海底反风化作用与关键元素循环

杨守业, 贾琦, 许心宁, 武雪超, 连尔刚

杨守业,贾琦,许心宁,等. 海底反风化作用与关键元素循环[J]. 海洋地质与第四纪地质,2023,43(3): 26-34. DOI: 10.16562/j.cnki.0256-1492.2023052901
引用本文: 杨守业,贾琦,许心宁,等. 海底反风化作用与关键元素循环[J]. 海洋地质与第四纪地质,2023,43(3): 26-34. DOI: 10.16562/j.cnki.0256-1492.2023052901
YANG Shouye,JIA Qi,XU Xinning,et al. Submarine reverse weathering and its effect on oceanic elements cycling[J]. Marine Geology & Quaternary Geology,2023,43(3):26-34. DOI: 10.16562/j.cnki.0256-1492.2023052901
Citation: YANG Shouye,JIA Qi,XU Xinning,et al. Submarine reverse weathering and its effect on oceanic elements cycling[J]. Marine Geology & Quaternary Geology,2023,43(3):26-34. DOI: 10.16562/j.cnki.0256-1492.2023052901

海底反风化作用与关键元素循环

基金项目: 国家自然科学基金“长江口—东海陆架—冲绳海槽断面的反风化作用与关键元素循环”(42230410)
详细信息
    作者简介:

    杨守业(1971—),男,博士,教授,从事大陆边缘沉积与环境研究,E-mail:syyang@tongji.edu.cn

  • 中图分类号: P736

Submarine reverse weathering and its effect on oceanic elements cycling

  • 摘要: 海洋环境中的反风化作用是指硅与可溶性阳离子结合形成自生铝硅酸盐矿物(黏土),同时消耗海洋碱度并释放CO2的过程。反风化假说提出半个多世纪以来,作为全球海洋碳、硅和关键元素循环以及海洋碱度的重要调控机制,越来越受到学术界的关注。反风化作用可发生在河口三角洲与边缘海、热液或深埋藏的成岩环境以及深海远洋等环境,但不同海洋环境中的反风化反应从发生时间尺度到反应限制因素都具有差异。反风化作用研究的主要方法包括自生硅酸盐矿物的直接观测、孔隙水与沉积物的化学分析、实验模拟和模型研究等,而反风化作用的程度量化、限制因子解析和对海洋关键元素循环的影响一直是反风化研究的关键问题。当前快速发展的非传统稳定(金属)同位素技术为反风化研究带来了新机遇。东亚大陆边缘发育世界特大河口三角洲、宽广陆架以及特色热液活动区,泥质沉积体系发育,界面交换活跃,是开展大陆边缘反风化研究的天然实验室。
    Abstract: Reverse weathering in the marine environment refers to the process in which silicon reacts with soluble cations to form authigenic aluminosilicate minerals (clays), while consuming ocean alkalinity and releasing CO2. The reverse weathering hypothesis was proposed in 1966 and has attracted rapidly increasing research attention over the last two decades. It has been regarded as an important mechanism regulating global carbon, oceanic silicon and key element cycles, and ocean alkalinity. Reverse weathering can occur in various marine environments including estuarine deltas and marginal seas, hydrothermal or deeply buried diagenetic environments, and deep oceans. The reaction timescales of reverse weathering vary widely, ranging from days to millions of years, and the controlling factors of the reactions are also significantly different in different marine environments. The major research methods of reverse weathering include direct observation of authigenic silicate minerals, chemical analysis of pore water and sediments, and experimental simulation and modelling, etc. The quantification of the degree of reverse weathering, the determination of limiting factors, and evaluation of its influence on the key element cycling have always been the key issues in the research of reverse weathering. The rapid development of non-traditional stable (metal) isotopes may allow us to better constrain the reverse weathering research. The East Asian continental margin is featured by the world's largest river delta, wide continental shelf, and characteristic hydrothermal activity, whose unique muddy sedimentary systems and active interface reactions and processes make the continental margin a natural laboratory for the integrated study of reverse weathering.
  • 反风化(reverse weathering,又称逆风化)顾名思义指逆向的化学风化作用,通常是指在海洋环境中硅(主要是生物硅)与可溶性阳离子(Fe2+、Mg2+、Li+等)发生反应,以沉淀或重组等方式形成新的自生铝硅酸盐矿物的过程,同时伴随着海洋碱度的消耗和CO2的释放(图1[1-2]。虽然反风化也可以发生在湖泊环境中[3-4],但主要指海洋环境(尤其是河口、陆架边缘海)自生黏土矿物的形成过程,而海洋自生的非铝硅酸盐矿物、海底玄武岩蚀变形成的黏土(类似大陆硅酸盐风化)和热液蚀变成因黏土均不属于经典定义的反风化作用,也不是本文介绍的重点。

    图  1  反风化反应示意图[1]
    Figure  1.  Simplified model of reverse weathering [1]

    反风化作用概念的起源可追溯到近一百年前。1933年,现代地球化学之父Victor M Goldschmidt 首次提出一种“单向反应式”,来解释海水、沉积物和大气的物质组成是如何受控于火成岩和挥发分的相互作用[5]。海洋学研究的新纪元便由此开启,早期学者一直致力于探究海洋化学组成的控制因素以及尝试建立其地球化学平衡[1,6-8]。其中,Sillén[7]根据海洋平衡模型理论认为,除碳酸盐缓冲体系外,硅酸盐矿物与海水间的双向反应对调控海水的酸碱度和主要阳离子浓度也很重要;这一观点在挑战了当时传统科学认知而引发争议的同时,也为后续研究提供了新思路。1966年,MacKenzie和Garrels[1]在延续海洋稳态模型的假设前提下,为尝试解决河流输入—海洋输出过程中存在的元素和碳酸氢根(HCO3)质量不平衡问题,正式提出了反风化概念(假说)并强调它可作为海洋中一些阳离子去除的关键机制。这是因为在未发现反风化作用前,通过海洋化学质量平衡模型所预测的碱金属和HCO3浓度要高于所观察到的浓度。然而,由于当时缺乏反风化作用存在的直接证据,以及20世纪70年代初海底热液活动的发现[9-11],反风化假说在海洋水化学组成和元素“源—汇”过程研究中,一直未受到特别关注。直到该假说被提出近三十年后,Michalopoulos和Aller[12]以亚马孙河口为突破点开展了细致的反风化观测研究,不仅证实了该过程可以在河口陆架海区高度活跃的沉积体系下快速发生,也初步阐明了其作为海洋元素循环“汇”的角色与潜力。此后,随着学术界对全球海洋(特别是大陆边缘源汇关键过程和元素循环)研究的持续关注和深入,以及非传统稳定同位素技术的快速发展,反风化假说才得以被重视而重返科学界的舞台,且越来越受到研究关注,相关成果被相继发表在Nature和Science等顶级期刊[2,13-19]图2)。

    图  2  反风化研究历史和相关成果示意图
    数据来源于Web of Science。
    Figure  2.  Schematic diagram of the history of reverse weathering research and the achievements
    Database from Web of Science.

