长江下游与浙江主要河流枯水期悬浮物稀土元素组成研究

贾贤明, 陈坚, 汪柯宇, 冯启营, 李云海, 李茂森

贾贤明,陈坚,汪柯宇,等. 长江下游与浙江主要河流枯水期悬浮物稀土元素组成研究[J]. 海洋地质与第四纪地质,2024,44(4): 88-98. DOI: 10.16562/j.cnki.0256-1492.2023052902
引用本文: 贾贤明,陈坚,汪柯宇,等. 长江下游与浙江主要河流枯水期悬浮物稀土元素组成研究[J]. 海洋地质与第四纪地质,2024,44(4): 88-98. DOI: 10.16562/j.cnki.0256-1492.2023052902
JIA Xianming,CHEN Jian,WANG Keyu,et al. On the composition of rare earth elements of suspended substance in lower reach of the Yangtze River and main rivers in Zhejiang Province in dry season[J]. Marine Geology & Quaternary Geology,2024,44(4):88-98. DOI: 10.16562/j.cnki.0256-1492.2023052902
Citation: JIA Xianming,CHEN Jian,WANG Keyu,et al. On the composition of rare earth elements of suspended substance in lower reach of the Yangtze River and main rivers in Zhejiang Province in dry season[J]. Marine Geology & Quaternary Geology,2024,44(4):88-98. DOI: 10.16562/j.cnki.0256-1492.2023052902

长江下游与浙江主要河流枯水期悬浮物稀土元素组成研究

基金项目: 自然资源部第三海洋研究所基本科研业务费项目“细颗粒泥沙形貌与矿物特征分析与物源研究:以闽浙沿岸入海颗粒为例”(201930);国家科技基础资源调查专项项目“中国海岛志编研”(2019FY202100)
详细信息
    作者简介:

    贾贤明(1998—),男,硕士研究生,主要从事海洋沉积学研究,E-mail:18255373916@163.com

    通讯作者:

    陈坚(1971—),男,博士,正高级工程师,主要从事海洋沉积学与沉积动力学研究,E-mail:chenjian@tio.org.cn

  • 中图分类号: P736

On the composition of rare earth elements of suspended substance in lower reach of the Yangtze River and main rivers in Zhejiang Province in dry season

  • 摘要:

    基于2021年 10月至11月在长江下游及钱塘江、椒江和瓯江等浙江主要河流枯水期采集的64个悬浮物样品,分析研究了其粒度分布和稀土元素(REE)组成,讨论了各河悬浮物REE组成差异以及物源端元特征。结果显示,枯水期长江下游、钱塘江、椒江和瓯江悬浮物REE含量均值分别为209.52、173.64、211.86和228.70 mg/kg;北美页岩(NASC)标准化配分曲线明显向右倾,并有明显的Ce负异常特征。与前人所测数据相比,钱塘江和瓯江悬浮物REE含量明显较高;长江悬浮物REE和前人长江悬浮物/沉积物表现总体一致。从(La/Yb)NASC—(La/Gd)NASC图看,长江、钱塘江、椒江、瓯江之间有一定差别,可成为它们物源端元的判别指标;相对于历史沉积物数据,长江悬浮物REE比值分布范围较为集中,以悬浮物为对象研究河流物源端元比沉积物有更好的效果。

    Abstract:

    Sixty-four samples of suspended substance were collected in October–November, 2021 from the lower reaches of Yangtze River and major rivers in Zhejiang Province in dry season, from which the differences of distribution characteristics of rare earth elements (REEs) and provenance indication of the suspended substance were discussed. Results show that the average REE contents in the suspended substance from the lower reaches of the Yangtze River, Qiantang River, Jiaojiang River, and Oujiang River in dry season were about 209.52, 173.64, 211.86, and 228.70 mg/kg, respectively, and the contents of REEs of the Qiantang River and the Oujiang River were obviously higher than previous data. The normalized partition curve against the value of North American Shale Composition (NASC) was gentle in general and slightly incline to the right, with obvious MREE enrichment, which is consistent in overall with the previous studies of the Yangtze River and major rivers in Zhejiang Province. The diagrams of (La/Yb)NASC vs (La/G)NASC, the index of (La/Yb)NASC, and (La/Gd)NASC were used to distinguish provenance of the Yangtze River from rivers in Zhejiang Province. The distribution scope of (La/Yb)NASC and (La/Gd)NASC of suspended substance of this study is more concentrated than those of the historical data, which mean that suspended substance could be used for river provenance study.

