Chemical and sulfur isotopic compositions of anhydrite from the Tangyin hydrothermal field in the Okinawa Trough
-
摘要: 硬石膏是最早构成热液烟囱体壁的矿物之一,其对于了解流体-海水混合以及海底热液系统中元素的迁移与循环具有重要的意义。为此,对西太平洋冲绳海槽唐印热液区中的硬石膏,进行了微区原位元素以及硫同位素组成分析。根据硬石膏的结晶形态,可以将硬石膏分为两种类型:较早形成的I型硬石膏,其呈半自形或他形晶,似针状、放射状及不规则晶的集合体产出;较晚形成的II型硬石膏,其呈自形晶,以板状及粒状晶的集合体产出。当热液流体初次遇到海水时,将快速沉淀形成I型硬石膏,并构成了热液烟囱体的壁。随后,II型硬石膏经历了一个相对充分的生长阶段。同时,硬石膏中的Ba、Al、Sr、Ni、Fe、Mn和Cr含量明显高于海水,表明产生硬石膏沉淀的热液流体来自于海底面以下,是经历了流体-岩石和/或沉积物相互作用的流体。硬石膏的Mg含量明显分别低于海水和高于喷口流体,表明其是流体-海水混合的结果。I型硬石膏,其Sr含量明显低于II型硬石膏,表明在形成自形、板片状或粒状硬石膏的期间,来自热液流体的Sr,主要进入II型硬石膏中。硬石膏的Fe、As、Sr、Ba和Pb含量,明显高于冲绳海槽喷口流体的,则表明这些来自流体中的元素更容易随着硬石膏的沉淀而进入硬石膏中,并导致硬石膏富集该类元素。硬石膏的稀土元素组成及其配分模式,具正Ce和负Eu异常的特征,其是流体在海底面以下从火山岩和/或沉积物中淋滤出来,并经历了流体-海水混合作用的结果。此外,在流体-海水混合期间,硬石膏中的硫主要来自海水。
-
关键词:
- 硬石膏 /
- 化学及其硫同位素组成 /
- 热液烟囱体 /
- 喷口流体 /
- 唐印热液区
Abstract: Anhydrite is one of the earliest minerals in forming the hydrothermal chimney walls, which is important for understanding the fluid-seawater mixing, and elemental migration and cycling in the seafloor hydrothermal system. Anhydrite minerals samples from the Tangyin hydrothermal field in the southwestern Okinawa Trough, western Pacific were investigated on the in-situ element concentrations and sulfur (S) isotopic compositions. The crystal morphology of anhydrite could be divided into two types. Type I anhydrite formed earlier is subhedral or anhedral and occurred in radial or irregular crystal aggregation, and Type II anhydrite formed later is euhedral and occurred in plate or granular crystal aggregation. When the hydrothermal fluid first met with seawater, Type I anhydrite precipitated rapidly and formed the wall of the hydrothermal chimney. Subsequently, Type II anhydrite experienced relatively longer growth stage. However, the Ba, Al, Sr, Ni, Fe, Mn, and Cr contents of anhydrite are significantly higher than that of seawater, suggesting that those elements are derived mainly from hydrothermal fluid duo to the subseafloor fluid-rock and/or sediment interactions. The Mg content of anhydrite is significantly lower / higher than that of seawater / vent fluids, which was resulted from the fluid-seawater mixing. Most of the Sr contents of Type I anhydrite are significantly lower than that of Type II anhydrite, suggesting that more Sr from fluids were involved into Type II anhydrite and formed euhedral, plate, or granular minerals. The Fe, As, Sr, Ba, and Pb contents of anhydrite are significantly higher than that of vent fluids in the Okinawa Trough, which indicates that these elements enter preferentially anhydrite from the fluids, and resulted in the enrichment of these elements in the anhydrite. REEs of anhydrite and their REE patterns show positive Ce and negative Eu anomalies, which could be resulted from fluids leaching out from local sub-seafloor volcanic rocks and/or sediments and having undergone fluid-seawater mixing. Furthermore, S in the anhydrite was mainly from seawater during fluid-seawater mixing. -
台风(热带气旋发生在西北太平洋称为台风,大西洋和北太平洋东部称为飓风,在本文中统一称为台风)是地球上最具破坏性的自然灾害之一,其严重威胁着沿海地区居民的人身和财产安全[1]。除了对社会经济造成危害外,台风还会对沿海地区的地形地貌、水文和生态环境等产生影响[2-7]。作为台风活动最为频繁的区域之一,每年有近1/3的热带气旋发生在西北太平洋[8]。据统计,平均每年有4个台风经过并影响我国东海[9]。近些年来,登陆我国东部沿海省份的强台风和超强台风造成了巨大的经济损失[10]。在过去的几十年中,影响东亚的台风强度增加了12%~15%,并且由于全球气候变化,影响这一区域的台风强度将进一步增加[11]。随着我国沿海地区人口的聚集和经济的发展,未来台风可能会在沿海省份造成更大的灾害,这对我们制定台风灾害应对措施提出了新的挑战。
在全球气候变暖的背景下,关于未来台风的发展变化,尤其是未来台风的发生频率会降低[12-14]还是会增加[15-16],不同研究之间的认识并不一致。引起这一争议的主要原因是我们对台风长期的发展与演化机制的认识还不充分。台风器测记录只有近百年的时间,这限制了我们对于台风长周期变化的认识。因此,我们需要其他的方法来获取更长时间的台风活动记录,并从记录中辨识出台风的活动规律。从沉积记录中提取台风信息是重建器测记录之前台风活动的有效手段之一。通过沉积记录中台风信息的提取,可以了解数千年以来台风的发生频率和强度变化以及台风的活动规律[17-20],结合其他气候指标可以进一步判别影响台风活动的因素,从而为预测未来台风的发展趋势提供帮助。相关研究可以为我国沿海地区的开发建设,台风灾害应急预案的制定,以及防灾减灾工作提供科学参考。
东海内陆架泥质区沉积环境相对稳定,沉积记录连续且具有较高的沉积速率[21-22],是研究过去几千年来东海台风活动的理想区域。但是,其他极端事件,尤其是冬季寒潮大风的干扰,会影响台风事件沉积记录识别的准确性。台风与冬季寒潮沉积特征的辨识是东海内陆架泥质沉积用于台风活动准确重建的基础和难点之一。目前,为了解决这一问题,除了利用台风和冬季寒潮事件中沉积物矿物和地球化学等指标组成的不同,还可以根据这两种不同极端事件中沉积动力过程的现场观测数据的分析,来探讨二者的差异,帮助我们更加准确地识别台风事件的沉积记录并进行台风活动的历史重建。
1. 研究区概况
