷可堆积巨厚的沉积物,翘倾隆起端则相对较薄;而陆架边缘三角洲、富泥型陆棚边缘前积楔和礁前斜坡都会发育向盆地方向收敛的陆架边缘前积楔。侵蚀沟谷主要为河流途经后的产物,根据水流的势能而呈现不同的深度和宽度。
2.2 内部反射结构
内部反射结构受控于反射外形,两者间一般具有匹配关系,常见的有平行、亚平行、斜交型(S型斜交、平行斜交、叠瓦状斜交等)、收敛或发散型以及充填结构等。平行或亚平行主要见于席状反射体内,指示细粒沉积物,例如纯泥岩层、薄层粉砂岩等。斜交型与丘状反射体或滩状反射有关,例如随三角洲的前积而向盆地方向迁移的S型斜交、或河控三角洲的平行斜交、或浪控三角洲的叠瓦状斜交。收敛或发散型与楔状反射体有关,呈凹陷处发散而隆起端收敛的特征。充填结构发育于侵蚀沟谷内,可表现为槽状交错结构、上超充填、侧向加积和杂乱空白。
2.3 振幅、频率、连续性
地震反射波的振幅主要反映上下岩层界面的波阻抗差异大小,它与岩性、孔隙度、充填介质及厚度多种因素有关。可分为弱振幅、中振幅、强振幅和极强振幅,若上下岩层间的波阻抗差异较小或在大套同时期沉积体内部(无波阻抗差异),则表现出弱振幅反射;若上下岩层间波阻抗差异较大,如煤层、欠压实泥岩、含气砂岩与泥灰岩、灰岩和玄武岩,则表现出强—极强振幅反射。
频率指单位时间内反射波的数量,主要指示岩性在纵向上变化的频繁程度。一般地,高频代表纵向上岩性变化非常频繁,如砂泥岩薄互层;低频代表纵向上岩性变化不频繁,单位时间内反射界面少。
地震反射同相轴的连续性反映的是地层横向分布的稳定性,一般地,河流相砂体的横向分布不稳定,通常产生短轴不连续反射;经过波浪和潮汐摊平的河口坝、席状砂、沿岸砂坝和远砂坝砂体,分布范围相对较宽,产生连续反射。
2.4 地震同相轴光滑性
地震同相轴光滑性指沉积层表面的平整程度,当地层横向沉积稳定、分布广泛时,通常表现出连续性的特征。例如,发育于陆架边缘的三角洲前缘席状砂由于受海浪冲刷作用,分布广且平整性好而产生连续反射;海进期沉积的灰岩层或含灰质(钙质)层表面平整且横向分布非常稳定亦表现出连续反射,并且当砂岩含气或孔渗性极好时,呈强—极强振幅反射,与灰岩层或含灰质(钙质)层振幅相似,这给研究判断带来迷惑性。因此,在连续性的基础上,增加光滑性用以表征沉积层表面的平整程度,突出其主要受沉积物组分的性质和成因影响。灰岩层或含灰质(钙质)层主要通过物质的化学沉淀和结晶形成,同相轴表面呈极光滑的特征;而三角洲前缘席状砂由河流搬运的物理沉积形成,尽管受波浪、潮汐等水动力作用,但同相轴表面呈凹凸起伏,光滑性较差(图3)。
2.5 特殊波形
Anstey[45]通过利用不同地震子波形态来直接识别砂岩储集层的相关问题。之后,通过利用大量详实的钻井资料,并结合切实的地质模型研究发现,在特定的沉积环境下,利用地震波形分析方法是可行、可信的,并总结出零十字对称、斜十字对称和低频不对称波形为三种基本地震反射波型。
下文主要指低速和高速夹层所表现出的斜十字对称波形。例如,高孔渗砂岩由于波阻抗低于上下围岩,其顶面为负反射,对应波谷;底面为正反射,对应波峰,整体呈现一个右下倾斜对称的形态,即A1与A4、A2与A3均呈斜十字对称,从A2到A3振幅变化最大(图4),若砂岩含气时,A2到A3将表现出更大的振幅。灰岩、火山熔岩或钙质砂岩,其波阻抗远大于上下围岩,顶面为正反射,对应于波峰;底面为负反射,对应于波谷,整体表现出一个左下倾斜对称波形(图4)。结合地震相分析,高孔渗砂岩主要有河流相砂、河口坝砂、三角洲前缘席状砂等;灰岩发育于海进期没有陆缘碎屑供应的陆架、台地等浅海环境;火山熔岩在火山口附近,发育于任何水深。
2.6 地震反射剖面整洁性
地震反射剖面整洁性指沉积层内部结构的变化,沉积地层内部结构、岩性变化以及外来物数量等,均会引起宏观层界面同相轴振幅的变化,这种变化在纵横向上延伸至更大范围时,就可以在剖面上辨别出来,表现出不干净和干净的画面。例如内部结构的变化,河流相砂岩因其内部地层结构横向不稳定或产生突变(如槽状交错充填)而表现出不干净画面;三角洲前缘席状砂、河口坝砂等因其内部地层结构横向上稳定(平行层状加积)而呈干净反射。又如岩性变化,大套河流相砂岩和静水泥岩尽管均表现为弱振幅反射,但砂岩内部稳定性差、岩性变化快,表现出不干净画面;而泥岩内部物质均一、地层平整且横向稳定,整个反射画面看起来显得整洁干净。最后,当层状介质中夹杂其他外来沉积物时,将会导致同相轴波形的突变,在变密度剖面中表现出不同程度的“变脏”,如砂泥岩地层中夹杂火山碎屑、静水泥岩中夹杂浊积岩、灰岩或煤层中夹杂砂岩等(图5)。
3. 北康盆地主要地震岩相特征
3.1 国外钻井分析
通过收集周边国家在北康盆地和曾母盆地的钻井信息,将岩性信息植入地震剖面,利用传统地震相分析和3种新增标识,开展钻井岩性与井旁地震反射特征研究(图6),总结出主要的地震岩相有:
①砂砾岩相:砂砾岩混杂,由于砂砾岩间波阻抗差异较大而表现出中—强振幅反射;主要发育在冲积平原—河流的高能环境中,且快速堆积而成,沉积物在纵向上厚度大,横向上稳定性差而表现出中—低频、杂乱不光滑以及不干净反射。
②砂包泥相:泥岩以条带状的形式嵌于砂岩中,砂岩层之间由于波阻抗差异较小,总体呈弱反射的地震响应;主要发育在河流—三角洲平原的高能环境中,砂体沉积厚度大且内部存在的各种层理面(弱波阻抗差异界面)横向稳定性差,表现出中—低频、短轴不光滑及不干净反射。
③砂泥岩互层相:砂泥岩以层状形式相互叠置,砂泥岩之间由于波阻抗差异大而表现出中—强振幅反射;常见于三角洲前缘环境或高含砂的滨岸砂坝环境,砂岩和泥岩都比较纯且横向连续性较好而表现出中—高频、光滑连续反射。
④灰岩(或含钙质、灰质)相:由于与围岩巨大的波阻抗差异而表现出强振幅反射;而灰岩层表面的平整性以及灰岩分布的广泛性使其呈现出极光滑连续性;低—中频主要为强振幅造成的假象。
⑤泥包砂相:砂岩被周围大套泥岩包裹,砂体以短轴不连续反射或孤立状反射,置于弱振幅泥岩背景中而呈中—强振幅、中—低频、不光滑反射;通常为发育在陆坡或盆底的深水扇砂体。
⑥纯泥(页)岩相:发育于静水环境而呈水平层状;较低的沉积速率表现出中—高频;横向上地层结构、岩石类型大致相同或相似,纵向上层与层之间波阻抗差异甚小,总体表现为光滑连续干净反射。
⑦泥夹粉砂(细沙)相:主要发育于前三角洲或深海平原等低能环境,粉砂岩(细砂岩)和泥岩呈平铺式展布沉积而表现出光滑连续的水平层状反射;由于粉砂岩(细砂岩)与泥岩之间波阻抗差异较小且沉积速率低而表现为弱—中振幅、中—高频、较干净反射。
3.2 北康盆地主要地震岩相