  • 图  1   研究区和悬浮物样品采样位置示意图

    Figure  1.   Schematic diagram of the study area and sampling locations

    图  2   研究区河流悬浮物粒度组成三角图

    Figure  2.   Particle size composition of suspended sediments of the study rivers

    图  3   研究区河流悬浮物稀土元素特征参数

    Figure  3.   Characteristic parameters of REE of suspended sediments in the study rivers

    图  4   研究河流悬浮物稀土元素配分模式

    Figure  4.   Chondrite-normalized patterns of rare earth elements in suspended sediments of the study rivers

    图  5   长江悬浮体REE标准化配分模式与前人研究对比

    数据来源:长江下游(南京-崇明岛)、长江下游(大通、徐六泾)、长江下游(江苏-崇明岛)和长江中下游(武汉-上海)数据分别来自文献[13,15,17,47],长江下游0404、长江下游0507、长江下游0707数据来自文献[35];湘江和赣江沉积物数据来自文献[21,48]。

    Figure  5.   NASC-normalized REE patterns of suspended substance of Changjiang River and the comparison to those from previous studies

    Data source: data of the lower reaches of Changjiang River: Datong, Xuliujing, Nanjing-Chongming Island, Jiangsu-Chongming Island, and the mid-lower reaches of Changjiang River: Wuhan-Shanghai are from references [13,15,17,47]. Data of the lower reaches of Changjiang River: 0404, 0507, 0707 are from reference [35]. Data of the Xiangjiang River and the Ganjiang River are from references [21,48].

    图  6   浙江河流悬浮体REE配分模式与前人研究对比

    数据来源:钱塘江-A和瓯江-A悬浮物数据来自文献[34],瓯江-B沉积物数据来自文献[45],钱塘江-C和瓯江-C沉积物数据来自文献[49]。

    Figure  6.   Comparison of NASC-normalized patterns of REE in this study and previous studies

    Data source: data of the Qiantangjiang-A and Oujiang-A are from reference [34]; Data of the Oujiang-B are from reference [45]; Data of Qiantangjiang-C and Oujiang-C are from reference [49].

    图  7   长江与浙江河流悬浮体REE配分模式比较

    Figure  7.   Comparison of NASC-normalized patterns of REE between the Changjiang River and main rivers in Zhejiang Province

    图  8   NASC标准化典型元素比值图

    数据来源:UCC数据来自文献[38],长江下游(南京-崇明岛)、长江下游(大通、徐六泾)、长江下游(江苏-崇明岛)和长江中下游(武汉-上海)数据分别来自文献[13, 15,17,47],长江下游0404、长江下游0507、长江下游0707数据来自文献[35];湘江悬浮物数据来自文献[50],湘江和赣江沉积物数据来自文献[21,48]。

    Figure  8.   The NASC-normalized typical parameters of REEs

    Data sources: UCC data are from reference [38]; the lower reaches of Changjiang River: Datong, Xuliujing, Nanjing-Chongming, and Jiangsu–Chongming Island; and the mid-lower reaches of Changjiang River: Wuhan–Shanghai are from references [13, 15,17,47]; lower reached of Changjiang River: 0404, 0507, 0707 are from reference [35]; suspended substance of the Xiangjiang River are from reference [50]; sediments of Xiangjiang River and Ganjiang River are from references [21,48].

    表  1   长江和浙江主要河流基本水文特征[27-28]

    Table  1   Hydrological parameters of the Yangtze and main rivers in Zhejiang Province

    河流 河口位置 长度/km 流域面积
    /103km2
    径流量
    /(km3/a)
    输沙量
    /(Mt/a)
    长江 东海 6300 1705.4 898.3 35100
    钱塘江 杭州湾 688 24.3 21.8 275
    椒江 台州湾 206 5.71 6.7 840
    瓯江 温州湾 388 18.0 14.4 232
    下载: 导出CSV

    表  2   标样(GBW 07316)测试值与推荐值的偏差

    Table  2   Deviation between test value and recommended value of the reference (GBW 07316) %

    标样 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
    A −4.36 −2.73 −3.71 −4.66 −3.26 12.11 4.10 0.90 7.10 −2.45 6.16 −6.58 5.83 −7.88
    B −2.54 −0.03 −0.14 −2.94 −0.94 14.33 4.80 1.26 6.75 −1.52 7.70 −6.46 8.36 −5.80
    C 0.29 0.01 0.93 −4.57 −2.31 14.27 9.77 7.02 3.70 −5.48 3.04 −11.09 −3.26 −7.35
    下载: 导出CSV