东海内陆架泥质区主要是自中全新世以来由长江的大量入海悬浮物质沉积形成,冬季入海的悬浮物和其他季节入海的再悬浮物质被沿岸流携带着向南输运并沉积下来[23-26]。在全新世中期海平面达到高水位以后,大约30%的长江入海沉积物形成了从长江口至台湾海峡西南延展的长约1000 km的楔形泥质体[21, 27]。由于相对稳定的沉积环境和较高的沉积速率,东海内陆架泥质区是研究气候变化以及陆海相互作用的理想区域。东海悬浮体的输运受波浪、潮流、陆架环流和极端事件(如夏季台风和冬季寒潮)等影响[28]。东海内陆架泥质区南部的环流系统主要由东海沿岸流和台湾暖流所组成(图1)。受季风的影响,东海沿岸流在冬季向南流动,而在夏季向北流动。台湾暖流以温度和盐度较高而浊度较低为特征,全年向北流动[9]。东海易受到台风活动的影响,在2002—2011年期间,大约有35个台风经过东海,对海洋环境造成了影响[29]。虽然台风沉积会受到后期的改造作用,但是在沉积物供应充足和沉积速率较高的情况下,强台风等事件的沉积记录仍然可以保留下来[30]。已有利用东海内陆架泥质区沉积物岩芯记录重建过去150~2 000年以来台风活动的相关报道[19, 31]。
图 1 四脚架站位分布图及结构示意图a: 四脚架站位分布图,绿色和蓝色阴影代表2015年台风“苏迪罗”和“天鹅”中心距离四脚架最近时七级风圈的影响范围,台风路径数据引自网站http://typhoon.weather.com.cn/,红色等值线为东海楔形泥质体等厚图,修改自文献[21];b: 2015年夏季和2019年冬季四脚架布放站位表层沉积物的粒度分布,修改自文献[33];c: 四脚架结构示意图,修改自文献[7]。Figure 1. Distribution of the quadripod stations and its structurea: Distribution of the quadripod stations. Green and blue areas represent the influence range of the category 7 wind circle when the center of Typhoon Soudelor and Goni was closest to the quadripod. Data of the typhoons are from website http://typhoon.weather.com.cn/. The isopach map of the Yangtze River-derived sediment is modified from reference [21]; b: grain size distribution of surface sediments at the quadripod deployment stations in the summer of 2015 and the winter of 2019 (modified from reference [33]); c: structure schematic of the quadripod (modified from reference [7]).2. 数据来源与研究方法
本文研究所用数据是通过2015年8月6日至9月3日(位置27°27.574′N、121°18.660′E,水深40 m)和2019年11月27日至12月9日(位置29°11.867′N、122°22.036′E,水深27 m)布放在东海内陆架泥质区的四脚架观测系统所取得。四脚架结构示意图如图1所示,长宽高尺寸分别为2.2m × 2m × 2m,为保证架体的稳定性,在四脚架底部配置了铅块。四脚架上搭载了姿态仪、水质仪、光学后反射仪(OBS)、仰视声学多普勒流速剖面仪(ADCP)和俯视多普勒海流剖面仪(PC-ADP)等仪器设备。姿态仪以30 min间隔进行采样,记录四脚架的翻滚角和俯仰角等姿态变化。水质仪固定在四脚架的顶部,用来采集海水的温度和盐度等数据。OBS传感器固定在距四脚架底部1.4 m的位置。水质仪和OBS设置采样间隔为30 min,每次测量1 min。ADCP固定在四脚架顶部,工作频率为614.4 kHz,采样频率为2 Hz,采样间隔30 min,每次测量2 min,测量剖面分层单元为1 m。PC-ADP固定在距四脚架底部1.7 m的位置,工作频率为1.5 MHz,采样频率为2 Hz,采样间隔30 min,每次测量2 min,测量剖面分层单元为0.1 m。
在2015年观测期间,第15号台风“天鹅(Goni)”经过东海,8月24日台风中心距离四脚架最近,最大风速达到52 m/s,台风七级风圈的影响范围到达四脚架附近海域(图1)。四脚架姿态仪记录的俯仰角和翻滚角的变化显示,在2015年8月31日后,俯仰角和翻滚角出现较大波动;2019年11月28日之前,俯仰角发生突变(图2)。为了便于比较,本文仅选取了四脚架姿态稳定时期的数据,即2015年8月6日14:30至8月31日17:30,2019年11月28日10:00至12月9日15:00期间采集的数据。由于2015年8月6日之前PC-ADP距离海底仅70 cm左右[7],8月6日后四脚架的翻滚角又出现了近30°的变化,PC-ADP与海底距离进一步缩短,影响了数据的采集,因此,本文仅采用ADCP近底层的流速流向进行了分析与讨论。作为补充信息,我们参考了中国近海观测网络东海站6号和20号浮标(图1)对应于四脚架观测期间采集的风速、风向、波浪、海流和浊度等数据(数据由中国科学院海洋研究所海洋大数据中心提供,http://msdc.qdio.ac.cn/)。
3. 结果
3.1 近海浮标观测结果
中国近海观测网络东海站的6号和20号浮标分别记录了2015年台风“天鹅”经过时以及2019年冬季寒潮期间的风速、风向、波浪和海流等数据,其变化如图3所示。6号浮标记录的数据显示,风向以南风和北风为主,交替不规则变化,在8月24日风速达最大值,10分钟平均风速最大达18.9 m/s,此段时间内风向主要为北风;在2015年8月9日和8月24日有效波高出现显著的高值,其中8月24日有效波高最大达到4.5 m,有效波高的两个极高值分别由2015年第13号台风“苏迪罗(Soudelor)”和第15号台风“天鹅”经过东海所引起。近底层流速主要受潮流的影响,在8月24日近底层流速突然增大,最大流速达78.3 cm/s。20号浮标记录的数据显示,风向以北风为主,10分钟平均风速最大可达18.0 m/s;海水温度总体呈下降趋势;在2019年12月6日,有效波高出现最大值,为3.9 m,有效波高变化趋势与风速大小变化相一致;近底层流速反映出东海半日潮的影响,最大流速为68.6 cm/s;浊度仪记录了水面以下1.4 m处的浊度数据,总体呈现高值与低值间隔变化,且浊度高值对应着近底层流速的低值。以6级风,即风速大于10.8 m/s作为冬季寒潮大风的划定标准[32],统计了冬季寒潮期间20号浮标的观测数据,并与台风“天鹅”距离浮标最近时6号浮标的观测数据进行了比较(表1)。可以看出,台风经过时与冬季寒潮发生时,各观测指标的变化相似:有效波高出现显著高值,风向以北风为主,近底层流速增大。但是,台风的强度要大于冬季寒潮,如台风期间有效波高(平均值3.0 m)大于冬季寒潮时的数值(平均值2.2 m),台风期间近底层流速平均值(42.0 cm/s)是冬季寒潮时(19.2 cm/s)的2倍多,台风期间近底层海流平均流向为西南方向,而冬季寒潮期间近底层海流平均流向为东南方向。东海泥质区表层沉积物的起动流速临界值约为41.6 cm/s[7],在台风经过时及台风经过后一段时间内,近底层的流速明显高于该临界值,可以引起沉积物的再悬浮,而冬季寒潮期间,近底层流速大于该临界值的时刻较少(图3)。
表 1 东海站6号和20号浮标分别在2015年台风“天鹅”和2019年冬季寒潮期间的观测数据Table 1. Observation data of buoys No. 6 and No. 20 in the East China Sea during Typhoon Goni in 2015 and winter cold waves in 2019, respectively观测指标 2015年8月 2019年11—12月 范围 平均值 范围 平均值 有效波高/m 1.6~4.5 3.0 1.1~3.9 2.2 有效波周期/s 7.0~26.9 8.6 4.4~8.1 6.2 10分钟平均风速/(m/s) 5.7~18.9 11.4 10.8~18.0 13.2 10分钟平均风向/(°) 0~359.0 226.6 1.0~358.0 254.1 流速/(cm/s) 16.2~78.3 42.0 0.8~68.6 19.2 流向/(°) 0~346.0 209.4 0~359.0 133.7 3.2 四脚架观测结果
由于2019年冬季航次调查船的船时安排及天气原因,四脚架并未布放在与2015年夏季相同的站位上。根据文献[33]中的粒度数据,我们比较了2015年夏季与2019年冬季四脚架布放站位表层沉积物的粒度组成,可以发现:2015年夏季,沉积物由粉砂(93.7%)和黏土(6.3%)组成,平均粒径为17.2 μm;2019年冬季,沉积物由粉砂(92.5%)和黏土(7.5%)组成,平均粒径为15.8 μm,两个航次四脚架布放地点的沉积物粒度组成十分相似(图1)。因此,底质类型的差异对开展台风和冬季寒潮沉积动力过程对比研究的影响较小。
利用四脚架布放站位表层沉积物配制的多浓度悬浊液,在实验室里对OBS浊度数据进行了标定,获得了浊度和悬浮体浓度之间的关系式(图4),进而将所得浊度值换算为悬浮体浓度值。