基于上述钻井分析,结合传统地震相和3种新增标识建立北康盆地综合地震相分析方法(图7),通过开展北康盆地地震资料连片解释,识别出北康盆地8种主要地震岩相,即砂砾岩相、砂包泥相、砂泥岩互层相、泥包砂相、纯泥(页)岩相、泥夹粉砂(细沙)相、灰岩(含钙质)相和火山岩相(图8)。其中火山岩相尽管在所收集的钻井中未钻遇,通过已有研究成果判别北康盆地主要包括火山熔岩、火山碎屑岩和火山侵入岩。其中,火山熔岩呈连续极强振幅反射,地震波形表现为高速层的左下倾斜对称波形;火山口附近的火山碎屑岩或撒落后的火山碎屑表现出中—强振幅、没有生根、内部呈杂乱或空白反射的特征,翼部为没有构造形态丘状反射体;而火山侵入岩则有“根”且翼部发生构造形变。
4. 北康盆地晚渐新世沉积体系构建
4.1 方法和原理
通过地震相定性标定,将不同的地震相标定解释结果叠合到同一张平面图上,生成地震相线图,再利用地震相-地震岩相的方法,将地震相线图转换为岩相图。这里的岩相分析为主要的骨架岩相分布图,即碎屑岩岩相主要包括砂砾岩、砂包泥岩、砂泥岩互层和泥包砂岩;灰岩和火山岩为特殊岩性;纯泥岩和泥夹粉砂岩为充填岩性。
在骨架岩相分布图的基础上,结合北康盆地上渐新统等厚度图,通过海岸线(陆相沉积地层不连续反射与海相沉积地层连续反射的分界带)、陆架坡折带(沉积地层产状和堆积方式由水平层状加积堆积转变为“S”型斜交前积堆积的突变处)和深水盆地(弱振幅、中—高频、连续层状反射)等来圈定内陆架(滨浅海)、陆架边缘—斜坡、深海盆地的大类环境相图。
陆源碎屑沉积物主要通过大型河流带来,通过识别地震剖面上的侵蚀沟谷或根据等厚度图上高地势夹低谷来确定主要的水流路径,得到水流路径图。最后将岩相图、环境相图和水流路径图叠合在一起,得到较准确的沉积体系图。
4.2 北康盆地晚渐新世沉积体系特征
北康盆地上渐新统内主要发育6类典型地震相(图9),即:① 中—强振幅、中—低频,杂乱不连续、不干净反射;② 弱振幅、中—低频,短轴不连续、不干净反射;③ 中—强振幅、中—高频,光滑连续、较干净反射;④ 弱振幅干净反射背景中,中—强振幅、短轴不连续反射;⑤ 弱振幅、中—高频,光滑连续、干净反射;⑥ 中—强振幅、内部杂乱或近空白反射,具有侧积或刺穿特征。将该6类地震相进行转换,得到北康盆地上渐新统6类主要岩相,即砂砾岩相、砂包泥岩相、砂泥岩互层相、泥包砂岩相、火山岩相和纯泥岩相(图10)。其中曾母盆地的康西坳陷、北康盆地的南部坳陷以及中部坳陷的西南部为砂岩发育的有利相带;北康盆地中部坳陷和北部坳陷发育深水浊积砂岩;火山岩主要分布于两盆地交界处以及北康盆地深水区;在三角洲相间处发育静水泥岩。
晚渐新世时为南海同扩张期,盆地强烈伸展,南部的曾母盆地开始进入周缘前陆阶段,而北康盆地主要以滨浅海相沉积为主,局部可见半深海相沉积。从南至北依次为三角洲、浅海、半深海-深海的沉积环境。
研究分析表明,沉积物源主要来自南部陆地,尤其是婆罗洲山地,受沙巴造山运动的影响,通过拉让江和巴兰河分别从南面和东南面向盆地凹陷内搬运沉积物,主水流距离超过40 km,进入陆架后分叉为多支较小水流,形成多个三角洲-深水扇沉积体系。此外,还有来自西北方向(印支半岛)的物源进入研究区,其规模较小[46-47]。
综上,北康盆地晚渐新世主要发育河流三角洲、陆架浅海、陆坡浊积扇和深海盆地4种沉积体系(图11)。在盆地南部和东南部的陆架-斜坡区域发育大型三角洲-深水扇沉积体系,其沉积物源主要来自南部婆罗洲地区,其中发育于曾母盆地康西坳陷和北康盆地南部坳陷的三角洲和斜坡扇砂体有形成优质储层的潜力。
5. 结论
(1)光滑性主要表征沉积地层界面的平整程度,突出其主要受沉积物组分的性质和成因影响;特殊波形中的斜对称波形可有效识别低速和高速夹层;画面整洁性是内部岩石物理特性的表现,沉积物质均一、沉积环境稳定且无外来物质,将呈干净整洁的画面。利用该3种新标识,建立地震岩相的分析方法,在开展无井地区的沉积相转换上精度大幅提升且信息更加准确。
(2)北康盆地晚渐新世主要发育6种地震岩相,即砂砾岩相、砂包泥相、砂泥岩互层相、泥包砂相、纯泥(页)岩相和火山岩相;主要沉积物源为来自南部婆罗洲,通过拉让江和巴兰河运送至盆地沉积。
(3)北康盆地晚渐新世主要发育河流三角洲、陆架浅海、陆坡浊积扇和深海盆地4种沉积体系,形成了陆架三角洲-陆坡浊积体-深海盆地沉积体系以及火成岩体的空间展布体系。
(4)基于地震岩相分析,结合沉积环境获得较为准确的北康盆地晚渐新世沉积体系图,为北康盆地油气勘探提供有效的地质基础支持。
-
图 2 基于16S rRNA基因序列构建的可培养细菌的系统发育树
分支1中包含的菌株有18A01、18E05、18S01、81A02、81E07-1、199A01、301A01、334E05、334M01、334S02、334S04、392A01、392E02、475E05和Alcanivorax xenomutans JC109T (HE601937)。
Figure 2. Phylogenetic tree of cultivable bacteria isolated from hydrothermal field sediment core in the southern Okinawa Trough based on the 16S rRNA gene sequences using the maximum-likelihood algorithm
GenBank accession numbers are shown in parentheses. Bar, 0.1 substitutions per nucleotide position. Branch 1 represented 18A01, 18E05, 18S01, 81A02, 81E07-1, 199A01, 301A01, 334E05, 334M01, 334S02, 334S04, 392A01, 392E02, 475E05, and Alcanivorax xenomutans JC109T (HE601937).
表 1 本研究使用样品的地球化学组成
Table 1 Geochemical compositions of the samples used in this study
样品深