    认识地球碳循环过程是理解地球气候稳定性及地球宜居性的基础。地球表生碳汇主要为大陆与海底硅酸盐风化和现代有机碳埋藏;碳源包括火山-变质排气作用、硫化物氧化伴随的碳酸盐风化、岩石有机碳氧化以及河口-海区的反风化作用[17,20]。早期的地球海水富Si,大气CO2含量低,海水pH高,硅酸盐的饱和程度高,有利于反风化过程和自生硅酸盐矿物的形成,从而加速释放CO2来弥补大气碳库,该机制被认为是地球早期重要的地质恒温器[17];此外,反风化作用在释放CO2的同时也会消耗海水中的碱度、硅以及部分金属元素等,使它们能够在海洋沉积物中长久埋藏[21-22]。可以说,反风化作用既是表生过程中重要的“碳源”,也是部分元素(如Si、Fe、Mg、Li、Be等)重要的“沉积汇”,其在地球碳循环以及海洋元素生物地球化学循环中都起到了至关重要的作用。海水常量离子的浓度及比值变化能够反映海洋与陆、地之间源—汇过程的演变[23],因此,通过示踪海洋关键元素的循环及演化可以为研究关键地质时期全球海陆环境变化提供重要线索。纵观过去二十年,反风化作用的相关研究(图2)及其对全球Si-C-Fe循环和海洋碱度的调控机制也已成为全球物质循环及气候变化的研究前沿[15-18,24-27]

    海洋沉积环境中尤其是大陆边缘地区受富含陆源碎屑黏土稀释影响极为显著,海底反风化自生黏土矿物一般结晶较差或为无定形碎屑等化学相变,因此很难对反风化作用进行直接观测研究,这在相当长时期制约了反风化研究的深入。总结来看,目前国际上反风化研究的主要手段包括:自生硅酸盐矿物的直接观测、孔隙水与沉积物的化学分析、实验模拟和模型研究等。

    (1)直接观测法主要运用显微镜、扫描电镜和透射电镜等系统研究自生黏土矿物的形貌和成因[2,12-14,28]。例如,近海悬浮物中活体硅藻经物理纯化后的微观形态分析推测,颗粒中已经形成了自生蒙脱石矿物[29]。经典的研究是亚马孙河口陆架沉积物的混合培养实验,发现石英颗粒之间生成了富含阳离子的铝硅酸盐矿物,表层的氧化铁覆膜也转化成含铝硅铁的混合物,玻璃颗粒则发生了明显的溶解,表明低温海洋环境中自生铝硅酸盐矿物能够在硅藻或其他来源活性硅底物上较快速的生长(0.1~2 年)[12-14]

    (2)定量分析反风化作用的程度及其对海洋中不同元素的消耗速率则需要结合孔隙水、沉积物中元素和同位素组成的变化信息。例如,孔隙水数据表明,亚马孙河富含Fe2+、Mg2+、K+和Al3+等离子,其河口地区的自生黏土矿物通常在短时间尺度内就可以形成,大约90%的埋藏SiO2在此过程中会被消耗掉;而密西西比三角洲,约有40%的SiO2被转化为了自生黏土[14]。另外,沉积物中Fe组分和相态研究也有助于指示反风化作用发生的程度,尤其是制约含铁自生黏土矿物(如海绿石)的形成。一般而言,含铁自生黏土矿物同时具有Fe2+和Fe3+成分,反映黏土矿物形成于动态氧化还原环境,这避免了Fe在高度氧化或硫化环境快速形成Fe氧化物或硫化物。Baldermann等[30]对深海ODP 959站位沉积物开展Fe相态分析发现,Fe在黏土矿物相对硫化物中的分配随着深度增加而减少,证实浅层低氧、缺H2S环境更有利于自生黏土矿物的形成。另外,在秘鲁大陆边缘和纳比米亚大陆边缘沉积物中均有发现异常高的Fe含量(高Fe/Al比值),并且与沉积物K含量呈显著的正相关关系,从而指示了大陆边缘沉积环境中自生含铁黏土矿物的形成[31-32]

    自2000年以来,多接收等离子体质谱分析技术的发展使得我们可以开展高精度的稳定同位素分析。目前,硅酸盐合成实验以及针对风化剖面和海洋沉积物钻孔开展的Li-Si-Mg-K等稳定同位素研究充分揭示了硅酸盐矿物形成和分解过程中地球化学行为及变化,奠定了稳定同位素地球化学方法在反风化研究中的基础。例如,Ehlert等[33]利用海洋孔隙水的稳定Si同位素特征指示秘鲁上升流区蛋白石溶解与自生黏土矿物形成;浮游有孔虫记录的Li同位素组成变化已被用于推断新生代大陆硅酸盐风化和反风化速率[15];Li同位素指标证实了成冰纪末期反风化作用增强,是大气CO2浓度上升的重要影响之一,并最终促进了融冰过程[34];自生黏土形成过程中海水中39K会优先进入黏土矿物晶格中,使得海水相对富集41K[35];海洋沉积物Mg同位素研究证实新生代以来生物活动硅埋藏减少导致了海洋自生黏土矿物减少,并提出这一变化是海水Mg/Ca比值增加及全球变冷的诱因[16];西班牙Ainsa盆地40 Ma前的三角洲复合体的Si-Li-Nd同位素证据表明,自生黏土矿物可以很好地记录海底反风化作用所引起的同位素分馏效应[19]