四脚架记录了2015年台风“天鹅”和2019年冬季寒潮期间东海内陆架泥质区的近底层流速、悬浮体浓度、海水温度和盐度等数据(图5和表2)。可以看出,2015年8月近底层海流流向以西北向和东南向交替变化,台风“天鹅”期间流速平均值为29.1 cm/s,最大流速55.2 cm/s;与6号浮标记录的有效波高极大值相对应,在8月9日和8月24日附近悬浮体浓度突然增大,是由于台风“苏迪罗”及“天鹅”经过东海时所引起,悬浮体浓度平均值为606.6 mg/L,最大值可以达到1691.9 mg/L;海水温度在台风经过时短暂降低,之后温度升高;沿岸方向的海流分量在台风“天鹅”经过时以东北方向为主。2019年11—12月近底层海流流向以西南方向为主,冬季寒潮期间流速平均值为29.3 cm/s,最大流速64.7 cm/s;2019年11月28日18:00以及2019年11月30日23:00悬浮体浓度出现最大值,为1780.9 mg/L,但是通过比较近底层ADCP后向散射回声强度,发现这两个时刻对应的回声强度值并未出现极大值,因此,这两个悬浮体浓度异常高值可能是由其他因素(如生物扰动)引起,而不能代表真实值,在图5中我们将这两个异常值的峰用虚线表示,去除异常值后悬浮体浓度平均值为149.8 mg/L,悬浮体高值的分布与近底层流速高值的变化并不一致;近底层海水温度呈逐渐降低的趋势,海水盐度呈逐渐升高趋势,盐度与温度的低值和高值一一对应;沿岸方向的海流分量以西南方向为主。通过比较可以发现,在台风和冬季寒潮期间,近底层流速的平均值相接近,但是近底层流速大于起动流速临界值的时刻台风经过时要多于冬季寒潮时期;台风期间悬浮体浓度的最大值是冬季寒潮时期的2倍多,台风期间悬浮体浓度的平均值要明显高于冬季寒潮时期,台风引起的悬浮体浓度升高持续时间要明显长于冬季寒潮时期,这与东海台风引起悬浮体浓度升高可以持续5~14天的观测结果相一致[7, 34-35]。
图 5 四脚架记录的2015年台风“天鹅”和2019年冬季寒潮期间的流速、悬浮体浓度、温度、盐度以及近底层沿岸方向和垂直岸线方向的流速风速和风向为东海站6号及20号观测浮标的记录。Figure 5. Current, suspended sediment concentration, seawater temperature, salinity, along-shelf and across-shelf current velocity at near-bottom layer during the Typhoon Goni in 2015 and winter cold waves in 2019 recorded by the quadripodWind speed and direction were recorded by offshore buoys No. 6 and No. 20 in the East China Sea.表 2 四脚架在2015年台风“天鹅”和2019年冬季寒潮期间的观测数据Table 2. Observation data of quadripod during Typhoon Goni in 2015 and winter cold waves in 2019观测指标 2015年8月 2019年11—12月 范围 平均值 范围 平均值 流速/(cm/s) 3.6~55.2 29.1 6.7~64.7 29.3 悬浮体浓度/(mg/L) 56.4~1691.9 606.6 27.3~823.7 149.8 沿岸方向流速/(cm/s) −42.7~24.4 −12.9 −42.1~60.7 13.0 垂直岸线方向流速/(cm/s) −39.4~46.0 6.4 −36.0~44.3 −2.9 注:流速沿岸向西南方向为正值,垂直岸线向海方向为正值。 4. 讨论
在东海内陆架泥质区,台风和冬季寒潮相关的沉积动力过程有一定的相似性,同时也存在着明显的差异,我们需要进一步了解二者的差异及可能在沉积记录中的不同,从而为在东海内陆架泥质区及其他海域准确识别台风事件提供科学依据。
长江入海悬浮物主要由长江冲淡水携带并向东海输运。通常情况下,长江冲淡水在夏季指向东北方向[9],大约70%的长江入海物质堆积在河口附近[21],而对远离河口区域的悬浮体分布影响极小[36]。所以,在2015年8月四脚架记录的高浓度悬浮体并不是直接由长江入海物质所引起。台风经过时引起的涌浪会搅动海底沉积物,未固结的沉积物会发生再悬浮并被海流输运至周围海域。2015年台风“灿鸿”经过东海时,近底层流速与悬浮体浓度之间较高的相关性证明高浓度悬浮体主要来自海底沉积物的再悬浮[7]。在冬季,长江冲淡水温度较低,且一般沿岸向南输运[9]。20号浮标记录的水下1.4 m处的浊度高值对应于近底层流速的低值,且与海水温度的低值相对应,证明高浊度主要由长江入海物质所引起(图3)。2019年冬季四脚架记录的近海底悬浮体浓度高值也对应着海水温度和盐度的低值(图5),说明主要是由长江入海物质导致了高浓度悬浮体的发生。事件沉积物质来源的差异,为从沉积记录中区分台风与冬季寒潮事件提供了可能性。
除了海底沉积物再悬浮和长江入海物质输入引起物源组成的不同外,在东海内陆架泥质区向海一侧的边缘位置,由于台风和冬季寒潮期间近底层海流流向的差异,也可以引起两种事件沉积组成上的差别。从四脚架记录的近底层流速玫瑰图分布(图6)可以看出,2015年台风“天鹅”期间,近底层流向以向西北和向东为主,即以向岸和离岸方向为主;而2019年冬季寒潮期间,近底层流向以向西南为主,即以沿岸向南方向为主。由于台风路径、强度以及持续时间的不同,各台风对相同地点的影响会有所差别。例如在本研究中,台风“天鹅”的行进路线距离四脚架观测位置较远,记录到的近底层流速最大值为55.2 cm/s;而2015年台风“灿鸿”经过东海时,由于行进路线距离四脚架观测位置较近,记录到的近底层流速最大值可以达到152.0 cm/s[7]。在东海的外陆架分布着形成于晚更新世的残留砂[37],砂-粉砂-黏土的混合区呈条带状分布在东海泥质区和残留区之间[38]。现场观测结果显示,2013年台风“丹娜丝”经过东海时,可以影响到水深110 m处的残留区,表层沉积物发生再悬浮[39]。2017年台风“泰利”前后获取的表层沉积物的粒度组成变化显示,台风可以促进东海内陆架泥质区与残留区之间的物质交换,残留区的砂等粗颗粒物质可以被携带至泥质区的边缘沉积下来,粗颗粒的粒径最大可以达到212 μm[33]。长江口外泥质区边缘的一根岩芯的沉积记录显示,岩芯中砂层的黏土矿物、化学元素比值以及磁化率等组成,尤其是砂层中破碎的贝壳和磨蚀严重的有孔虫壳体,均指示了砂层物质来自残留区,在排除了洪水和冬季寒潮的影响后,该岩芯中的砂层代表了台风事件的沉积记录,且在2003年前台风发生频率与ENSO之间存在着联系[40]。本研究中四脚架记录的近底层流向也证明了长江口外泥质区边缘岩芯的砂层主要是台风期间来自残留区,而冬季寒潮期间残留区物质无法到达泥质区边缘。东海陆架悬浮体向深海的运移具有“夏储冬输”的输运格局[41-42],长江入海沉积物中的粗颗粒由于搬运距离较远,无法到达东海内陆架泥质区向海一侧的边缘,因此在泥质区边缘沉积记录中的砂层代表了大部分的台风事件沉积。我们可以在东海内陆架泥质区边缘采集较长的沉积物岩芯,根据沉积记录中砂层的分布特征,判别台风活动的发展规律,例如,在全新世暖期和冷期台风的发生频率如何变化,从而为预测未来台风的发展趋势提供科学参考。
5. 结论与展望
5.1 结论
(1)台风与冬季寒潮在风向、增大有效波高和近底层流速上具有一定的相似性,但是台风的强度更大,更容易引起近底层沉积物的再悬浮。
(2)台风经过时,高浓度悬浮体主要来自海底沉积物的再悬浮,且台风过后高浓度悬浮体会维持较长的时间,而冬季寒潮期间高浓度悬浮体与长江入海物质的输入相关。
(3)由于台风和冬季寒潮近底层海流流向的差异,在东海内陆架泥质区向海一侧的边缘,其沉积记录中的砂层更可能代表了台风事件沉积,可以作为全新世台风活动记录研究的良好载体。
5.2 研究展望
台风和冬季寒潮期间高浓度悬浮体的来源不同,台风期间高浓度悬浮体会受到浙闽沿岸沉积物再悬浮物质的影响,而冬季寒潮期间高浓度悬浮体主要来自长江入海沉积物,这为识别两种不同极端事件提供了可能。由于长江入海沉积物与浙闽沿岸沉积物黏土矿物组成的差异[25],台风后及冬季寒潮期间海水悬浮体颗粒有机碳δ13C值的差别[6, 43],以及底层海水缺氧区变化[6]引起的沉积物氧化还原敏感元素组成的差别,可以在后续研究中用来尝试区分台风与冬季寒潮事件沉积。从东海内陆架泥质区沉积记录中更准确地提取台风信息,可以为预测未来台风的发展趋势提供科学参考,从而为我国沿海地区的开发建设以及台风灾害应急预案的制定提供帮助。
致谢:感谢中国科学院海洋研究所“科学三号”和“创新二号”全体船员在航次中的帮助。感谢中国科学院海洋研究所海洋大数据中心提供的数据,感谢东海海洋观测研究站的数据支撑。
-
图 4 冲绳海槽唐印热液区中硬石膏与硅质物的扫描电镜能谱面扫描图像
Anh:硬石膏; Si: 硅质物; Ca, S, Si, Mg, O分别是钙,硫,硅,镁,氧元素的面扫描图像。
Figure 4. Scanning electron microscope energy dispersive scanning images of anhydrite and amorphous silica from the Tangyin hydrothermal field in the Okinawa Trough
Anh: anhydrite; Si: silica material; Ca, S, Si, Mg, and O are energy dispersive scanning images of calcium, sulphur, silicon, magnesium, and oxygen elements, respectively.