度/cmbsf18 30 81 100 110 171 181 190 199 240 248 267 288 301 311 334 380 392 475 Na2O/% 2.03 1.98 1.81 1.9 1.86 1.98 1.8 1.84 1.84 1.79 1.79 1.78 1.95 1.89 1.96 1.83 1.89 2.02 1.88 MgO/% 2.64 2.3 2.49 2.5 2.59 2.03 2.43 2.65 2.58 2.4 2.38 2.41 2.71 2.58 2.48 2.39 2.54 2.57 2.49 Al2O3/% 16.32 15.39 16.33 15.77 15.23 14.25 16.11 16.65 16.31 16.37 16.2 16.41 16.13 15.92 15.31 15.98 15.96 15.9 16.37 SiO2/% 58.88 60.43 59.27 59.7 59.17 62.59 59.43 58.05 57.99 59.26 59.53 59.27 59.12 58.48 58.99 59.51 59.62 58.96 58.55 Fe2O3/% 6.43 5.85 6.43 6.03 5.98 5.09 6.21 6.41 6.43 6.31 6.18 6.23 6.32 6.23 5.8 6.14 6.26 6.24 6.26 K2O/% 3.26 2.97 3.27 3.11 3.09 2.76 3.26 3.46 3.35 3.29 3.23 3.26 3.28 3.23 3.04 3.21 3.24 3.17 3.28 CaO/% 2.21 2.67 2.4 2.66 3.52 2.92 2.6 2.66 2.92 2.55 2.6 2.49 2.41 3.13 3.46 2.68 2.52 2.62 2.75 P/10−6 706.1 714.3 684.3 674 632.5 623.6 631.4 607.2 635.4 642 649.2 689.1 646.6 602.5 653.1 620.1 623 899 618.5 S/10−6 761.1 859.7 649.3 841 804.9 956.8 567.1 580.2 657.2 517.6 559 569.4 620.3 650.5 782.9 556.5 734.1 660.4 661.3 Cl/10−6 6037.2 6000 3860.6 4979.2 4420.3 5220.8 4230.2 5057 5537.6 3815.5 4061.6 4257.9 5084 5536.1 6376.4 4519.6 4159.3 6186.9 5395 Ti/10−6 4742.1 4697.5 4834.1 4714.8 4530.7 4377.6 4777.1 4603 4734.4 4868.5 4826 4845.9 4641.3 4639.4 4567 4743.7 4663.3 4562.8 4811.9 V/10−6 131.8 110 128.4 124.9 122.7 100.9 122.7 129.6 128.4 118.9 119.6 117.4 139.2 127.3 117 119.8 131.9 129.2 125 Cr/10−6 99.5 84.6 94.9 88.2 88.8 76.1 90.1 100.1 95.2 91.6 90.8 90 97.6 92.6 85.8 88.6 94.6 89.8 93.4 Mn/10−6 478.4 505.3 527.1 463 496.2 404.1 507 475 493.8 513.2 510.5 542.4 489.8 503.1 492.1 509.3 458.6 623.8 529.6 Co/10−6 16.5 16.6 18.6 16 21.8 13.9 16.6 16.7 16.1 15.6 15.6 17.7 17.7 17.5 16 17 16.7 16 16.8 Ni/10−6 40.3 35.8 40.8 37.2 36.9 30.8 37.5 39.9 38.5 38.5 37.3 37.5 39.4 39.5 35.9 36.9 38.8 37.3 39 Cu/10−6 48.9 28.2 38.5 36.5 35 18.9 26.3 40.1 28.6 28.9 25.4 26.5 57.9 28.5 25.2 26 44.3 43.9 27 Zn/10−6 130.8 95.9 117.6 113.9 110.4 83.4 103.3 126.8 107.2 108.3 103.2 105.5 154.7 107.4 95.7 102.5 135.4 129.5 105.4 Ga/10−6 21.2 19.7 22.5 20.2 20.9 18.3 21 22.9 21.6 22.8 20.9 21.6 21.3 21.7 19 21.5 22.2 20.7 21.7 As/10−6 17 15.5 19.4 12.3 10.5 8.3 12.2 14.8 12.5 12.6 12.2 13.2 17.3 11.6 9.2 11.5 14 14.7 11.7 Rb/10−6 150.6 135.9 153.3 141.8 140.8 122.5 152.7 163.4 158 157.3 151.8 152.6 150.5 151.1 137.3 150.6 149.7 144.6 154 Sr/10−6 144 149 149 149 170 149 149 155 159 151 152 147 151 162 167 152 151 155 155 Zr/10−6 194 208 190 203 189 236 196 170 177 192 198 196 184 179 200 194 189 191 187 Nb/10−6 18.3 21.6 18 17.3 17.7 17 18.8 17.7 20.4 18.5 19 18.7 17.8 19 18.9 18.5 21.1 17.8 18.2 U/10−6 3.7 3.8 3.5 3.5 3.9 2.9 3.8 3.9 4.2 4.1 3.8 3.8 3.8 3.8 3.4 3.8 3.9 3.6 3.6 Mo/10−6 1.2 1.5 1.3 1.1 1.3 1 1.4 1.5 1.6 1.3 1.3 1.3 1.4 1.4 1.3 1.3 1.7 1.2 1.3 Sn/10−6 10.1 9.7 8.3 7.3 10.6 8 12.2 14.6 13.6 9.5 11.1 14.2 10.9 14.4 15.2 10.8 18.7 13.6 10.9 