    除上述研究手段外,反应传输模型(Reactive transport models, RTMs)的应用对于定量刻画反应程度和自生黏土矿物的形成也能够起到很好约束作用[36]。相较于经典早期成岩过程模拟研究,反风化的模拟研究仅在近十几年才引起广泛关注,主要聚焦在地球早期(前寒武纪之前)海水组成和气候演化研究[24,34]以及近现代沉积过程的海底反风化作用[33,37-39]。通过孔隙水中溶解Mg和总碱度的观测及成岩作用模拟研究,Wallmann等[37]认为海底反风化位于甲烷还原带之上。Ehlert等[33]用RTMs模型定量解释了秘鲁岸外上升流区孔隙水Si同位素的负偏变化,认为约24%的生物硅通过反风化转变为自生黏土。利用相同的模型,Geilert等[38]模拟了全球海洋深水盆地、热液区和最小含氧带的孔隙水Si同位素组成,证实了孔隙水Si同位素主要受生物硅溶解和自生黏土形成的控制。最近,Torres等[39]通过模型对海底反风化释放的CO2量和对碱度平衡的作用进行了定量估算。

    作为调控地球碳循环和海洋元素循环的潜在重要机制,反风化作用虽然已经提出有半个世纪之久,但现阶段研究程度仍旧较低,这主要受限于海区自生黏土矿物受陆源输入黏土的稀释影响较大而难以直接纯化提取及量化,从而限制了对反风化形成的自生黏土类型等矿物学、微观地球化学特征的综合研究,这也是可靠区分陆地风化入海的碎屑黏土和海底反风化作用形成的自生黏土的关键;另外,目前还没有开展冰期旋回过程中海底反风化作用特征及其对大气CO2调控的系统研究,反风化对海洋关键元素生物地球化学循环的影响也未形成统一的认识。厘清这些问题,就需要研究者统筹结合“矿物—地化—模型”多维度的反风化研究方法,对可能蕴含潜在反风化信号的全球不同沉积环境中的代表性样品开展更多的实例研究。

    近半个世纪的研究表明,反风化可发生在不同的海洋环境中(图3),包括河口三角洲与边缘海[12-14,26,40]、热液或深埋藏的成岩环境[41-43],以及深海远洋[16,30,35,44-45]。然而,不同的海洋环境中反风化作用迥然相异,时间尺度涵盖数天至数百万年[12,28,30],反风化反应的限制因素也各不相同。

    图  3  全球反风化研究典型区域与案例
    圆圈代表河口-陆架沉积环境;正方形代表ODP和IODP钻孔材料;三角形代表海底热液或者热液影响环境;菱形代表远洋深海环境;星形代表地层记录;十字形代表红树林湿地环境。数据主要汇总自本文参考文献。
    Figure  3.  Typical study regions and cases of global reverse weathering
    The circles represent estuarine-shelf sedimentary environment; the squares represent ODP and IODP cores; the triangles represent submarine hydrothermal environment and the areas influenced by hydrothermal activities; the diamonds represent the pelagic environment; the stars represent stratigraphic records. These data are summarized from references listed at the end of this paper.

    经典研究认为,反风化过程的发生一般需要丰富的活性Fe、Al、Si(“无定型铝硅酸盐”)和有机碳供应、高的有机碳再矿化速率、碱和碱土金属离子(如Ca2+、Mg2+、K+等)及富 Fe2+的相对贫氧环境等。因此,从反应组份和反应动力学角度看,反风化的限制因子包括:大陆风化物质输入量[34,46]、微生物活性及活性硅的供给[14,16,24]、环境温度[47-48]和海底热液活动强度[49]等。例如,亚马孙河口三角洲陆源碎屑供应丰富,浮泥层中高有机质再矿化率贡献了充足的反风化所需阳离子(包括Al3+、K+、Fe2+等),主要限制因子是活性硅的供应;而密西西比河三角洲反风化主要限制因子则为活性Fe的供应[14]。最新的低温热液自生黏土矿物组合研究表明,成岩环境的Eh-pH条件以及Si和Fe的可用性是其形成的关键限制因子[43]。此外,该类型自生黏土矿物形成过程中可能也会受到与其共生的Fe氧化物的形态及温度等因素的影响,通常较高的温度和相对密集的Fe氧化物结构会起到促进作用[50]

    海底自生黏土矿物形成过程如何影响现代和古代海洋的关键元素(如Li、Si、Mg、K等)循环一直是近年来反风化研究的热点问题。现代海洋中Li含量约为3.6×1016 mol,河流和洋中脊高温热液输入是海洋Li的主要输入端元,年输入通量分别约为(3~14)×109 mol/a和(5~27)×109 mol/a,为维持海洋Li循环的稳定,需要输出端元来平衡Li的大量输入。Stoffyn-Egli和 Mackenzie[51]早期发现低温玄武岩蚀变过程不足以平衡入海Li通量,首次提出反风化作用可能是海水Li输出的重要端元。现代海水Li同位素组成为31‰,远高于河流输入水体的约23‰和热液端元的6‰~8‰,这也要求输出端元倾向于富集6Li [52-53]。现代大洋钻探计划研究表明,随着孔隙水Li含量下降,Li同位素值会相应升高,且6Li优先进入反风化形成的自生矿物[54-55];现代大洋自生黏土形成过程中Li输出通量约为12×109 mol/a[56],与入海Li通量在同一数量级上,表明反风化作用对维持海洋Li循环以及维系现代海水较高的Li同位素组成都发挥了重要作用。然而目前仍缺乏对大陆边缘反风化作用Li输出通量的估算,该部分Li通量的变化被认为在新生代以来海水Li同位素值上升过程中发挥了重要作用[46]。此外,热液流体中的Li含量比海水的含量高约两个数量级,是热液产物中Li的主要来源[57]。与陆地风化过程类似,热液蚀变黏土矿物和自生黏土矿物也富集较轻的Li同位素,热液流体富集较重的Li同位素,但两者δ7Li值的变化范围均较大(前者:−10‰~ +10%,后者:+1‰~ +13‰)。低温热液Li循环过程和主要的控制因素仍存在很大争议,可能与基岩类型、反应温度、水-岩比例等因素有关[58-59]