图 8 冲绳海槽唐印热液区中硬石膏样品的稀土元素球粒陨石标准化配分模式图
标准化数据来自文献[82],海水、喷口流体和火成岩数据分别来自文献[81,84,42,36]和[85]。
Figure 8. REE pattern of anhydrite samples from the Tangyin hydrothermal field in the Okinawa Trough
Normalized data are from [82], data of seawater, vent fluid, and igneous rock are from references、 [81, 84, 42, 36], and [85], respectively.
表 1 唐印热液区样品R11-H2中硬石膏的电子探针分析结果和化学式
Table 1 Electron microprobe analyses of the anhydrite in sample R11-H2 from the Tangyin hydrothermal field and their atoms per formula unit for elements
% 类型 测试点 K2O SO3 CaO BaO TiO2 Na2O Al2O3 SrO MgO SiO2 NiO FeO MnO Cr2O3 总计 化学式 类型I 6-6 n.d. 58.02 41.95 0.09 n.d. 0.02 n.d. 0.14 0.02 n.d. n.d. 0.03 n.d. 0.03 100.29 Ca1.58S0.71O3.71 6-8 n.d. 57.45 41.03 0.11 n.d. n.d. n.d. 0.11 0.86 0.74 n.d. n.d. n.d. n.d. 100.31 Ca1.55Mg0.02Si0.01S0.71O3.71 6-10 n.d. 56.84 42.68 n.d. n.d. 0.03 n.d. 0.19 0.04 n.d. n.d. n.d. n.d. 0.03 99.81 Ca1.60S0.70O3.70 6-11 n.d. 55.64 44.29 n.d. n.d. 0.06 n.d. 0.19 0.16 n.d. n.d. n.d. n.d. 0.08 100.43 Ca1.65S0.67O3.67 6-12 n.d. 55.43 45.47 0.06 n.d. 0.03 0.02 0.15 0.07 n.d. 0.04 n.d. n.d. n.d. 101.26 Ca1.67S0.66O3.66 6-13 n.d. 56.29 42.67 n.d. 0.04 0.06 n.d. 0.22 0.19 n.d. n.d. n.d. n.d. 0.07 99.53 Ca1.61S0.69O3.69 6-15 n.d. 57.19 42.29 n.d. n.d. 0.08 n.d. 0.20 0.04 n.d. n.d. n.d. n.d. n.d. 99.80 Ca1.59S0.70O3.70 6-16 n.d. 56.28 42.27 n.d. 0.05 0.05 n.d. 0.14 0.07 n.d. 0.04 0.10 n.d. n.d. 99.00 Ca1.60S0.70O3.69 6-17 n.d. 57.25 42.76 n.d. n.d. 0.02 n.d. 0.19 0.03 n.d. n.d. n.d. 0.05 n.d. 100.29 Ca1.60S0.70O3.70 6-24 n.d. 57.74 42.59 n.d. n.d. n.d. n.d. 0.18 0.03 n.d. n.d. 0.03 0.04 n.d. 100.59 Ca1.59S0.70O3.70 类型II 4-1-1 n.d. 56.72 43.84 n.d. n.d. 0.07 0.02 0.31 n.d. n.d. n.d. n.d. n.d. 0.09 101.05 Ca1.62S0.68O3.68 4-1-2 n.d. 58.23 42.41 n.d. n.d. 0.05 n.d. 0.29 0.02 n.d. n.d. 0.04 n.d. n.d. 101.03 Ca1.58S0.71O3.71 4-1-3 n.d. 56.38 42.89 0.08 n.d. 0.04 n.d. 0.62 0.02 n.d. n.d. n.d. n.d. 0.04 100.07 Ca1.61Sr0.01S0.69O3.69 4-1-4 n.d. 57.63 42.96 n.d. n.d. 0.02 n.d. 0.22 n.d. n.d. n.d. n.d. n.d. 0.05 100.89 Ca1.60S0.70O3.70 4-1-5 n.d. 57.31 44.11 0.07 n.d. n.d. n.d. 0.19 0.06 n.d. n.d. n.d. n.d. n.d. 101.73 Ca1.62S0.69O3.69 4-1-6 n.d. 58.12 42.71 n.d. n.d. n.d. 0.04 0.20 0.04 n.d. n.d. n.d. n.d. n.d. 101.10 Ca1.59S0.70O3.70 4-1-7 n.d. 57.87 42.18 n.d. n.d. 0.03 n.d. 0.28 0.06 n.d. 0.04 n.d. 0.05 n.d. 100.50 Ca1.58S0.71O3.71 6-1-1 n.d. 58.17 41.78 n.d. n.d. 0.04 n.d. 0.25 n.d. n.d. n.d. n.d. n.d. n.d. 100.23 Ca1.57S0.71O3.71 4-14 n.d. 58.92 42.00 0.08 n.d. n.d. 0.02 0.52 0.07 n.d. n.d. 0.03 n.d. n.d. 101.64 Ca1.56S0.71O3.71 4-16 n.d. 57.92 43.33 n.d. n.d. 0.03 n.d. 0.28 0.04 n.d. 0.07 0.03 0.05 n.d. 101.75 Ca1.60S0.70O3.70 4-17 n.d. 56.52 42.94 n.d. n.d. 0.03 0.02 0.23 n.d. n.d. n.d. 0.04 n.d. n.d. 99.78 Ca1.61S0.69O3.69 4-18 n.d. 56.70 44.63 0.07 n.d. 0.02 n.d. 0.24 0.08 n.d. n.d. 0.03 0.04 0.05 101.85 Ca1.64S0.68O3.68 检测限 K2O SO3 CaO BaO TiO2 Na2O Al2O3 SrO MgO SiO2 NiO FeO MnO Cr2O3 0.02 0.03 0.02 0.05 0.03 0.02 0.02 0.03 0.01 0.03 0.03 0.03 0.03 0.03 注:n.d表示无数据。 表 2 使用LA-ICP-MS分析唐印热液区样品R11-H2中硬石膏的微量元素含量
Table 2 Trace element concentrations of the anhydrite in sample R11-H2 from the Tangyin hydrothermal field determined via LA-ICP-MS
μg/g 元素 4-1-1 4-1-2 4-1-3 4-1-4 4-1-5 4-1-6 4-1-7 6-1-1 最小值 最大值 平均值 检测限 SRM610平均值 SRM610参考值 RE% Sc n.d. 1.56 1.46 n.d. n.d. n.d. n.d. n.d. 1.46 1.56 1.51 0.721 441.20 441.00 0.05 Ti 66.7 30.0 84.1 33.4 4.57 12.3 34.1 164 4.57 164 53.7 0.891 439.66 434.00 1.31 V 1.55 0.837 2.44 0.501 0.199 0.424 0.509 2.40 0.199 2.44 1.11 0.134 442.09 442.00 0.02 Cr 8.06 57.9 2.36 34.7 417 2.80 16.7 11.9 2.36 417 68.9 1.797 405.81 405.00 0.20 Fe 707 551 776 160 484 n.d. 388 1760 160 1760 689 134.53 473.45 458.00 3.37 Mn 107 78.6 234 96.7 108 75.1 159 122 75.1 234 123 0.417 485.27 485.00 0.06 Co n.d. 0.218 0.217 n.d. 0.085 n.d. n.d. 0.716 0.085 0.716 0.309 0.079 405.07 405.00 0.02 Ni 2.67 0.658 2.74 n.d. 0.357 1.31 1.25 5.28 0.357 5.28 2.04 0.314 458.80 458.70 0.02 Cu 58.8 54.8 84.0 41.3 98.0 47.8 56.7 92.8 41.3 98.0 66.8 0.614 430.15 430.00 0.04 Zn 107 164 464 9.25 82.6 100 328 411 9.25 464 208 2.979 456.02 456.00 0.01 Ga 1.02 0.396 1.65 0.612 n.d. 0.160 0.261 1.81 0.160 1.81 0.843 0.115 438.07 438.00 0.02 Ge n.d. 0.987 3.73 n.d. n.d. 1.67 n.d. 1.24 0.987 3.73 1.91 0.347 426.05 426.00 0.01 As n.d. 9.25 27.0 2.55 5.85 2.68 12.6 10.3 2.55 27.0 10.0 0.991 317.06 317.00 0.02 Rb 9.61 4.17 13.6 4.09 0.607 1.69 4.44 19.5 0.607 19.5 7.22 0.101 425.77 425.70 0.02 Sr 1785 1919 1372 1661 1708 1569 1778 1580 1372 1919 1671 0.048 515.58 515.50 0.02 Y 1.22 0.341 1.67 0.455 0.108 0.237 0.448 2.66 0.108 2.66 0.893 0.016 450.10 450.00 0.02 Mo 0.137 0.050 0.087 n.d. 0.034 0.117 0.109 0.120 0.034 0.137 0.093 0.027 410.00 410.00 0.00 Ag 0.755 1.15 1.17 0.679 1.77 0.403 1.08 4.26 0.403 4.26 1.41 0.166 239.06 239.00 0.02 Cd 1.05 n.d. 0.640 0.152 0.208 0.706 0.913 1.85 0.152 1.85 0.789 0.105 259.22 259.00 0.08 In 0.020 n.d. n.d. n.d. n.d. n.d. 0.046 0.317 0.020 0.317 0.128 0.018 441.02 441.00 0.01 Sn n.d. n.d. 2.85 1.76 2.90 2.26 4.92 4.58 1.76 4.92 3.21 0.797 396.01 396.00 0.00 Sb 3.28 14.3 24.3 12.4 33.5 14.5 17.5 6.65 3.28 33.5 15.8 0.063 369.05 369.00 