Sb/10−6 15.2 9.6 9.3 7.1 10 11.2 13.4 18.3 13.8 7.7 12.3 15.7 11.8 20.6 17.2 13 24.5 15 14.9 Ba/10−6 524 474 521 493 507 430 517 549 515 509 500 497 562 504 487 503 537 518 500 Hf/10−6 5.5 5.9 5.4 6 5.5 6.7 5.5 5.1 5.1 5.7 5.9 5.5 5.3 5.4 5.8 5.5 5.2 5.6 5.3 W/10−6 2.9 7.3 5.1 12.1 9.1 12.9 4.4 2.4 6.3 4.3 4.2 6.9 11.6 3.2 7.6 4.3 4.4 6.6 4.6 Pb/10−6 93.5 33.6 55.9 58.3 49.9 27.6 36.8 61.1 37.5 37.4 33.8 34.5 116.9 39.3 36.7 38.7 92.3 94.9 36 Bi/10−6 0.5 0.2 1 1.3 1.4 2.4 1.2 1.6 0.3 1.3 1.5 0 0 0 0.7 1 0.6 1.3 0 Th/10−6 15.2 15 13.8 13.9 12.8 10.6 16.1 14 16.1 14.7 14.6 15.5 14.7 16.4 13.1 14.8 15.1 14.7 14.5 Ce/10−6 76.5 54.2 62.8 73.7 71.8 74.8 65.5 68.4 78.7 72.8 66.4 69.4 66.8 68.4 72.9 65.1 68 65.7 84.4 Nd/10−6 27.8 38.4 34 29.1 32.8 29.3 35.1 31 26.9 26.8 33.6 30.8 35.7 31.3 31.8 28 27.5 25.2 29.5 Y/10−6 26.8 27.4 26.8 27 25.5 26.1 26.8 24.4 26 26.2 27.7 27.2 25.8 25.8 26.1 26.7 25.4 25.6 27 La/10−6 44.7 36.3 44.3 35.3 36.4 40.3 41.2 36.4 44.6 44.8 39.8 42 37.7 38.1 33.8 40.8 38.2 44.6 43.8 Sc/10−6 13.9 15 16.6 14.7 15.5 10.6 16 15.6 16.1 13.6 12.9 17.5 13.4 14.3 12.8 15.9 15.1 15.4 14.3 TN/% 0.16 0.1 0.14 0.1 0.13 0.07 0.11 0.15 0.13 0.12 0.1 0.15 0.16 0.12 0.13 0.12 0.14 0.14 0.12 TC/% 1.43 1.1 1.29 1.24 1.58 1.16 1.33 1.54 1.33 1.39 1.38 1.63 1.43 1.62 1.64 1.41 1.52 1.43 1.52 TOC/% 1.05 0.7 0.91 0.69 0.92 0.67 0.82 0.93 0.85 0.66 0.86 1.01 0.96 0.98 0.86 0.85 1.04 1.02 0.9 表 2 基于16S rRNA基因序列的菌株分类鉴定信息
Table 2 Isolation and identification of strains based on 16S rRNA gene sequence analysis
菌株号 亲缘菌株 16S rRNA
基因相似性/%层位深度
/cmbsf16S rRNA基因
序列登录号18A01 Alcanivorax xenomutans JC109T 99.22 18 OQ186762 18E01 Bacillus tequilensis KCTC 13622T 99.79 18 OQ186763 18E02 Pelagibacterium halotolerans B2T 99.78 18 OQ186764 18E03 Bacillus altitudinis 41KF2bT 99.93 18 OQ186765 18E04 Pseudonocardia carboxydivorans Y8T 99.93 18 OQ186766 18E05 Alcanivorax xenomutans JC109T 100 18 OQ186767 18M01 Alcanivorax venustensis ISO4T 100 18 OQ186768 18S01 Alcanivorax xenomutans JC109T 100 18 OQ186769 81A02 Alcanivorax xenomutans JC109T 99.93 81 OQ186770 81E01 Rossellomorea aquimaris TF-12T 99.21 81 OQ186771 81E02 Sutcliffiella halmapala DSM 8723T 99.14 81 OQ186772 81E03 Rossellomorea aquimaris TF-12T 99.29 81 OQ186773 81E05 Fictibacillus arsenicus Con a/3T 99.71 81 OQ186774 81E06 Bacillus safensis subsp. safensis FO-36bT 99.86 81 OQ186775 81E07-1 Alcanivorax xenomutans JC109T 99.93 81 OQ186777 81E07-2 Staphylococcus pseudoxylosus S04009T 99.86 81 OQ186778 81E08 Mesobacillus thioparans BMP-1T 99.71 81 OQ186779 81E09 Mesorhizobium sediminum YIM M12096T 99.77 81 OQ186780 110E01 Halomonas titanicae BH1T 99.44 110 OQ186781 110E02 Metabacillus idriensis SMC 4352-2T 99.93 110 OQ186782 110E03 Pseudonocardia carboxydivorans Y8T 100 110 OQ186783 110E04 