    现代海洋Si总输入约为14.8 Tmol/a,其中河流输入约为8.1 Tmol/a;总输出约为15.6 Tmol/a,主要包括开阔大洋生物硅的埋藏和大陆边缘的反风化作用[60]。作为反风化自生黏土形成的最重要元素,生物硅在早期成岩中的改造(溶解、表面蚀变、沉淀等)可以部分或完全地转变为自生铝硅酸盐矿物[61]。大陆边缘一般具有高营养盐通量和高生产力,硅藻藻华发育,生物Si迅速埋藏;同时陆源风化物质丰富、较高的Al等阳离子浓度促进反风化和自生黏土矿物的沉淀。然而,大陆边缘的反风化作用对Si的输出通量存在诸多争议。DeMaster[62]首次估算反风化输出Si的通量约为0.03~0.6 Tmol/a;早期海洋Si稳态模型认为海洋生物硅的输出主要在开阔大洋,约为6.1 Tmol/a,并未考虑反风化的贡献[63];Pondaven等[64]和DeMaster[65]都认为南大洋生物硅埋藏速率的估值明显偏高,高估了约35%,而以前被忽视的大陆边缘环境反风化作用导致的Si埋藏可以与南大洋作用基本相当。随后的海洋Si稳态模型多次修正了反风化埋藏的Si 通量,约为1.0~1.5 Tmol/a[66-67]。宇宙成因 32Si估算结果表明全球约4.5~4.9 Tmol/a的Si以自生黏土矿物的形式埋藏在大陆边缘,可以解释全球Si收支不平衡[68-69]。此外,热液流体在海底深部与岩石发生水岩反应会带出大量SiO32-,其含量比海水高约2个数量级[57],这些溶解态的Si直接参与形成无定型的自生黏土矿物和Fe-Si氧化物等[50],但目前还缺乏量化研究。因此,反风化可能显著影响全球海洋Si循环,但目前尚无法准确估计大陆边缘和低温热液环境下反风化对海洋生物Si埋藏通量的贡献。

    大陆边缘属于全球海陆物质循环和源汇转换的关键区域,河口及内陆架区域界面过程和边界交换反应(Boundary Exchange)活跃,特别是在俯冲板块边缘热液活动频繁,极大地影响了海水的元素组成及循环[12,70-71]。而东亚大陆边缘作为典型的河控型大陆边缘,发育世界特大河口三角洲、宽广陆架以及特色热液活动区(如冲绳海槽),连接世界最大大陆和世界最大大洋;风化入海的陆源物质供应丰富,具有强烈的界面交换(咸-淡水、海水-海底孔隙水、海水-热液流体等),使其成为世界上物质交换最活跃的大陆边缘之一[72]。因此,是开展河控型大陆边缘沉积、环境演化、陆源沉积物源汇过程以及大陆边缘反风化研究的天然实验室。

    长江口及邻近陆架具有丰富的陆源风化碎屑(黏土矿物、铁和铝氧化物)和阳离子的输入、高生产力、季节性的底层水缺氧、厚达30 cm的移动泥以及强烈的有机碳再矿化过程等特征,被视为验证“反风化”假说的理想靶区[73-75]。据四十年前中美长江口航次的观测数据,Mackin和Aller[76]基于沉积物孔隙水中溶解Al-Si-H+的化学计量关系,推测出长江口反风化作用生成的自生铝硅酸盐矿物的平均组成为EX0.91Mg0.77Al5.0Si2.7O10(OH)8(EX为可交换的阳离子),含量约≤1%。显微镜直接观察结果表明,长江口-东海陆架现代沉积物和全新世钻孔沉积物中自生绿色黏土(海绿石和磁绿泥石)含量在 0.01%~1%,陆坡处受海底火山影响区可达5.4%[77]。Zhu等[78-79]先后对东海陆架沉积物的Fe相态分析研究揭示了长江口-东海陆架反风化过程可以形成富Fe黏土矿物。现场海水混合实验表明长江口悬浮颗粒上自生Fe氧化物和黏土约占0.02%~2.5%,并可见自生高岭石[80]。悬浮颗粒物中非晶质铁氧化物集合体主要依附在硅藻骨架上,并吸附少量Al、Na、Mg、Ca、K等元素[81-83],为反风化反应提供了很好的前置体。另外,Yao等[73]和Zhao等[74]发现长江口沉积物孔隙水K+、Ca2+和Mg2+离子浓度随溶解无机碳含量的增加而降低,推测与强烈的再矿化作用下反风化作用有关。沉积物中硅藻早期成岩蚀变指数估算表明,长江口活性硅含量为112 μmol/g,河口及东海内陆架活性硅的埋藏通量可达2.66×107 mol/a,占长江输入硅酸盐通量的 37%[84]。因此,长江口反风化作用去除的硅酸盐总量与亚马孙三角洲相近,并说明温带、亚热带河口活性硅埋藏可能被低估。总体而言,相比亚马孙[12-14]和密西西比河口三角洲[85]的大量反风化研究,长江口-东海陆架反风化的前期研究工作非常有限,对反风化程度存在不同认识,对制约反风化作用的主要因素、自生黏土矿物的特征以及对全球海洋关键元素循环的影响均缺乏研究。研究手段上,新兴非传统同位素(Li、Si、Be、Mg等)示踪手段还没在长江口-东海陆架的反风化研究中得到应用。