0.01 Ba 164 97.1 136 149 193 76.6 123 177 76.6 193 139 0.219 435.01 435.00 0.00 La 2.90 1.51 4.17 1.44 0.701 0.731 1.64 6.31 0.701 6.31 2.43 0.009 457.02 457.00 0.00 Ce 8.67 4.12 12.4 4.48 0.968 1.75 4.60 18.8 0.968 18.8 6.97 0.007 448.02 448.00 0.01 Pr 0.420 0.281 0.610 0.218 0.078 0.101 0.340 0.946 0.078 0.946 0.374 0.004 430.07 430.00 0.02 Nd 1.11 0.933 2.65 0.816 0.258 0.510 0.868 3.45 0.258 3.45 1.32 0.022 431.01 431.00 0.00 Sm n.d. 0.070 0.824 n.d. 0.076 0.114 0.310 0.591 0.070 0.824 0.331 0.009 451.16 451.00 0.04 Eu 0.091 0.019 0.068 n.d. 0.088 0.046 0.048 0.115 0.019 0.115 0.068 0.018 461.03 461.00 0.01 Gd 0.246 0.210 0.432 0.157 0.021 0.049 0.113 0.434 0.021 0.434 0.208 0.010 444.01 444.00 0.00 Tb 0.025 n.d. 0.028 0.023 0.010 n.d. 0.006 0.084 0.006 0.084 0.029 0.006 443.02 443.00 0.00 Dy 0.224 0.200 0.427 0.134 0.039 0.044 0.023 0.438 0.023 0.438 0.191 0.012 427.01 427.00 0.00 Ho 0.082 0.018 0.058 n.d. 0.010 n.d. 0.029 0.078 0.010 0.082 0.046 0.006 449.00 449.00 0.00 Er 0.104 0.025 0.135 0.105 0.018 0.051 0.063 0.183 0.018 0.183 0.085 0.016 426.04 426.00 0.01 Tm n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.040 0.040 0.040 0.040 0.035 420.02 420.00 0.00 Yb n.d. 0.077 0.191 0.081 n.d. 0.016 n.d. 0.138 0.016 0.191 0.101 0.010 445.05 445.00 0.01 Lu 0.040 n.d. 0.023 n.d. n.d. n.d. 0.021 n.d. 0.021 0.040 0.028 0.006 435.08 435.00 0.02 Au 0.036 0.066 n.d. 0.042 n.d. n.d. n.d. n.d. 0.036 0.066 0.048 0.025 23.01 23.00 0.04 Tl 0.134 0.098 0.133 n.d. n.d. n.d. 0.116 n.d. 0.098 0.134 0.121 0.086 61.01 61.00 0.02 Pb 145 318 505 136 375 278 401 340 136 505 312 0.120 426.00 426.00 0.00 Bi 0.043 n.d. 0.098 n.d. 0.010 0.021 n.d. 0.141 0.010 0.141 0.063 0.010 358.02 358.00 0.01 Th 0.657 0.291 1.01 0.332 0.045 0.101 0.301 1.23 0.045 1.23 0.496 0.011 457.21 457.20 0.00 U 0.231 0.367 0.983 0.145 0.079 0.071 0.452 0.623 0.071 0.983 0.369 0.003 461.55 461.50 0.01 ∑REEs 13.9 7.46 22.0 7.46 2.27 3.41 8.06 31.6 2.27 31.6 12.0 LREE/HREE 18.3 13.1 16.0 13.9 22.1 20.4 30.7 21.7 13.1 30.7 19.5 LaCN/LuCN 7.80 n.d. 19.8 n.d. n.d. n.d. 8.34 n.d. 7.80 19.8 12.0 (Eu/Eu*)CN 2.62 0.443 0.314 n.d. 5.08 1.62 0.638 0.661 0.314 5.08 1.62 (Ce/Ce*)CN 1.70 1.44 1.69 1.75 0.837 1.38 1.43 1.68 0.837 1.75 1.49 表 3 使用LA-MC-ICP-MS分析唐印热液区样品R11-H2中硬石膏的硫同位素组成
Table 3 Sulfur isotopic compositions of the anhydrite crystals in sample R11-H2 from the Tangyin hydrothermal field determined by LA-MC-ICP-MS
测试点 矿物 δ34Sv-CDT/‰ 2SE 4-1-1 硬石膏 20.08 0.31 4-1-2 硬石膏 18.32 0.82 4-1-3 硬石膏 20.26 0.42 4-1-4 硬石膏 19.82 0.28 标准物质
PSPT-3闪锌矿 26.36 0.29 -
[1] Zeng Z G, Qin Y S, Zhai S K. He, Ne and Ar isotope compositions of fluid inclusions in hydrothermal sulfides from the TAG hydrothermal field Mid-Atlantic Ridge[J]. Science in China Series D: Earth Sciences, 2001, 44(3): 221-228. doi: 10.1007/BF02882256
[2] Zeng Z G, Chen D G, Yin X B, et al. Elemental and isotopic compositions of the hydrothermal sulfide on the east Pacific rise near 13ºN[J]. Science China Earth Sciences, 2010, 53(2): 253-266. doi: 10.1007/s11430-010-0013-3
[3] Zeng Z G, Chen S, Selby D, et al. Rhenium-osmium abundance and isotopic compositions of massive sulfides from modern deep-sea hydrothermal systems: Implications for vent associated ore forming processes[J]. Earth and Planetary Science Letters, 2014, 396: 223-234. doi: 10.1016/j.jpgl.2014.04.017
[4] Zeng Z G, Ma Y, Yin X B, et al. Factors affecting the rare earth element compositions in massive sulfides from deep-sea hydrothermal systems[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(8): 2679-2693. doi: 10.1002/2015GC005812
[5] Zeng Z G, Niedermann S, Chen S, et al. Noble gases in sulfide deposits of modern deep-sea hydrothermal systems: implications for heat fluxes and hydrothermal fluid processes[J]. Chemical Geology, 2015, 409: 1-11. doi: 10.1016/j.chemgeo.2015.05.007
[6] Zeng Z G, Li X H, Chen S, et al. Iron, copper, and zinc isotopic fractionation in seafloor basalts and hydrothermal sulfides[J]. Marine Geology, 2021, 436: 106491. doi: 10.1016/j.margeo.2021.106491
[7] Zeng Z G, Chen Z X, Qi H Y, et al. Chemical and isotopic composition of sulfide minerals from the Noho hydrothermal field in the Okinawa Trough[J]. Journal of Marine Science and Engineering, 2022, 10(5): 678. doi: 10.3390/jmse10050678
[8] Zeng Z G, Ma Y, Chen S, et al. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation[J]. Ore Geology Reviews, 2017, 87: 155-171. doi: 10.1016/j.oregeorev.2016.10.014
[9] Zeng Z G, Chen Z X, Qi H Y. Two processes of anglesite formation and a model of secondary supergene enrichment of Bi and Ag in seafloor hydrothermal sulfide deposits[J]. Journal of Marine Science and Engineering, 2022, 10(1): 35.
[10] Zeng Z G, Wang X Y, Chen C T A, et al. Boron isotope compositions of fluids and plumes from the Kueishantao hydrothermal field off northeastern Taiwan: implications for fluid origin and hydrothermal processes[J]. Marine Chemistry, 2013, 157: 59-66. doi: 10.1016/j.marchem.2013.09.001
[11] Zeng Z G, Wang X Y, Qi H Y, et al. Arsenic and antimony in hydrothermal plumes from the eastern Manus Basin, Papua New Guinea[J]. Geofluids, 2018, 2018: 6079586.