Mesorhizobium sediminum YIM M12096T 99.77 110 OQ186784 110E05 Pelagibacterium halotolerans B2T 99.78 110 OQ186785 110E06 Sutcliffiella horikoshii DSM 8719T 99.29 110 OQ186786 110E07 Virgibacillus halodenitrificans DSM 10037T 99.93 110 OQ186787 181E01 Halomonas titanicae BH1T 100 181 OQ186788 181E02 Rossellomorea aquimaris TF-12T 99.36 181 OQ186789 181E03 Pseudonocardia carboxydivorans Y8T 99.79 181 OQ186790 181E04 Nitratireductor aquibiodomus JCM 21793T 99.08 181 OQ186791 181M01 Halomonas titanicae BH1T 100 181 OQ186792 181S01 Martelella mediterranea DSM 17316T 99.63 181 OQ186793 199A01 Alcanivorax xenomutans JC109T 100 199 OQ186794 199E01 Nitratireductor aquibiodomus JCM 21793T 99.17 199 OQ186795 199E02 Mesorhizobium sediminum YIM M12096T 99.77 199 OQ186796 199E03 Pseudonocardia carboxydivorans Y8T 99.78 199 OQ186797 199M01 Halomonas titanicae BH1T 100 199 OQ186798 248E02 Paenisporosarcina quisquiliarum SK 55T 99.38 248 OQ186799 248E04 Nitratireductor aquibiodomus JCM 21793T 99.03 248 OQ186800 248E05 Citromicrobium bathyomarinum JF-1T 99.7 248 OQ186801 301A01 Alcanivorax xenomutans JC109T 99.93 301 OQ186802 301E02 Paenisporosarcina macmurdoensis CMS 21wT 99.31 301 OQ186803 301E04 Paenisporosarcina macmurdoensis CMS 21wT 99.72 301 OQ186804 301E05 Pelagerythrobacter marinus H32T 99.93 301 OQ186805 301E06 Nitratireductor aquibiodomus JCM 21793T 98.94 301 OQ186806 334E03 Paenisporosarcina macmurdoensis CMS 21wT 99.15 334 OQ186807 334E04 Paenisporosarcina macmurdoensis CMS 21wT 99.14 334 OQ186808 334E05 Alcanivorax xenomutans JC109T 100 334 OQ186809 334M01 Alcanivorax xenomutans JC109T 99.93 334 OQ186810 334S02 Alcanivorax xenomutans JC109T 100 334 OQ186811 334S03 Muricauda ruestringensis DSM 13258T 98.48 334 OQ186812 334S04 Alcanivorax xenomutans JC109T 100 334 OQ186813 392A01 Alcanivorax xenomutans JC109T 99.93 392 OQ186814 392E01 Paenisporosarcina quisquiliarum SK 55T 99.71 392 OQ186815 392E02 Alcanivorax xenomutans JC109T 100 392 OQ186816 392E03 Pelagerythrobacter marinus H32T 100 392 OQ186817 392E04 Pelagibacterium nitratireducens JLT2005T 99.77 392 OQ186818 392E05 Paracoccus marcusii DSM 11574T 99.77 392 OQ186819 392E06 Paenisporosarcina quisquiliarum SK 55T 99.79 392 OQ186820 475E01 Alkalihalobacillus hwajinpoensis SW-72T 99.65 475 OQ186821 475E02 Thalassospira xiamenensis M-5T 99.65 475 OQ186822 475E03 Qipengyuania vulgaris 022 2-10T 99.85 475 OQ186823 475E04 Pelagibacterium nitratireducens JLT2005T 99.7 475 OQ186824 475S01 Alcanivorax xenomutans JC109T 99.93 475 OQ186825 475M01 Thalassospira xiamenensis M-5T 99.85 475 OQ186826 -
[1] 王风平, 周悦恒, 张新旭, 等. 深海微生物多样性[J]. 生物多样性, 2013, 21(4): 446-456 WANG Fengping, ZHOU Yueheng, ZHANG Xinxu, et al. Biodiversity of deep-sea microorganisms[J]. Biodiversity Science, 2013, 21(4): 446-456.