    冲绳海槽作为一个典型的大陆边缘弧后盆地,沉积了大量的陆源沉积物和生物碎屑,该类弧后盆地中发育着广泛的热液活动,水-沉积物交换反应强烈。弧后盆地热液系统约占全球海底热液系统的22%,其温度普遍低于洋中脊热液系统,并具有较低的pH和较高的HCO3-[86-87],这些特点将更有利于自生黏土矿物的形成。IODP 331航次研究发现,冲绳海槽的伊平屋热液区存在大量淡黄色的低温热液自生矿物,包括黏土矿物(如绿脱石)、Fe-Mn氧化物和氢氧化物,形成环境的温度为20~50 ℃[88],其中黏土矿物呈现丝状,并且结晶度较低。Masuda[50]认为这些自生黏土可能不完全是从热液和海水的混合水体中沉淀出来的,还有可能是后期成岩作用的结果。在热液喷口附近,Fe氢氧化物和SiO2常常与多金属沉积物共生。在热液过程和后期成岩作用下生成绿脱石。而在离热液喷口较远位置,生物硅可能替代了热液SiO2的作用,通过吸收热液弥散流中的Fe和多金属离子,形成自生黏土矿物。Ueshima和Tazaki[89]认为这些Fe-Si富集的氧化物和氢氧化物形成自生绿脱石的过程中可能还有Fe氧化菌等生物作用的参与。此外,一些自生的海绿石和绿鳞石等可以在细菌的体内形成,进一步支持了生物作用促进热液自生黏土形成的观点[90]。目前需要深化研究冲绳海槽低温热液形成自生黏土的过程和机制,以及富沉积物的弧后热液系统中自生黏土形成对全球海洋关键元素循环的贡献。

    反风化假说提出已逾半个世纪,且最近二十年又掀起新的研究热潮,但对其过程、机制和环境效应依然存有巨大争议或认识不清楚。我们建议聚焦目前国际上反风化作用、大陆边缘物质交换和海洋关键元素循环研究的关键问题,结合东亚大陆边缘的地质背景和环境特征,可以考虑将长江口-东海陆架-冲绳海槽作为一个典型研究断面(反风化体系),研究高通量、高浊度的河口和河控型陆架的反风化作用速率、程度和机制(主要限制因子),解析陆源碎屑供应丰富的弧后盆地低温热液反风化作用的主要产物和制约因素,评估大陆边缘不同时空尺度上的反风化作用过程、机制及反风化作用对全球海洋关键元素循环的贡献。这对深入理解全球海洋黏土矿物成因及其环境指示、碳-硅循环、大陆风化信号在海区的传递和改造、古海洋古环境指标重建等同样具有重要意义。

    致谢:特别感谢何起祥先生多年来对笔者从事大陆边缘沉积与环境演变研究的指点与帮助!感谢论文写作过程中苏妮、邓凯、胡忠亚、杨承帆、郭玉龙、李超、贺治伟、徐娟、陈东钰等参与讨论并提供建议。

  • 图  1   反风化反应示意图[1]

    Figure  1.   Simplified model of reverse weathering [1]

    图  2   反风化研究历史和相关成果示意图

    数据来源于Web of Science。

    Figure  2.   Schematic diagram of the history of reverse weathering research and the achievements

    Database from Web of Science.

    图  3   全球反风化研究典型区域与案例

    圆圈代表河口-陆架沉积环境;正方形代表ODP和IODP钻孔材料;三角形代表海底热液或者热液影响环境;菱形代表远洋深海环境;星形代表地层记录;十字形代表红树林湿地环境。数据主要汇总自本文参考文献。

    Figure  3.   Typical study regions and cases of global reverse weathering

    The circles represent estuarine-shelf sedimentary environment; the squares represent ODP and IODP cores; the triangles represent submarine hydrothermal environment and the areas influenced by hydrothermal activities; the diamonds represent the pelagic environment; the stars represent stratigraphic records. These data are summarized from references listed at the end of this paper.

  • [1]

    Mackenzie F T, Garrels R M. Chemical balance between rivers and oceans [J]. American Journal of Science, 1966, 264(7): 507-525. doi: 10.2475/ajs.264.7.507

    [2]

    Mackenzie F T, Kump L R. Reverse Weathering, Clay Mineral Formation, and Oceanic Element Cycles [J]. Science, 1995, 270(5236): 586-587. doi: 10.1126/science.270.5236.586

    [3]

    Ristvet B L. Reverse Weathering Reactions within Recent Nearshore Marine Sediments, Kaneohe Bay, Oahu[D]. Honolulu, University of Hawaii, 1978.

    [4]

    Von Damm K L, Edmond J M. Reverse weathering in the closed-basin lakes of the Ethiopian Rift [J]. American Journal of Science, 1984, 284: 835-862. doi: 10.2475/ajs.284.7.835

    [5]

    Goldschmidt V M. Grundlagen der quantitativen Geochemie. Fortschritte der Mineralogie, Kristallographie und Petrographie[J]. 1933, 17: 112-156.

    [6]

    Garrels R M. Silica: role in the buffering of natural waters [J]. Science, 1965, 148(3666): 69. doi: 10.1126/science.148.3666.69

    [7]

    Sillén L G. The physical chemistry of seawater[M]//Sears M. Oceanography. Washington: AAAS Publisher, 1961: 549-82.

    [8]

    Sillén L G. The ocean as a chemical system [J]. Science, 1967, 156(3779): 1189-1197. doi: 10.1126/science.156.3779.1189

    [9]

    Corliss J B, Dymond J, Gordon L, et al. Submarine thermal springs on the Galapagos Rift [J]. Science, 1979, 203(4385): 1073-1083. doi: 10.1126/science.203.4385.1073

    [10]

    Rona P A. New evidence for seabed resources from global tectonics [J]. Ocean Management, 1973, 1: 145-159. doi: 10.1016/0302-184X(73)90009-7

    [11]

    Scott R B, Rona P A, Mcgregor B A. The TAG hydrothermal field [J]. Nature, 1974, 251(5473): 301-302. doi: 10.1038/251301a0

    [12]

    Michalopoulos P, Aller R C. Rapid Clay Mineral Formation in Amazon Delta Sediments: Reverse Weathering and Oceanic Elemental Cycles [J]. Science, 1995, 270(5236): 614-617. doi: 10.1126/science.270.5236.614

    [13]

    Michalopoulos P, Aller R C. Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds [J]. Geology, 2000, 28(12): 1095-1098. doi: 10.1130/0091-7613(2000)28<1095:CODTCD>2.0.CO;2

    [14]

    Michalopoulos P, Aller R C. Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage [J]. Geochimica et Cosmochimica Acta, 2004, 68(5): 1061-1085. doi: 10.1016/j.gca.2003.07.018

    [15]

    Misra S, Froelich P N. Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering [J]. Science, 2012, 335(6070): 818-823. doi: 10.1126/science.1214697

    [16]

    Dunlea A G, Murray RW, Santiago Ramos D P, et al. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering [J]. Nature Communications, 2017, 8(1): 844. doi: 10.1038/s41467-017-00853-5

    [17]

    Isson T T, Planavsky N J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate [J]. Nature, 2018, 560(7719): 471-475. doi: 10.1038/s41586-018-0408-4

    [18]

    Isson T T, Planavsky N J, Coogan L A, et al. Evolution of the global carbon cycle and climate regulation on earth [J]. Global Biogeochemical Cycles, 2020, 34(2): e2018GB006061.