[12] Zeng Z G, Wang X Y, Murton B J, et al. Dispersion and intersection of hydrothermal plumes in the Manus back-arc basin, western Pacific[J]. Geofluids, 2020, 2020: 4260806.
[13] Rong K B, Zeng Z G, Yin X B, et al. Smectite formation in metalliferous sediments near the east Pacific rise at 13°N[J]. Acta Oceanologica Sinica, 2018, 37(9): 67-81. doi: 10.1007/s13131-018-1265-6
[14] Zeng Z G, Wang X Y, Zhang G L, et al. Formation of Fe-oxyhydroxides from the east Pacific rise near latitude 13°N: evidence from mineralogical and geochemical data[J]. Science in China Series D: Earth Sciences, 2008, 51(2): 206-215. doi: 10.1007/s11430-007-0131-8
[15] Zeng Z G, Ouyang H G, Yin X B, et al. Formation of Fe-Si-Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: mineralogical and geochemical evidence[J]. Journal of Asian Earth Sciences, 2012, 60: 130-146. doi: 10.1016/j.jseaes.2012.08.009
[16] Zeng Z G, Chen S, Wang X Y, et al. Mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the PACMANUS hydrothermal field, eastern Manus Basin[J]. Science China Earth Sciences, 2012, 55(12): 2039-2048. doi: 10.1007/s11430-012-4536-7
[17] Zeng Z G, Qi H Y, Chen S, et al. Hydrothermal alteration of plagioclase microphenocrysts and glass in basalts from the east Pacific rise near 13°N: an SEM-EDS study[J]. Science China Earth Sciences, 2014, 57(7): 1427-1437. doi: 10.1007/s11430-014-4868-6
[18] Wang X Y, Zeng Z G, Qi H Y, et al. Fe-Si-Mn-oxyhydroxide encrustations on basalts at east Pacific rise near 13˚N: an SEM-EDS study[J]. Journal of Ocean University of China, 2014, 13(6): 917-925. doi: 10.1007/s11802-014-2358-2
[19] Huang X, Zeng Z G, Chen S, et al. Component characteristics of organic matter in hydrothermal barnacle shells from southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2013, 32(12): 60-67. doi: 10.1007/s13131-013-0388-z
[20] Chen J B, Zeng Z G. Metasomatism of the peridotites from southern Mariana fore-arc: trace element characteristics of clinopyroxene and amphibole[J]. Science in China Series D: Earth Sciences, 2007, 50(7): 1005-1012. doi: 10.1007/s11430-007-0023-y
[21] Wang X M, Zeng Z G, Chen J B. Serpentinization of peridotites from the southern Mariana forearc[J]. Progress in Natural Science, 2009, 19(10): 1287-1295. doi: 10.1016/j.pnsc.2009.04.004
[22] Zeng Z G, Wang Q Y, Wang X M, et al. Geochemistry of abyssal peridotites from the super slow-spreading southwest Indian Ridge near 65°E: implications for magma source and seawater alteration[J]. Journal of Earth System Science, 2012, 121(5): 1317-1336. doi: 10.1007/s12040-012-0229-z
[23] Zeng Z G, Li X H, Zhang Y X, et al. Lithium, oxygen and magnesium isotope systematics of volcanic rocks in the Okinawa Trough: implications for plate subduction studies[J]. Journal of Marine Science and Engineering, 2022, 10(1): 40.
[24] Zeng Z G, Li X H, Chen S, et al. Iron-copper-zinc isotopic compositions of Andesites from the Kueishantao hydrothermal field off northeastern Taiwan[J]. Sustainability, 2022, 14(1): 359.
[25] Zeng Z G, Chen Z X, Zhang Y X, et al. Geological, physical, and chemical characteristics of seafloor hydrothermal vent fields[J]. Journal of Oceanology and Limnology, 2020, 38(4): 985-1007. doi: 10.1007/s00343-020-0123-5
[26] Haymon R M. Growth history of hydrothermal black smoker chimneys[J]. Nature, 1983, 301(5902): 695-698. doi: 10.1038/301695a0
[27] Tivey M K. Modeling chimney growth and associated fluid flow at seafloor hydrothermal vent sites[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington: American Geophysical Union, 1995: 158-177.
[28] Binns R A. Bikpela: a large siliceous chimney from the PACMANUS hydrothermal field, Manus Basin, Papua New Guinea[J]. Economic Geology, 2014, 109(8): 2243-2259. doi: 10.2113/econgeo.109.8.2243
[29] Chiba H, Uchiyama N, Teagle D A H. 1998. Stable isotope study of anhydrite and sulfide minerals at the TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N[C]//Proceedings of the Ocean Drilling Program, Mid-Atlantic Ridge. St. John: Texas A&M University, 1998: 85-90.
[30] Juniper S K, Martineu P. Alvinellids and sulfides at hydrothermal vents of the Eastern Pacific: a review[J]. American Zoologist, 1995, 35(2): 174-185. doi: 10.1093/icb/35.2.174
[31] Haymon R M, Kastner M. Hot spring deposits on the east Pacific rise at 21°N: preliminary description of mineralogy and genesis[J]. Earth and Planetary Science Letters, 1981, 53(3): 363-381. doi: 10.1016/0012-821X(81)90041-8
[32] Paradis S, Jonasson I R, Le Cheminant G M, et al. Two zinc-rich chimneys from the plume site, southern Juan de Fuca[J]. The Canadian Mineralogist, 1988, 26(3): 637-654.
[33] Huang X, Chen S, Zeng Z G, et al. Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough[J]. Marine Pollution Bulletin, 2017, 115(1-2): 507-514. doi: 10.1016/j.marpolbul.2016.12.034
[34] Zeng Z G, Yu S X, Wang X Y, et al. Geochemical and isotopic characteristics of volcanic rocks from the northern east China Sea shelf margin and the Okinawa Trough[J]. Acta Oceanologica Sinica, 2010, 29(4): 48-61. doi: 10.1007/s13131-010-0050-y
[35] Guo K, Zhai S K, Wang X Y, et al. The dynamics of the southern Okinawa Trough magmatic system: new insights from the microanalysis of the an contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks[J]. Chemical Geology, 2018, 497: 146-161. doi: 10.1016/j.chemgeo.2018.09.002
[36] Guo K, Zhai S K, Yu Z H, et al. Geochemical characteristics of major and trace elements in the Okinawa Trough basaltic glass[J]. Acta Oceanologica Sinica, 2018, 37(2): 14-24. doi: 10.1007/s13131-017-1075-2
[37] Chen Z X, Zeng Z G, Wang X Y, et al. Mineral chemistry indicates the petrogenesis of rhyolite from the southwestern Okinawa Trough[J]. Journal of Ocean University of China, 2017, 16(6): 1097-1108. doi: 10.1007/s11802-017-3344-2
[38] Chen Z X, Zeng Z G, Wang X Y, et al. U-Th/He dating and chemical compositions of apatite in the Dacite from the southwestern Okinawa Trough: implications for petrogenesis[J]. Journal of Asian Earth Sciences, 2018, 161: 1-13. doi: 10.1016/j.jseaes.2018.04.032
[39] Chen Z X, Zeng Z G, Yin X B, et al. Petrogenesis of highly fractionated rhyolites in the southwestern Okinawa Trough: constraints from whole-rock geochemistry data and Sr-Nd-Pb-O isotopes[J]. Geological Journal, 2019, 54(1): 316-332. doi: 10.1002/gj.3179
[40] Zhang Y X, Zeng Z G, Li X H, et al. High‐potassium volcanic rocks from the Okinawa Trough: implications for a cryptic potassium-rich and DUPAL-like source[J]. Geological Journal, 2018, 53(5): 1755-1766. doi: 10.1002/gj.3000
[41] Zhang Y X, Zeng Z G, Chen S, et al. New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process[J]. Frontiers of Earth Science, 2018, 12(2): 325-338. doi: 10.1007/s11707-017-0638-z
[42] Li X H, Zeng Z G, Chen S, et al. Geochemical and Sr-Nd-Pb isotopic compositions of volcanic rocks from the Iheya Ridge, the middle Okinawa Trough: implications for petrogenesis and a mantle source[J]. Acta Oceanologica Sinica, 2018, 37(1): 73-88. doi: 10.1007/s13131-017-1118-8
[43] Li X H, Zeng Z G, Wang X Y, et al. Petrogenesis of basalt from the middle Okinawa Trough: new insights from olivine-hosted melt inclusions[J]. Geological Journal, 2018, 53(6): 3129-3146. doi: 10.1002/gj.3150
[44] Guo K, Zeng Z G, Chen S, et al. The influence of a subduction component on magmatism in the Okinawa Trough: evidence from thorium and related trace element ratios[J]. Journal of Asian Earth Sciences, 2017, 145: 205-216. doi: 10.1016/j.jseaes.2017.05.033
[45] Li X H, Zeng Z G, Yang H X, et al. Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks: implications for petrogenesis and variable subducted sediment component injection[J]. Geological Journal, 2019, 54(3): 1160-1189. doi: 10.1002/gj.3217
[46] Li X H, Zeng Z G, Yang H X, et al. Integrated major and trace element study of clinopyroxene in basic, intermediate and acidic volcanic rocks from the middle Okinawa Trough: Insights into petrogenesis and the influence of subduction component[J]. Lithos, 2020, 352-353: 105320. doi: 10.1016/j.lithos.2019.105320
[47] Zeng Z G, Chen Z X, Zhang Y X. Zircon record of an Archaean crustal fragment and supercontinent amalgamation in Quaternary back-arc volcanic rocks[J]. Scientific Reports, 2021, 11(1): 12367. doi: 10.1038/s41598-021-90578-9
[48] Kimura M. Back-arc rifting in the Okinawa Trough[J]. Marine and Petroleum Geology, 1985, 2(3): 222-240. doi: 10.1016/0264-8172(85)90012-1
[49] Ishibashi J I, Ikegami F, Tsuji T, et al. Hydrothermal activity in the Okinawa Trough back-arc basin: geological background and hydrothermal mineralization[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 337-359.