[2] 李学恭, 徐俊, 肖湘. 深海微生物高压适应与生物地球化学循环[J]. 微生物学通报, 2013, 40(1): 59-70 LI Xuegong, XU Jun, XIAO Xiang. High pressure adaptation of deep-sea microorganisms and biogeochemical cycles[J]. Microbiology China, 2013, 40(1): 59-70.
[3] Takai K, Nakagawa S, Nunoura T. Comparative investigation of microbial communities associated with hydrothermal activities in the Okinawa Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 421-435.
[4] Takai K, Nakamura K. Compositional, physiological and metabolic variability in microbial communities associated with geochemically diverse, deep-sea hydrothermal vent fluids[M]//Barton L L, Mandl M, Loy A. Geomicrobiology: Molecular and Environmental Perspective. Dordrecht: Springer, 2010: 251-283.
[5] Nakamura K, Takai K. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems[J]. Progress in Earth and Planetary Science, 2014, 1(1): 5. doi: 10.1186/2197-4284-1-5
[6] Nakagawa S, Takai K. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance[J]. FEMS Microbiology Ecology, 2008, 65(1): 1-14. doi: 10.1111/j.1574-6941.2008.00502.x
[7] Takai K, Nakamura K. Archaeal diversity and community development in deep-sea hydrothermal vents[J]. Current Opinion in Microbiology, 2011, 14(3): 282-291. doi: 10.1016/j.mib.2011.04.013
[8] Guan L, Cho K H, Lee J H. Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria[J]. Food Microbiology, 2011, 28(1): 101-113. doi: 10.1016/j.fm.2010.09.001
[9] Thornburg C C, Zabriskie T M, McPhail K L. Deep-sea hydrothermal vents: potential hot spots for natural products discovery?[J]. Journal of Natural Products, 2010, 73(3): 489-499. doi: 10.1021/np900662k
[10] Wang S S, Jiang L J, Hu Q T, et al. Elemental sulfur reduction by a deep-sea hydrothermal vent Campylobacterium Sulfurimonas sp. NW10[J]. Environmental Microbiology, 2021, 23(2): 965-979. doi: 10.1111/1462-2920.15247
[11] 杜瑞, 于敏, 程景广, 等. 冲绳海槽热液区可培养硫氧化细菌多样性及其硫氧化特性[J]. 微生物学报, 2019, 59(6): 1036-1049 doi: 10.13343/j.cnki.wsxb.20180353 DU Rui, YU Min, CHENG Jingguang, et al. Diversity and sulfur oxidation characteristics of cultivable sulfur oxidizing bacteria in hydrothermal fields of Okinawa Trough[J]. Acta microbiologica Sinica, 2019, 59(6): 1036-1049. doi: 10.13343/j.cnki.wsxb.20180353
[12] Venter J C, Remington K, Heidelberg J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004, 304(5667): 66-74. doi: 10.1126/science.1093857
[13] 刘明华, 王健鑫, 俞凯成, 等. 东海陆架表层沉积物细菌群落结构及地理分布研究[J]. 海洋与湖沼, 2015, 46(5): 1119-1131 LIU Minghua, WANG Jianxin, YU Kaicheng, et al. Community structure and geographical distribution of bacterial on surface layer sediments in the east China Sea[J]. Oceanologia et Limnologia Sinica, 2015, 46(5): 1119-1131.
[14] 王苑如, 崔鸿鹏, 李继东, 等. 西太平洋多金属结核区表层沉积物细菌群落结构及其对沉积扰动的响应[J]. 海洋学研究, 2021, 39(2): 21-32 WANG Yuanru, CUI Hongpeng, LI Jidong, et al. The structure of bacterial communities and its response to the sedimentary disturbance in the surface sediment of western Pacific polymetallic nodule area[J]. Journal of Marine Sciences, 2021, 39(2): 21-32.
[15] Inagaki F, Kuypers M M M, Tsunogai U, et al. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(38): 14164-14169.