    [19]

    Zhang X, Gaillardet J, Barrier L, et al. Li and Si isotopes reveal authigenic clay formation in a palaeo-delta [J]. Earth and Planetary Science Letters, 2022, 578: 117339. doi: 10.1016/j.jpgl.2021.117339

    [20]

    Hilton R G, West A J. Mountains, erosion and the carbon cycle [J]. Nature Reviews Earth & Environment, 2020, 1(6): 284-299.

    [21]

    Berner R A. Early Diagenesis: A Theoretical Approach[M]. Princeton: Princeton University Press, 1980.

    [22]

    Church T M. Marine Chemistry in the Coastal Environment: Principles, Perspective and Prospectus [J]. Aquatic Geochemistry, 2016, 22(4): 375-389. doi: 10.1007/s10498-016-9296-0

    [23]

    Berner E K, Berner R A. Global Environment: Water, Air, and Geochemical Cycles[M]. Princeton: Princeton University Press, 2011.

    [24]

    Krissansen-Totton J, Catling D C. A coupled carbon-silicon cycle model over Earth history: Reverse weathering as a possible explanation of a warm mid-Proterozoic climate [J]. Earth and Planetary Science Letters, 2020, 537: 116181. doi: 10.1016/j.jpgl.2020.116181

    [25]

    Cao C, Bataille C P, Song H, et al. Persistent late permian to early triassic warmth linked to enhanced reverse weathering [J]. Nature Geoscience, 2022, 15: 832-838. doi: 10.1038/s41561-022-01009-x

    [26]

    Geilert S, Frick D A, Garbe-Schönberg D, et al. Coastal El Niño triggers rapid marine silicate alteration on the seafloor [J]. Nature Communications, 2023, 14(1): 1676. doi: 10.1038/s41467-023-37186-5

    [27]

    Baldermann A, Banerjee S, Czuppon G, et al. Impact of green clay authigenesis on element sequestration in marine settings [J]. Nature Communications, 2022, 13(1): 1527. doi: 10.1038/s41467-022-29223-6

    [28]

    Loucaides S, Michalopoulos P, Presti M, et al. Seawater-mediated interactions between diatomaceous silica and terrigenous sediments: Results from long-term incubation experiments [J]. Chemical Geology, 2010, 270(1-4): 68-79. doi: 10.1016/j.chemgeo.2009.11.006

    [29]

    Bennekom A, Gaast S. Possible clay structures in frustules of living diatoms [J]. Geochimica et Cosmochimica Acta, 1976, 40: 1149-1152. doi: 10.1016/0016-7037(76)90150-2

    [30]

    Baldermann A, Warr L N, Letofsky-Papst I, et al. Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments [J]. Nature Geoscience, 2015, 8(11): 885-889. doi: 10.1038/ngeo2542

    [31]

    Scholz F, Severmann S, Mcmanus J, et al. On the isotope composition of reactive iron in marine sediments: Redox shuttle versus early diagenesis [J]. Chemical Geology, 2014, 389: 48-59. doi: 10.1016/j.chemgeo.2014.09.009

    [32]

    Boning P, Schnetger B, Belz L, et al. Sedimentary iron cycling in the Benguela upwelling system off Namibia [J]. Earth and Planetary Science Letters, 2020, 538: 116212. doi: 10.1016/j.jpgl.2020.116212

    [33]

    Ehlert C, Doering K, Wallmann K, et al. Stable silicon isotope signatures of marine pore waters: Biogenic opal dissolution versus authigenic clay mineral formation [J]. Geochimica et Cosmochimica Acta, 2016, 191: 102-117. doi: 10.1016/j.gca.2016.07.022

    [34]

    Li F, Penman D, Planavsky N, et al. Reverse weathering may amplify post-Snowball atmospheric carbon dioxide levels [J]. Precambrian Research, 2021, 364: 106279. doi: 10.1016/j.precamres.2021.106279

    [35]

    Santiago Ramos D P, Coogan L A, Murphy J G, et al. Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater [J]. Earth and Planetary Science Letters, 2020, 541: 116290. doi: 10.1016/j.jpgl.2020.116290

    [36]

    Steefel C I, Appelo C, Arora B, et al. Reactive transport codes for subsurface environmental simulation [J]. Computational Geosciences, 2015, 19(3): 445-478. doi: 10.1007/s10596-014-9443-x

    [37]

    Wallmann K, Aloisi G, Haeckel M, et al. Silicate weathering in anoxic marine sediments [J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2895-2918. doi: 10.1016/j.gca.2008.03.026

    [38]

    Geilert S, Grasse P, Doering K, et al. Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis [J]. Biogeosciences, 2020, 17(7): 1745-1763. doi: 10.5194/bg-17-1745-2020

    [39]

    Torres M E, Hong W L, Solomon E A, et al. Silicate weathering in anoxic marine sediment as a requirement for authigenic carbonate burial [J]. Earth-Science Reviews, 2020, 200: 102960. doi: 10.1016/j.earscirev.2019.102960

    [40]

    Li W, Liu X-M, Wang K, et al. Potassium isotope signatures in modern marine sediments: Insights into early diagenesis [J]. Earth and Planetary Science Letters, 2022, 599: 117849. doi: 10.1016/j.jpgl.2022.117849

    [41]

    Shalev N, Bontognali T, Wheat C G, et al. New isotope constraints on the Mg oceanic budget point to cryptic modern dolomite formation [J]. Nature Communications, 2019, 10(1): 5646. doi: 10.1038/s41467-019-13514-6

    [42]

    Voigt M, Pearce C R, Fries D M, et al. Magnesium isotope fractionation during hydrothermal seawater–basalt interaction [J]. Geochimica et Cosmochimica Acta, 2019, 272: 21-35.