    表  3   研究区悬浮物粒径特征

    Table  3   Particle size characteristics of suspended matter in the study rivers

    河流 中值粒径/ϕ 分选系数
    平均值
    偏态
    平均值
    峰态
    平均值
    平均值 最大值 最小值
    长江 6.00 7.65 2.95 2.10 0.51 2.58
    钱塘江 5.85 7.83 2.29 2.18 0.48 2.58
    椒江 7.13 7.98 5.85 1.52 0.65 3.05
    瓯江 7.35 7.84 6.64 1.40 0.56 2.92
    下载: 导出CSV

    表  4   研究区河流悬浮物稀土元素主要参数特征

    Table  4   Main characteristics of REE of suspended substance in study rivers

    河流 指标 ∑REE/(mg/kg) LREE/(mg/kg) HREE/(mg/kg) LREE/HREE (La/Yb)N (La/Gd)N δCe δEu
    长江 平均值 209.52 193.71 15.81 12.33 1.10 0.82 0.94 0.6
    标准偏差 19.22 17.74 2.22 0.91 0.05 0.04 0.08 0.02
    变化系数/% 9.17 9.16 14.07 7.35 2.76 4.31 8.34 2.79
    钱塘江 平均值 173.64 159.23 14.36 11.09 0.98 0.74 1 0.59
    标准偏差 15.59 14.32 1.31 0.33 0.05 0.01 0.04 0.02
    变化系数/% 8.98 8.99 9.15 2.94 5.43 1.42 4.47 2.61
    椒江 平均值 211.86 195.94 15.93 12.3 0.07 0.81 1.01 0.56
    标准偏差 12.14 11.39 0.81 0.27 0.42 0.05 0.04 0.01
    变化系数/% 5.73 5.81 5.08 2.17 4.99 6.48 3.77 2.14
    瓯江 平均值 228.7 220.23 17.47 12.59 1.13 0.82 1.05 0.53
    标准偏差 27.05 25.3 1.76 0.21 0.03 0.01 0.02 0.02
    变化系数/% 11.38 11.49 10.07 1.7 2.98 1.35 2.1 3.57
    下载: 导出CSV

    表  5   长江各数据集稀土元素分布指数

    Table  5   Distribution range of REE in different data sets of the Yangtze River

    数据集 分布指数 站位数
    悬浮物-本研究 0.050 39
    悬浮物-0404 0.271 17
    悬浮物-0507 0.104 24
    悬浮物-0707 0.234 25
    湘江沉积物 0.503 16
    沉积物(武汉-上海) 0.308 13
    沉积物(崇明岛-江苏) 0.104 10
    沉积物(大通、徐六泾) 0.018 6
    注:分布指数 = (La/Gd)NASC分布范围 × (La/Yb)NASC分布范围。数据来源同图8
    下载: 导出CSV
  • [1]

    Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1):1-21. doi: 10.1086/628741

    [2]

    Walling D E, Fang D. Recent trends in the suspended sediment loads of the world's rivers[J]. Global and Planetary Change, 2003, 39(1-2):111-126. doi: 10.1016/S0921-8181(03)00020-1

    [3]

    Syvitski J P M, Kettner A. Sediment flux and the Anthropocene[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1938):957-975. doi: 10.1098/rsta.2010.0329

    [4]

    Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359(6391):117-122. doi: 10.1038/359117a0

    [5]

    Galy V, France-Lanord C, Beyssac O, et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system[J]. Nature, 2007, 450(7168):407-410. doi: 10.1038/nature06273

    [6]

    Chakrapani G J, Saini R K, Yadav S K. Chemical weathering rates in the Alaknanda–Bhagirathi River basins in Himalayas, India[J]. Journal of Asian Earth Sciences, 2009, 34(3):347-362. doi: 10.1016/j.jseaes.2008.06.002

    [7]

    Liu S F, Mi B B, Fang X S, et al. A preliminary study of a sediment core drilled from the mud area on the inner shelf of the East China Sea: Implications for paleoclimatic changes during the fast transgression period (13-8 kaBP)[J]. Quaternary International, 2017, 441: 35-50.

    [8]

    Liu X T, Li A C, Dong J, et al. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea: Implications for the development of the mud depocenter[J]. Journal of Asian Earth Sciences, 2018, 151:1-15. doi: 10.1016/j.jseaes.2017.10.017

    [9] 张宏飞, 高山. 地球化学[M]. 北京: 地质出版社, 2012: 1-410

    ZHANG Hongfei, GAO Shan. Geochemistry[M]. Beijing: Geology Press, 2012: 1-410.]