[16] Yanagawa K, Ijiri A, Breuker A, et al. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor[J]. The ISME Journal, 2017, 11(2): 529-542. doi: 10.1038/ismej.2016.119
[17] Nakagawa S, Takai K, Inagaki F, et al. Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of subseafloor phase-separation[J]. FEMS Microbiology Ecology, 2005, 54(1): 141-155. doi: 10.1016/j.femsec.2005.03.007
[18] Wang L, Yu M, Liu Y, et al. Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough[J]. Journal of Marine Systems, 2018, 180: 162-172. doi: 10.1016/j.jmarsys.2016.11.012
[19] Yanagawa K, Breuker A, Schippers A, et al. Microbial community stratification controlled by the subseafloor fluid flow and geothermal gradient at the Iheya North hydrothermal field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331)[J]. Applied and Environmental Microbiology, 2014, 80(19): 6126-6135. doi: 10.1128/AEM.01741-14
[20] Yanagawa K, Morono Y, de Beer D, et al. Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes[J]. The ISME Journal, 2013, 7(3): 555-567. doi: 10.1038/ismej.2012.124
[21] Zhang J, Sun Q L, Zeng Z G, et al. Microbial diversity in the deep-sea sediments of Iheya North and Iheya Ridge, Okinawa Trough[J]. Microbiological Research, 2015, 177: 43-52. doi: 10.1016/j.micres.2015.05.006
[22] Rona P A, Scott S D. A special issue on sea-floor hydrothermal mineralization: new perspectives: preface[J]. Economic Geology, 1993, 88(8): 1935-1976. doi: 10.2113/gsecongeo.88.8.1935
[23] 邵珂, 陈建平, 任梦依. 印度洋中脊多金属硫化物矿产资源定量预测与评价[J]. 海洋地质与第四纪地质, 2015, 35(5): 125-133 SHAO Ke, CHEN Jianping, REN Mengyi. Quantitative prediction and evaluation of polymetallic sulfide mineral deposits along the central Indian ocean ridge[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 125-133.
[24] Walsh J J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen[J]. Nature, 1991, 350(6313): 53-55. doi: 10.1038/350053a0
[25] 胡思谊. 冲绳海槽南部S3岩心沉积物的矿物学和地球化学研究[D]. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2020 HU Siyi. Mineralogical and geochemical study of sediment core S3 from the southern Okinawa Trough[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2020.
[26] 杨宝菊, 吴永华, 刘季花, 等. 冲绳海槽表层沉积物元素地球化学及其对物源和热液活动的指示[J]. 海洋地质与第四纪地质, 2018, 38(2): 25-37 YANG Baoju, WU Yonghua, LIU Jihua, et al. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 25-37.
[27] 赵维殳, 肖湘. 深海热液区微生物群落与环境适应性机理[J]. 中国科学: 生命科学, 2023, 53(5): 660-671 ZHAO Weishu, XIAO Xiang. Microbiome and environmental adaption mechanisms in deep-sea hydrothermal vents[J]. Scientia Sinica: Vitae, 2023, 53(5): 660-671.
[28] 杨娅敏. 冲绳海槽南部浊流沉积层中的硫化物特征研究[D]. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2021 YANG Yamin. Study on the characteristics of turbidite sediments hosted-sulfides deposit from the southern Okinawa Trough[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2021.
[29] Zeng Z G, Chen S, Ma Y, et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough[J]. Ore Geology Reviews, 2017, 87: 172-191. doi: 10.1016/j.oregeorev.2016.09.015
[30] 尚鲁宁, 陈磊, 张训华, 等. 冲绳海槽南部海底热液活动区地形地貌特征及成因分析[J]. 海洋地质与第四纪地质, 2019, 39(4): 12-22 SHANG Luning, CHEN Lei, ZHANG Xunhua, et al. Topographic features of the hydrothermal field and their genetic mechanisms in southern Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 12-22.
[31] Atlas R M. Handbook of Microbiological Media[M]. Boca Raton: CRC Press, 1993: 527.
[32] Ruby E G, Wirsen C O, Jannasch H W. Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos rift hydrothermal vents[J]. Applied and Environmental Microbiology, 1981, 42(2): 317-324. doi: 10.1128/aem.42.2.317-324.1981
[33] Das A, Cao W R, Zhang H J, et al. Carbon fixation in sediments of Sino-Pacific seas-differential contributions of bacterial and archaeal domains[J]. Journal of Marine Systems, 2017, 175: 15-23. doi: 10.1016/j.jmarsys.2017.06.005
[34] Cao W R, Lu D C, Sun X K, et al. Seonamhaeicola maritimus sp. nov., isolated from coastal sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(2): 902-908.
[35] Wang F, Men X, Zhang G, et al. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos[J]. AMB Express, 2018, 8(1): 182. doi: 10.1186/s13568-018-0713-1
[36] Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. doi: 10.1093/molbev/msab120
[37] Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach[J]. Journal of Molecular Evolution, 1981, 17(6): 368-376. doi: 10.1007/BF01734359
[38] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16(2): 111-120. doi: 10.1007/BF01731581
[39] Nossa C W, Oberdorf W E, Yang L Y, et al. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome[J]. World Journal of Gastroenterology, 2010, 16(33): 4135-444. doi: 10.3748/wjg.v16.i33.4135
[40] Yang Y M, Zeng Z G, Yin X B, et al. Mineralogy, geochemistry, and sulfur isotope characteristics of sediment-hosted hydrothermal sulfide minerals from the southern Okinawa Trough[J]. Acta Oceanologica Sinica, 2021, 40(10): 129-143. doi: 10.1007/s13131-021-1836-9
[41] 赵一阳, 翟世奎, 李永植, 等. 冲绳海槽中部热水活动的新记录[J]. 科学通报, 1996, 41(14): 1307-1310 ZHAO Yiyang, ZHAI Shikui, LI Yongzhi, et al. New records of submarine hydrothermal activity in middle part of the Okinawa Trough[J]. Chinese Science Bulletin, 1997, 42(7): 574-577.