    [43]

    Laureijs C T, Coogan L A, Spence J. Regionally variable timing and duration of celadonite formation in the Troodos lavas (Cyprus) from Rb-Sr age distributions [J]. Chemical Geology, 2021, 560(3): 119995.

    [44]

    Homoky W B, Thomas W, Berelson W M, et al. Quantifying trace element and isotope fluxes at the ocean-sediment boundary: a review [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2016, 374: 20160246. doi: 10.1098/rsta.2016.0246

    [45]

    Luo M, Li W, Geilert S, et al. Active Silica Diagenesis in the Deepest Hadal Trench Sediments [J]. Geophysical Research Letters, 2022, 49(14): e2022GL099365.

    [46]

    Li G, West A J. Evolution of Cenozoic seawater lithium isotopes: Coupling of global denudation regime and shifting seawater sinks [J]. Earth and Planetary Science Letters, 2014, 401: 284-293. doi: 10.1016/j.jpgl.2014.06.011

    [47]

    Coogan L A, Gillis K M. Temperature dependence of chemical exchange during seafloor weathering: Insights from the Troodos ophiolite [J]. Geochimica et Cosmochimica Acta, 2018, 243: 24-41. doi: 10.1016/j.gca.2018.09.025

    [48]

    Higgins J A, Schrag D P. The Mg isotopic composition of Cenozoic seawater: evidence for a link between Mg-clays, seawater Mg/Ca, and climate [J]. Earth and Planetary Science Letters, 2015, 416: 73-81. doi: 10.1016/j.jpgl.2015.01.003

    [49]

    Coggon R M, Teagle D A H, Smith-Duque C E, et al. Reconstructing Past Seawater Mg/Ca and Sr/Ca from Mid-Ocean Ridge Flank Calcium Carbonate Veins [J]. Science, 2010, 327(5969): 1114-1117. doi: 10.1126/science.1182252

    [50]

    Masuda H. Iron-rich smectite formation in the hydrothermal sediment of Iheya Basin, Okinawa Trough[M]//Sakai H. , Nozaki Y. Biogeochemical Processes and Ocean Flux in the Western Pacific. Tokyo: Terra Scientific Publishing Company, 1995, 509-521.

    [51]

    Stoffynegli P, Mackenzie F T. Mass balance of dissolved lithium in the oceans [J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 859-872. doi: 10.1016/0016-7037(84)90107-8

    [52]

    Chan L H, Edmond J M, Thompson G, et al. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans [J]. Earth and Planetary Science Letters, 1992, 108(1-3): 151-160. doi: 10.1016/0012-821X(92)90067-6

    [53]

    Huh Y, Chan L H, Zhang L, et al. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget [J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2039-2051. doi: 10.1016/S0016-7037(98)00126-4

    [54]

    You C F, Chan L H, Gieskes J M, et al. Seawater intrusion through the oceanic crust and carbonate sediment in the Equatorial Pacific: Lithium abundance and isotopic evidence [J]. Geophysical Research Letters, 2003, 30(21): 1-4.

    [55]

    Zhang L, Chan L H, Gieskes J M. Lithium isotope geochemistry of pore waters from ocean drilling program Sites 918 and 919, Irminger Basin [J]. Geochimica et Cosmochimica Acta, 1998, 62(14): 2437-2450. doi: 10.1016/S0016-7037(98)00178-1

    [56]

    Andrews E, Strandmann P, Fantle M S. Exploring the importance of authigenic clay formation in the global Li cycle [J]. Geochimica et Cosmochimica Acta, 2020, 289: 47-68. doi: 10.1016/j.gca.2020.08.018

    [57]

    Kawagucci S. Fluid geochemistry of high-temperature hydrothermal fields in the Okinawa trough[M]//Ihibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 387-403.

    [58]

    Araoka D, Nishio Y, Gamo T, et al. Lithium isotopic systematics of submarine vent fluids from arc and back-arc hydrothermal systems in the western Pacific [J]. Geochemistry Geophysics Geosystems, 2016, 17(10): 3835-3853. doi: 10.1002/2016GC006355

    [59]

    Decitre S, Buatier M, James R. Li and Li isotopic composition of hydrothermally altered sediments at Middle Valley, Juan De Fuca[J]. Chemical Geology, 2004, 211(3-4): 363-373.

    [60]

    Tréguer P J, Sutton J N, Brzezinski M, et al. Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean [J]. Biogeosciences, 2021, 18(4): 1269-1289. doi: 10.5194/bg-18-1269-2021

    [61]

    Aller R C. Sedimentary diagenesis, depositional environments, and benthic fluxes[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 293-334.

    [62]

    Demaster D J. The supply and accumulation of silica in the marine environment [J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1715-1732. doi: 10.1016/0016-7037(81)90006-5

    [63]

    Tréguer P J, Nelson D M, Aleido J V B, et al. The silica balance in the world ocean: a reestimate [J]. Science, 1995, 268(5209): 375-379. doi: 10.1126/science.268.5209.375

    [64]

    Pondaven P, Ragueneau O, Tréguer P J, et al. Resolving the 'opal paradox' in the Southern Ocean [J]. Nature, 2000, 405(6783): 168-172. doi: 10.1038/35012046

    [65]

    DeMaster D J. The accumulation and cycling of biogenic silica in the Southern Ocean: revisiting the marine silica budget [J]. Deep-Sea Research Part I:Topical Studies in Oceanography, 2002, 49(16): 3155-3167. doi: 10.1016/S0967-0645(02)00076-0

    [66]

    La Laruelle G G, Roubeix V, Sferratore A, et al. Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition [J]. Global Biogeochemical Cycles, 2009, 23(4): GB4031.