    [10]

    Yang B Y, Hu B, Bao Z Y, et al. REE geochemical characteristics and depositional environment of the black shale-hosted Baiguoyuan Ag-V deposit in Xingshan, Hubei Province, China[J]. Journal of Rare Earths, 2011, 29(5):499-506. doi: 10.1016/S1002-0721(10)60488-7

    [11] 杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2):164-167 doi: 10.3321/j.issn:1001-8166.1999.02.010

    YANG Shouye, LI Congxian. Research progress in REE tracer for sediment source[J]. Advances in Earth Science, 1999, 14(2):164-167.] doi: 10.3321/j.issn:1001-8166.1999.02.010

    [12]

    Yang S Y, Jung H S, Choi M S, et al. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments[J]. Earth and Planetary Science Letters, 2002, 201(2):407-419. doi: 10.1016/S0012-821X(02)00715-X

    [13] 杨守业, 李从先, Lee C B, 等. 黄海周边河流的稀土元素地球化学及沉积物物源示踪[J]. 科学通报, 2003, 48(11): 1233-1236

    YANG S Y, LI C X, Lee C B, et al. REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators[J]. Chinese Science Bulletin, 2003, 48(11): 1135-1139.]

    [14] 杨守业, 李从先. 长江与黄河沉积物元素组成及地质背景[J]. 海洋地质与第四纪地质, 1999, 19(2):19-26

    YANG Shouye, LI Congxian. Characteristic element compositions of the Yangtze and the yellow river sediments and their geological background[J]. Marine Geology & Quaternary Geology, 1999, 19(2):19-26.]

    [15]

    Zhou X J, Li A C, Jiang F Q, et al. A preliminary study on fingerprinting approach in marine sediment dynamics with the rare earth elements[J]. Acta Oceanologica Sinica, 2010, 29(4):62-77. doi: 10.1007/s13131-010-0051-x

    [16] 乔淑卿, 杨作升. 长江和黄河入海沉积物不同粒级组分中稀土元素的比较[J]. 海洋地质与第四纪地质, 2007, 27(6):9-16

    QIAO Shuqing, YANG Zuosheng. Comparison of rare earth element compositions in different grain-size fractions of sediments from the Yangtze and yellow rivers and the sea[J]. Marine Geology & Quaternary Geology, 2007, 27(6):9-16.]

    [17]

    Wu W H, Zheng H B, Xu S J, et al. Trace element geochemistry of riverbed and suspended sediments in the upper Yangtze River[J]. Journal of Geochemical Exploration, 2013, 124:67-78. doi: 10.1016/j.gexplo.2012.08.005

    [18] 杨守业, 王中波. 长江主要支流与干流沉积物的REE组成[J]. 矿物岩石地球化学通报, 2011, 30(1):31-39 doi: 10.3969/j.issn.1007-2802.2011.01.005

    YANG Shouye, WANG Zhongbo. Rare Earth element compositions of the sediments from the major tributaries and the main stream of the Changjiang River[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1):31-39.] doi: 10.3969/j.issn.1007-2802.2011.01.005

    [19] 杨守业, 韦刚健, 夏小平, 等. 长江口晚新生代沉积物的物源研究: REE和Nd同位素制约[J]. 第四纪研究, 2007, 27(3):339-346 doi: 10.3321/j.issn:1001-7410.2007.03.005

    YANG Shouye, WEI Gangjian, XIA Xiaoping, et al. Provenance study of the late Cenozoic sediments in the Changjiang Delta: REE and Nd isotopic constraints[J]. Quaternary Sciences, 2007, 27(3):339-346.] doi: 10.3321/j.issn:1001-7410.2007.03.005

    [20]

    Mao L J, Mo D W, Yang J H, et al. Rare earth elements geochemistry in surface floodplain sediments from the Xiangjiang River, middle reach of Changjiang River, China[J]. Quaternary International, 2014, 336:80-88. doi: 10.1016/j.quaint.2014.01.052

    [21]

    Nilsson C, Reidy C A, Dynesius M, et al. Fragmentation and flow regulation of the world's large river systems[J]. Science, 2005, 308(5720):405-408. doi: 10.1126/science.1107887

    [22]

    Wang S, Rao W B, Qian J, et al. Sr-Nd isotope and REE compositions of surface sediments from the three Gorges Reservoir: Implications for source identification and apportionment[J]. Journal of Hydrology, 2021, 598:126279. doi: 10.1016/j.jhydrol.2021.126279

    [23]

    Zhao Y F, Zou X Q, Gao J H, et al. Clay mineralogy and source-to-sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea[J]. Journal of Asian Earth Sciences, 2018, 152:91-102. doi: 10.1016/j.jseaes.2017.11.038

    [24]

    McLennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1):169-200.