[42] 蒋富清, 李安春, 李铁刚. 冲绳海槽北端表层沉积物过渡元素地球化学特征[J]. 海洋与湖沼, 2006, 37(1): 75-83 doi: 10.3321/j.issn:0029-814X.2006.01.012 JIANG Fuqing, LI Anchun, LI Tiegang. Geochemical characteristics of transition elements in surface sediments northern Okinawa Trough[J]. Oceanologia et Limnologia Sinica, 2006, 37(1): 75-83. doi: 10.3321/j.issn:0029-814X.2006.01.012
[43] Edlund A, Hårdeman F, Jansson J K, et al. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment[J]. Environmental Microbiology, 2008, 10(8): 2051-2063. doi: 10.1111/j.1462-2920.2008.01624.x
[44] Chu H Y, Sun H B, Tripathi B M, et al. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau[J]. Environmental Microbiology, 2016, 18(5): 1523-1533. doi: 10.1111/1462-2920.13236
[45] Teske A P. Microbial community composition in deep marine subsurface sediments of ODP Leg 201: sequencing surveys and cultivations[M]//Jørgensen B B, D'Hondt S L, Miller D J. Proceedings of the Ocean Drilling Program Scientific Results. 2006.
[46] Pérez-Rodríguez I, Bohnert K A, Cuebas M, et al. Detection and phylogenetic analysis of the membrane-bound nitrate reductase (Nar) in pure cultures and microbial communities from deep-sea hydrothermal vents[J]. FEMS Microbiology Ecology, 2013, 86(2): 256-267. doi: 10.1111/1574-6941.12158
[47] Rajasabapathy R, Mohandass C, Colaco A, et al. Culturable bacterial phylogeny from a shallow water hydrothermal vent of Espalamaca (Faial, Azores) reveals a variety of novel taxa[J]. Current Science, 2014, 106(1): 58-69.
[48] Martins A, Tenreiro T, Andrade G, et al. Photoprotective bioactivity present in a unique marine bacteria collection from Portuguese deep sea hydrothermal vents[J]. Marine Drugs, 2013, 11(5): 1506-1523. doi: 10.3390/md11051506
[49] Kaye J Z, Sylvan J B, Edwards K J, et al. Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments[J]. FEMS Microbiology Ecology, 2011, 75(1): 123-133. doi: 10.1111/j.1574-6941.2010.00984.x
[50] Cao H L, Wang Y, Lee O O, et al. Microbial sulfur cycle in two hydrothermal chimneys on the southwest Indian Ridge[J]. mBio, 2014, 5(1): e00980-13.
[51] Mohandass C, Rajasabapathy R, Ravindran C, et al. Bacterial diversity and their adaptations in the shallow water hydrothermal vent at D. João de Castro Seamount (DJCS), Azores, Portugal[J]. Cahiers de Biologie Marine, 2012, 53(1): 65-76.
[52] Dick G J, Lee Y E, Tebo B M. Manganese(II)-oxidizing Bacillus spores in Guaymas basin hydrothermal sediments and plumes[J]. Applied and Environmental Microbiology, 2006, 72(5): 3184-3190. doi: 10.1128/AEM.72.5.3184-3190.2006
[53] Liao L, Xu X W, Jiang X W, et al. Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean[J]. FEMS Microbiology Ecology, 2011, 78(3): 565-585. doi: 10.1111/j.1574-6941.2011.01186.x
[54] Xu M X, Wang F P, Meng J, et al. Construction and preliminary analysis of a metagenomic library from a deep-sea sediment of East Pacific Nodule province[J]. FEMS Microbiology Ecology, 2007, 62(3): 233-241. doi: 10.1111/j.1574-6941.2007.00377.x
[55] 魏曼曼. 劳盆地深海热液喷口沉积物中微生物群落结构研究[D]. 中南大学硕士学位论文, 2010 WEI Manman. Study on microbial community structures in sediments from Lau Basin deep-sea hydrothermal vents[D]. Master Dissertation of Central South University, 2010.
[56] Flores G E, Campbell J H, Kirshtein J D, et al. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge[J]. Environmental Microbiology, 2011, 13(8): 2158-2171. doi: 10.1111/j.1462-2920.2011.02463.x
[57] Sylvan J B, Toner B M, Edwards K J. Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides[J]. mBio, 2012, 3(1): e00279-11.
[58] Cao W R, Wang L S, Saren G, et al. Variable microbial communities in the non-hydrothermal sediments of the Mid-Okinawa Trough[J]. Geomicrobiology Journal, 2020, 37(8): 774-782. doi: 10.1080/01490451.2020.1776800
[59] 张伟. 热带西太平洋深海沉积物微生物多样性及群落结构特征研究[D]. 中国科学院研究生院(海洋研究所)硕士学位论文, 2010 ZHANG Wei. Microbial diversity and community structure in marine sediments from the tropical western Pacific[D]. Master Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2010.
[60] Lee S Y, Huh C A, Su C C, et al. Sedimentation in the Southern Okinawa Trough: enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(11): 1769-1780. doi: 10.1016/j.dsr.2004.07.008
[61] 邵宗泽. 深海热液区化能自养微生物多样性、代谢特征与环境作用[J]. 科学通报, 2018, 63(36): 3902-3910 doi: 10.1360/N972018-00980 SHAO Zongze. Diversity and metabolism of prokaryotic chemoautotrophs and their interactions with deep-sea hydrothermal environments[J]. Chinese Science Bulletin, 2018, 63(36): 3902-3910. doi: 10.1360/N972018-00980
[62] Li Y X, Li F C, Zhang X W, et al. Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise (~13°N)[J]. Extremophiles, 2008, 12(4): 573-585. doi: 10.1007/s00792-008-0159-5
[63] Wang P, Xiao X, Wang F P. Phylogenetic analysis of Archaea in the deep-sea sediments of west Pacific Warm Pool[J]. Extremophiles, 2005, 9(3): 209-217. doi: 10.1007/s00792-005-0436-5
-
期刊类型引用(1)
1. 骆帅兵,张莉,王笑雪,余秋华,雷振宇,帅庆伟. 南海南部南安盆地新生代以来构造-沉积演化特征及区域成藏模式. 海洋地质与第四纪地质. 2023(04): 116-128 . 本站查看
其他类型引用(1)