    [67]

    Tréguer P J, De La Rocha C L. The world ocean silica cycle [J]. Annual Review of Marine Science, 2013, 5: 477-501. doi: 10.1146/annurev-marine-121211-172346

    [68]

    Rahman S, Aller R C, Cochran J K. Cosmogenic 32Si as a tracer of biogenic silica burial and diagenesis: Major deltaic sinks in the silica cycle [J]. Geophysical Research Letters, 2016, 43(13): 7124-7132. doi: 10.1002/2016GL069929

    [69]

    Rahman S, Aller R C, Cochran J K. The Missing Silica Sink: Revisiting the Marine Sedimentary Si Cycle Using Cosmogenic 32Si [J]. Global Biogeochemical Cycles, 2017, 31(10): 1559-1578. doi: 10.1002/2017GB005746

    [70]

    Lacan F, Jeandel C. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface [J]. Earth and Planetary Science Letters, 2005, 232(3-4): 245-257. doi: 10.1016/j.jpgl.2005.01.004

    [71]

    Jeandel C, Oelkers E H. The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles [J]. Chemical Geology, 2015, 395: 50-66. doi: 10.1016/j.chemgeo.2014.12.001

    [72] 杨守业, 韦刚健, 石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报, 2015, 34(5):902-910 doi: 10.3969/j.issn.1007-2802.2015.05.003

    YANG Shouye, WEI Gangjian, SHI Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin [J]. Bulletin of Mineralogy Petrology and Geochemistry, 2015, 34(5): 902-910. doi: 10.3969/j.issn.1007-2802.2015.05.003

    [73]

    Yao P, Zhao B, Bianchi T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation [J]. Continental Shelf Research, 2014, 91: 1-11. doi: 10.1016/j.csr.2014.08.010

    [74]

    Zhao B, Yao P, Bianchi T S, et al. Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf [J]. Journal of Marine Systems, 2017, 172: 6.

    [75] 赵彬, 姚鹏, 杨作升, 等. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1):42-51 doi: 10.11867/j.issn.1001-8166.2018.01.0042

    ZHAO Bin, YAO Peng, YANG Zuosheng, et al. Reverse weathering in river-dominated marginal seas [J]. Advances in Earth Science, 2018, 33(1): 42-51. doi: 10.11867/j.issn.1001-8166.2018.01.0042

    [76]

    Mackin J E, Aller R C. Dissolved Al in sediments and waters of the East China Sea: Implications for authigenic mineral formation [J]. Geochimica et Cosmochimica Acta, 1984, 48: 281-297. doi: 10.1016/0016-7037(84)90251-5

    [77] 张桂甲, 李从先, 业治铮. 长江口地区自生绿色颗粒的形成和分布[J]. 石油与天然气地质, 1989, 10(2): 145-153

    ZHANG Guijia J, LI Congxian, YE Zhizheng. Formation and distribution of green grains in the Yangtse river mouth area[J]. Oil & Gas Geology, 1989, 10(2): 145-153.

    [78]

    Zhu M X, Hao X C, Shi X N, et al. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf [J]. Applied Geochemistry, 2012, 27(4): 892-905. doi: 10.1016/j.apgeochem.2012.01.004

    [79]

    Zhu M. X, Chen K K, Yang G P, et al. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical mobile mud belts (MMBs) [J]. Journal of Geophysical Research:Biogeosciences, 2016, 121(11): 2811-2828. doi: 10.1002/2016JG003391

    [80]

    Fan D J, Neuser R D, Sun X G, et al. Authigenic iron oxide formation in the estuarine mixing zone of the Yangtze River [J]. Geo-Marine Letters, 2008, 28(1): 7-14. doi: 10.1007/s00367-007-0084-0

    [81]

    Pang Y, Fan D J, Hu Z Z, et al. The properties and spatial distributions of flocs adjacent to the Yangtze Estuary [J]. Continental Shelf Research, 2018, 167: 87-98. doi: 10.1016/j.csr.2018.07.012

    [82] 范德江, 陈彬, 王亮, 等. 长江口外悬浮颗粒物中自生纤铁矿和胶黄铁矿[J]. 地球科学(中国地质大学学报), 2014, 39(10):1364-1370

    FAN Dejiang, CHEN Bin, WANG Liang, et al. Authigenic lepidocrocite and greigite particles in aquatic environments off the Yangtze River Estuary [J]. Earth Science, 2014, 39(10): 1364-1370.

    [83] 胡治洲, 范德江, 刘明, 等. 西太平洋边缘海表层悬浮体自生铁氧化物研究[J]. 海洋科学进展, 2019, 37(3):462-476

    HU Zhizhou, FAN Daidu, LIU Ming, et al. Authigenic iron oxide floc in the surface water of the western Pacific marginal seas [J]. Advances in Marine Science, 2019, 37(3): 462-476.

    [84]

    Wang C, Zhu H G, Wang P F, et al. Early diagenetic alterations of biogenic and reactive silica in the surface sediment of the Yangtze Estuary [J]. Continental Shelf Research, 2015, 99: 1-11. doi: 10.1016/j.csr.2015.03.003

    [85]

    Presti M, Michalopoulos P. Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta [J]. Continental Shelf Research, 2008, 28(6): 823-838. doi: 10.1016/j.csr.2007.12.015

    [86]

    Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits [J]. Oceanography, 2007, 20(1): 50-65. doi: 10.5670/oceanog.2007.80

    [87]

    Ishibashi J I, Tsunogai U, Toki T, et al. Chemical composition of hydrothermal fluids in the central and southern Mariana Trough backarc basin [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 121: 126-136. doi: 10.1016/j.dsr2.2015.06.003

    [88]

    Kimura M, Uyeda S, Kato Y, et al. Active hydrothermal mounds in the Okinawa Trough backarc basin, Japan [J]. Tectonophysics, 1988, 145(3-4): 319-324. doi: 10.1016/0040-1951(88)90203-X

    [89]

    Ueshima M, Tazaki K. Possible Role of Microbial polysaccharides in nontronite formation [J]. Clays and Clay Minerals, 2001, 49: 292-299. doi: 10.1346/CCMN.2001.0490403

    [90]

    Takai K, Mottl M J, Nielsen S H H. IODP Expedition 331: Strong and Expansive Subseafloor Hydrothermal Activities in the Okinawa Trough [J]. Scientific Drilling, 2012, 13: 19-27. doi: 10.5194/sd-13-19-2012

图(3)
计量
  • 文章访问数:  1249
  • HTML全文浏览量:  323
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-28
  • 修回日期:  2023-06-05
  • 录用日期:  2023-06-05
  • 网络出版日期:  2023-06-29
  • 刊出日期:  2023-06-27

目录

/

返回文章
返回