    [25]

    Cullers R L, Barrett T, Carlson R, et al. Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, U. S. A.[J]. Chemical Geology, 1987, 63(3-4):275-297. doi: 10.1016/0009-2541(87)90167-7

    [26] 郭晶晶, 夏学齐, 杨忠芳, 等. 长江流域典型区域土壤碳库变化及其影响因素[J]. 地学前缘, 2015, 22(6):241-250

    GUO Jingjing, XIA Xueqi, YANG Zhongfang, et al. Changes of soil carbon pool in typical areas of Changjiang drainage basin and its influencing factors[J]. Earth Science Frontiers, 2015, 22(6):241-250.]

    [27] 中华人民共和国水利部. 中国水文年报[M]. 北京: 中国水利水电出版社, 2022

    Ministry of Water Resources of the People's Republic of China. Annual Hydrological Report of China[M]. Beijing: China Water Conservancy and Hydropower Press, 2022.]

    [28] 中华人民共和国水利部. 中国河流泥沙公报[M]. 北京: 中国水利水电出版社, 2021

    Ministry of Water Resources of the People's Republic of China. China River Sediment Bulletin[M]. Beijing: China Water Conservancy and Hydropower Press, 2021.]

    [29] 长江水利委员会. 长江流域地图集[M]. 北京: 中国地图出版社, 1999

    Yangtze River Water Resources Commission. Atlas of the Yangtze River Basin[M]. Beijing: China Map Press, 1999.]

    [30] 马丽芳. 中国地质图集[M]. 北京: 地质出版社, 2002

    MA Lifang. Geological Atlas of China[M]. Beijing: Geological Press, 2002.]

    [31] 浙江省地质矿产局. 浙江省区域地质志[M]. 北京: 地质出版社, 1989

    Zhejiang Bureau of Geology and Minerals. Regional Geological Records of Zhejiang Province[M]. Beijing: Geological Press, 1989.]

    [32]

    McManus J. Grain size determination and interpretation[M]//Tucker M E. Techniques in Sedimentology. Oxford: Wiley Blackwell, 1988.

    [33] 何荣. 从流域到东海近岸重金属输送的初步研究[D]. 华东师范大学硕士学位论文, 2011

    HE Rong. Preliminary study on the transport of heavy metals from river basin to the coastal shelf of East China Sea[D]. Master Dissertation of East China Normal University, 2011.]

    [34] 丁悌平, 高建飞, 石国钰, 等. 长江水中悬浮物含量与矿物和化学组成及其地质环境意义[J]. 地质学报, 2013, 87(5):634-660 doi: 10.3969/j.issn.0001-5717.2013.05.004

    DING Tiping, GAO Jianfei, SHI Guoyu, et al. The contents and mineral and chemical compositions of suspended particulate materials in the Yangtze river, and their geological and environmental implications[J]. Acta Geologica Sinica, 2013, 87(5):634-660.] doi: 10.3969/j.issn.0001-5717.2013.05.004

    [35]

    Goldstein S J, Jacobsen S B. Rare earth elements in river waters[J]. Earth and Planetary Science Letters, 1988, 89(1):35-47. doi: 10.1016/0012-821X(88)90031-3

    [36] 杨守业, 李从先. 长江与黄河沉积物REE地球化学及示踪作用[J]. 地球化学, 1999, 28(4):374-380 doi: 10.3321/j.issn:0379-1726.1999.04.008

    YANG Shouye, LI Congxian. REE geochemistry and tracing applicationin the Yangtze River and the Yellow River sediments[J]. Geochimica, 1999, 28(4):374-380.] doi: 10.3321/j.issn:0379-1726.1999.04.008

    [37]

    Taylor S R, McClennan S M. The Continental Crust: its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific Pub, 1985.

    [38] 高志友. 南海表层沉积物地球化学特征及物源指示[D]. 成都理工大学博士学位论文, 2005

    GAO Zhiyou. The geochemical characteristics and provenance of the surface sediment in south China sea[D]. Doctor Dissertation of Chengdu University of Technology, 2005.]