[50] Sibuet J C, Deffontaines B, Hsu S K, et al. Okinawa Trough backarc basin: early tectonic and magmatic evolution[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30245-30267. doi: 10.1029/98JB01823
[51] Zeng Z G, Chen S, Ma Y, et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough[J]. Ore Geology Reviews, 2017, 87: 172-191. doi: 10.1016/j.oregeorev.2016.09.015
[52] Zeng Z G, Ma Y, Wang X Y, et al. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough[J]. Journal of Marine Systems, 2018, 180: 90-101. doi: 10.1016/j.jmarsys.2016.08.012
[53] Kawagucci S, Ueno Y, Takai K, et al. Geochemical origin of hydrothermal fluid methane in sediment-associated fields and its relevance to the geographical distribution of whole hydrothermal circulation[J]. Chemical Geology, 2013, 339: 213-225. doi: 10.1016/j.chemgeo.2012.05.003
[54] Nakagawa S, Takai K, Inagaki F, et al. Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of subseafloor phase-separation[J]. FEMS Microbiology Ecology, 2005, 54(1): 141-155. doi: 10.1016/j.femsec.2005.03.007
[55] Kawagucci S, Chiba H, Ishibashi J I, et al. Hydrothermal fluid geochemistry at the Iheya north field in the mid-Okinawa Trough: implication for origin of methane in subseafloor fluid circulation systems[J]. Geochemical Journal, 2011, 45(2): 109-124. doi: 10.2343/geochemj.1.0105
[56] Kawagucci S, Miyazaki J, Nakajima R, et al. Post-drilling changes in fluid discharge pattern, mineral deposition, and fluid chemistry in the Iheya north hydrothermal field, Okinawa Trough[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(11): 4774-4790. doi: 10.1002/2013GC004895
[57] Kawagucci S. Fluid geochemistry of high-temperature hydrothermal fields in the Okinawa Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 387-403.
[58] Sakai H, Gamo T, Kim E S, et al. Unique chemistry of the hydrothermal solution in the mid-Okinawa Trough backarc basin[J]. Geophysical Research Letters, 1990, 17(12): 2133-2136. doi: 10.1029/GL017i012p02133
[59] Ishibashi J, Sano Y, Wakita H, et al. Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough back arc basin, southwest of Japan[J]. Chemical Geology, 1995, 123(1-4): 1-15. doi: 10.1016/0009-2541(95)00051-M
[60] Zeng Z G, Qin Y S, Zhai S K. Helium, neon and argon isotope compositions of fluid inclusions in massive sulfides from the Jade hydrothermal field, the Okinawa Trough[J]. Acta Oceanologica Sinica, 2004, 23(4): 655-661.
[61] Zeng Z G, Yu S X, Yin X B, et al. Element enrichment and U-series isotopic characteristics of the hydrothermal sulfides at Jade site in the Okinawa Trough[J]. Science in China Series D: Earth Sciences, 2009, 52(7): 913-924. doi: 10.1007/s11430-009-0107-y
[62] Ishibashi J I, Noguchi T, Toki T, et al. Diversity of fluid geochemistry affected by processes during fluid upwelling in active hydrothermal fields in the Izena Hole, the middle Okinawa Trough back-arc basin[J]. Geochemical Journal, 2014, 48(4): 357-369. doi: 10.2343/geochemj.2.0311
[63] Watanabe M, Hoshino K, Shiokawa R, et al. Metallic mineralization associated with pillow basalts in the Yaeyama Central Graben, southern Okinawa Trough, Japan[J]. JAMSTEC Report of Research and Development, 2006, 3: 1-8. doi: 10.5918/jamstecr.3.1
[64] Fukuba T, Noguchi T, Fujii T. The Irabu Knoll: hydrothermal site at the eastern edge of the Yaeyama graben[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 493-496.
[65] Kawagucci S, Toki T, Ishibashi J, et al. Isotopic variation of molecular hydrogen in 20°-375℃ hydrothermal fluids as detected by a new analytical method[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(G3): G03021.
[66] Kishida K, Sohrin Y, Okamura K, et al. Tungsten enriched in submarine hydrothermal fluids[J]. Earth and Planetary Science Letters, 2004, 222(3-4): 819-827. doi: 10.1016/j.jpgl.2004.03.034
[67] Konno U, Tsunogai U, Nakagawa F, et al. Liquid CO2 venting on the seafloor: Yonaguni knoll IV hydrothermal system, Okinawa Trough[J]. Geophysical Research Letters, 2006, 33(16): L16607. doi: 10.1029/2006GL026115
[68] Suzuki R, Ishibashi J I, Nakaseama M, et al. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough back-arc basin[J]. Resource Geology, 2008, 58(3): 267-288. doi: 10.1111/j.1751-3928.2008.00061.x
[69] Wang X Y, Zeng Z G, Chen S, et al. Rare earth elements in hydrothermal fluids from Kueishantao, off northeastern Taiwan: Indicators of shallow-water, sub-seafloor hydrothermal processes[J]. Chinese Science Bulletin, 2013, 58(32): 4012-4020. doi: 10.1007/s11434-013-5849-4
[70] Zeng Z G, Liu C H, Chen C A, et al. Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan[J]. Science in China Series D: Earth Sciences, 2007, 50(11): 1746-1753. doi: 10.1007/s11430-007-0092-y
[71] Zeng Z G, Chen C T A, Yin X B, et al. Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan: evidence from trace and rare earth element composition[J]. Journal of Asian Earth Sciences, 2011, 40(2): 661-671. doi: 10.1016/j.jseaes.2010.10.019
[72] Zhang Y X, Zeng Z G, Yin X B, et al. Petrology and mineralogy of pumice from the Iheya North Knoll, Okinawa Trough: implications for the differentiation of crystal‐poor and volatile-rich melts in the magma chamber[J]. Geological Journal, 2018, 53(6): 2732-2745. doi: 10.1002/gj.3106
[73] Zeng Z G, Wang X Y, Chen C T A, et al. Understanding the compositional variability of the major components of hydrothermal plumes in the Okinawa Trough[J]. Geofluids, 2018, 2018: 1536352.
[74] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
[75] Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2007.10.016
[76] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[77] Bao Z A, Chen L, Zong C L, et al. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2017, 421: 255-262. doi: 10.1016/j.ijms.2017.07.015
[78] Chen L, Chen K Y, Bao Z A, et al. Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(1): 107-116. doi: 10.1039/C6JA00270F
[79] Chen K Y, Bao Z A, Liang P, et al. Preparation of sulfur-bearing reference materials for in situ sulfur isotope measurements using laser ablation multicollector inductively coupled plasma-mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188: 106344. doi: 10.1016/j.sab.2021.106344
[80] Yuan H L, Liu X, Chen L, et al. Simultaneous measurement of sulfur and lead isotopes in sulfides using nanosecond laser ablation coupled with two multi-collector inductively coupled plasma mass spectrometers[J]. Journal of Asian Earth Sciences, 2018, 154: 386-396. doi: 10.1016/j.jseaes.2017.12.040
[81] Turekian K K. Oceans[M]. Englewood Cliffs: Prentice-Hall, 1968.