    [39]

    Caggianelli A, Fiore S, Mongelli G, et al. REE distribution in the clay fraction of pelites from the southern Apennines, Italy[J]. Chemical Geology, 1992, 99(4):253-263. doi: 10.1016/0009-2541(92)90180-D

    [40]

    Henderson P. Rare Earth Element Geochemistry[M]. Amsterdam: Elsevier, 1984.

    [41] 沙旭光. 东海舟山群岛海域泥质沉积特征和物源分析[D]. 吉林大学硕士学位论文, 2006

    SHA Xuguang. Sedimentary characteristics and provenance of the mud sediments in the Zhoushan area of the East China Sea[D]. Master Dissertation of Jilin University, 2006.]

    [42] 毛龙江, 郭爱鹏, 杜吉净, 等. 湖南澧水下游表层沉积物稀土元素特征[J]. 地球科学与环境学报, 2019, 41(3):352-361 doi: 10.3969/j.issn.1672-6561.2019.03.009

    MAO Longjiang, GUO Aipeng, DU Jijing, et al. REE characteristics of the surface sediments in the lower reaches of Lishui river, Hunan, China[J]. Journal of Earth Sciences and Environment, 2019, 41(3):352-361.] doi: 10.3969/j.issn.1672-6561.2019.03.009

    [43] 李波, 孙桂华, 钟和贤, 等. 福建近岸海域表层沉积物稀土元素地球化学特征及其物源指示意义[J]. 海洋地质前沿, 2017, 33(8):47-56

    LI Bo, SUN Guihua, ZHONG Hexian, et al. Rare earth element characteristics of surface sediments in the Fujian coastal area and their implications for provenance[J]. Marine Geology Frontiers, 2017, 33(8):47-56.]

    [44] 宁泽, 韩宗珠, 毕世普, 等. 浙闽近岸海域表层沉积物稀土元素的物源指示[J]. 海洋地质前沿, 2018, 34(8):34-44

    NING Ze, HAN Zongzhu, BI Shipu, et al. Rare earth geochemistry of coastal surficial sediments off Zhejiang and Fujian provinces and its implications for provenance[J]. Marine Geology Frontiers, 2018, 34(8):34-44.]

    [45] 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007

    CHI Qinghua, YAN Mingcai. Handbook of Elemental Abundance for Applied Geochemistry[M]. Beijing: Geology Press, 2007.]

    [46] 宫传东, 戴慧敏, 杨作升, 等. 长江沉积物稀土元素的粒度效应研究[J]. 地质学刊, 2012, 36(4):349-354 doi: 10.3969/j.issn.1674-3636.2012.04.349

    GONG Chuandong, DAI Huimin, YANG Zuosheng, et al. Study of granularity effects of rare earth elements in the sediments of Yangtze River[J]. Journal of Geology, 2012, 36(4):349-354.] doi: 10.3969/j.issn.1674-3636.2012.04.349

    [47] 刘茂涵, 戴慧敏, 张卫民, 等. 鄱阳湖流域赣江北支水体和沉积物中稀土元素的含量和分异特征[J]. 现代地质, 2022, 36(2):389-405

    LIU Maohan, DAI Huimin, ZHANG Weimin, et al. REE Concentration and fractionation in waters and sediments from the northern Branch of Ganjiang river, Poyang lake catchment[J]. Geoscience, 2022, 36(2):389-405.]

    [48]

    Jiang F Q, Zhou X J, Li A C, et al. Quantitatively distinguishing sediments from the Yangtze River and the Yellow River using δEuN-ΣREEs plot[J]. Science in China Series D: Earth Sciences, 2009, 52(2):232-241. doi: 10.1007/s11430-009-0018-y

    [49] 龚玲兰, 奚小双, 孔华, 等. 湘江悬浮物的稀土元素地球化学研究[J]. 沉积学报, 2009, 27(3):529-536

    GONG Linglan, XI Xiaoshuang, KONG Hua, et al. Geochemistry of rare earth elements in the suspended particulate matters of Xiangjiang river[J]. Acta Sedimentologica Sinica, 2009, 27(3):529-536.]

    [50] 陈道公, 支霞臣, 杨海涛. 地球化学[M]. 合肥: 中国科学技术大学出版社, 2018: 207

    CHEN Daogong, ZHI Xiachen, YANG Haitao. Geochemistry[M]. Hefei: University of Science and Technology of China Press, 2018: 207.]

图(8)  /  表(5)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  0
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-28
  • 修回日期:  2023-09-18
  • 刊出日期:  2024-08-25

目录

    /

    返回文章
    返回