[82] Ishibashi J I, Urabe T. Hydrothermal activity related to arc-back magmatism in the western Pacific[M]//Taylor B. Backarc Basins: Tectonics and Magmatism. New York: Springer, 1995: 451-495.
[83] Baker E T, Massoth G J, Collier R W, et al. Evidence for high-temperature hydrothermal venting on the Gorda Ridge, northeast Pacific Ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1987, 34(8): 1461-1476. doi: 10.1016/0198-0149(87)90137-3
[84] Hongo Y, Obata H, Gamo T, et al. Rare earth elements in the hydrothermal system at Okinawa Trough back-arc basin[J]. Geochemical Journal, 2007, 41(1): 1-15. doi: 10.2343/geochemj.41.1
[85] Shu Y C, Nielsen S G, Zeng Z G, et al. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: evidence from thallium isotopes[J]. Geochimica et Cosmochimica Acta, 2017, 217: 462-491. doi: 10.1016/j.gca.2017.08.035
[86] Yeats C J, Hollis S P, Halfpenny A, et al. Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at Iheya North, Okinawa Trough, Japan[J]. Ore Geology Reviews, 2017, 84: 20-41. doi: 10.1016/j.oregeorev.2016.12.014
[87] Tivey M K, Stakes D S, Cook T L, et al. A model for growth of steep-sided vent structures on the endeavour segment of the Juan de Fuca Ridge: results of a petrologic and geochemical study[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B10): 22859-22883. doi: 10.1029/1999JB900107
[88] Marques A F A, Barriga F, Chavagnac V, et al. Mineralogy, geochemistry, and Nd isotope composition of the rainbow hydrothermal field, Mid-Atlantic Ridge[J]. Mineralium Deposita, 2006, 41: 52-67. doi: 10.1007/s00126-005-0040-8
[89] 张春晖, 李景春, 刘斌. 中国银矿床分类[J]. 地质与资源, 2006, 15(3): 238-240 doi: 10.13686/j.cnki.dzyzy.2006.03.014 ZHANG Chunhui, LI Jingchun, LIU Bin. A review on the classification of silver deposits in China[J]. Geology and Resources, 2006, 15(3): 238-240. doi: 10.13686/j.cnki.dzyzy.2006.03.014
[90] Gamo T. Wide variation of chemical characteristics of submarine hydrothermal fluids due to secondary modification processes after high temperature water-rock interaction: a review[M]//Sakai H, Nozaki Y. Biogeochemical Processes and Ocean Flux in the Western Pacific. Tokyo: Terra Scientific Publishing Co (TERRAPUB), 1995: 425-451.
[91] Alt J C. The chemistry and sulfur isotope composition of massive sulfide and associated deposits on Green seamount, eastern Pacific[J]. Economic Geology, 1988, 83(5): 1026-1033. doi: 10.2113/gsecongeo.83.5.1026
[92] Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26°N Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3511-3524. doi: 10.1016/0016-7037(95)00224-N
[93] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica, 1976, A32(5): 751-767.
[94] Rimskaya-Korsakova M N, Dubinin A V. Rare earth elements in sulfides of submarine hydrothermal vents of the Atlantic Ocean[J]. Doklady Earth Sciences, 2003, 389(3): 432-436.
[95] Michard A, Albarède F. The REE content of some hydrothermal fluids[J]. Chemical Geology, 1986, 55(1-2): 51-60. doi: 10.1016/0009-2541(86)90127-0
[96] Klinkhammer G P, Elderfield H, Edmond J M, et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5105-5113. doi: 10.1016/0016-7037(94)90297-6
[97] Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 627-643. doi: 10.1016/S0016-7037(99)00024-1
[98] Schmidt K, Koschinsky A, Garbe-Schönberg D, et al. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation[J]. Chemical Geology, 2007, 242(1-2): 1-21. doi: 10.1016/j.chemgeo.2007.01.023
[99] Barrett T J, Jarvis I, Jarvis K E. Rare earth element geochemistry of massive sulfides-sulfates and gossans on the southern Explorer Ridge[J]. Geology, 1990, 18(7): 583-586. doi: 10.1130/0091-7613(1990)018<0583:REEGOM>2.3.CO;2
[100] Gillis K M, Smith A D, Ludden J N. Trace element and Sr-isotopic contents of hydrothermal clays and sulfides from the Snake pit hydrothermal field: ODP site 649[C]//Proceedings of the Ocean Drilling Program, Mid-Atlantic Ridge. St. John: Texas A&M University, 1990: 315-319.
[101] Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67(1): 70-78. doi: 10.1016/0012-821X(84)90039-6
[102] Schade J, Cornell D H, Theart H F J. Rare earth element and isotopic evidence for the genesis of the Prieska massive sulfide deposit, South Africa[J]. Economic Geology, 1989, 84(1): 49-63. doi: 10.2113/gsecongeo.84.1.49
[103] Wood S A, Williams-Jones A E. The aqueous geochemistry of the rare-earth elements and yttrium 4. Monazite solubility and REE mobility in exhalative massive sulfide-depositing environments[J]. Chemical Geology, 1994, 115(1-2): 47-60. doi: 10.1016/0009-2541(94)90144-9
[104] Haas J R, Shock E L, Sassani D C. Rare earth elements in hydrothermal systems: estimates of standard partial Molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 1995, 59(21): 4329-4350. doi: 10.1016/0016-7037(95)00314-P
[105] Allen D E, Seyfried W E Jr. REE controls in ultramafic hosted MOR hydrothermal systems: an experimental study at elevated temperature and pressure[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 675-683. doi: 10.1016/j.gca.2004.07.016
[106] de Baar H J W, Brewer P G, Bacon M P. Anomalies in rare earth distributions in seawater: Gd and Tb[J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1961-1969. doi: 10.1016/0016-7037(85)90090-0
[107] Piepgras D J, Wasserburg G J. Strontium and neodymium isotopes in hot springs on the east Pacific Rise and Guaymas Basin[J]. Earth and Planetary Science Letters, 1985, 72(4): 341-356. doi: 10.1016/0012-821X(85)90057-3
[108] Langmuir C, Humphris S, Fornari D, et al. Hydrothermal vents near a mantle hot spot: the lucky strike vent field at 37°N on the Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 1997, 148(1-2): 69-91. doi: 10.1016/S0012-821X(97)00027-7
[109] Sakai H, Des Marais D J, Ueda A, et al. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2433-2441. doi: 10.1016/0016-7037(84)90295-3
[110] Alt J C, Anderson T F, Bonnell L. The geochemistry of sulfur in a 1.3 km section of hydrothermally altered oceanic crust, DSDP Hole 504B[J]. Geochimica et Cosmochimica Acta, 1989, 53(5): 1011-1023. doi: 10.1016/0016-7037(89)90206-8
[111] Shanks W C III, Böhlke J K, Seal R R II. Stable isotopes in mid-ocean ridge hydrothermal systems: interactions between fluids, minerals, and organisms[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological interactions. Washington: American Geophysical Union, 1995: 194-221.
[112] Alt J C, Shanks W C III. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling[J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 641-653. doi: 10.1016/S0016-7037(02)01142-0
[113] Rees C E, Jenkins W J, Monster J. The sulphur isotopic composition of ocean water sulphate[J]. Geochimica et Cosmochimica Acta, 1978, 42(4): 377-381. doi: 10.1016/0016-7037(78)90268-5
[114] Fouquet Y, Knott R, Cambon P, et al. Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12°43′N on the east Pacific Rise[J]. Earth and Planetary Science Letters, 1996, 144(1-2): 147-162. doi: 10.1016/0012-821X(96)00142-2
[115] Gamo T, Sakai H, Kim E S, et al. High alkalinity due to sulfate reduction in the CLAM hydrothermal field, Okinawa Trough[J]. Earth and Planetary Science Letters, 1991, 107(2): 328-338. doi: 10.1016/0012-821X(91)90080-2
[116] Takai K, Nakagawa S, Nunoura T. Comparative investigation of microbial communities associated with hydrothermal activities in the Okinawa Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 421-435.
[117] Ueda A, Sakai H. Sulfur isotope study of Quaternary volcanic rocks from the Japanese islands arc[J]. Geochimica et Cosmochimica Acta, 1984, 48(9): 1837-1848. doi: 10.1016/0016-7037(84)90037-1
-
期刊类型引用(1)
1. 黄雨菡,范代读,吴伊婧. 长江口外砂泥过渡带沉积粗化趋势与成因分析. 海洋地质前沿. 2025(04): 47-59 . 百度学术
其他类型引用(0)