南海北部中—深层环流格局下海山-阶地-峡谷沉积效应

苏明, 王艺璇, 陈慧, 刘姗, 解习农, 张小波, 常景龙, 孟凡盛, 周海涛, 栾坤祥, 卓海腾, 王策, 雷亚平

苏明,王艺璇,陈慧,等. 南海北部中—深层环流格局下海山-阶地-峡谷沉积效应[J]. 海洋地质与第四纪地质,2023,43(3): 61-73. DOI: 10.16562/j.cnki.0256-1492.2023052201
引用本文: 苏明,王艺璇,陈慧,等. 南海北部中—深层环流格局下海山-阶地-峡谷沉积效应[J]. 海洋地质与第四纪地质,2023,43(3): 61-73. DOI: 10.16562/j.cnki.0256-1492.2023052201
SU Ming,WANG Yixuan,CHEN Hui,et al. Depositional mode for the seamount-terrace-canyon sedimentary combination under the impacts of intermediate and deep circulation dynamics in the northern margin of the South China Sea[J]. Marine Geology & Quaternary Geology,2023,43(3):61-73. DOI: 10.16562/j.cnki.0256-1492.2023052201
Citation: SU Ming,WANG Yixuan,CHEN Hui,et al. Depositional mode for the seamount-terrace-canyon sedimentary combination under the impacts of intermediate and deep circulation dynamics in the northern margin of the South China Sea[J]. Marine Geology & Quaternary Geology,2023,43(3):61-73. DOI: 10.16562/j.cnki.0256-1492.2023052201

南海北部中—深层环流格局下海山-阶地-峡谷沉积效应

基金项目: 广东省基础与应用基础研究基金自然科学基金面上项目(2023A1515010967);国家自然科学基金面上项目(42130408,41976067);南方海洋科学与工程广东省实验室(珠海)资助项目(SML2021SP009);“中山大学”号海洋综合科考实习船科考设备验收航次;南方海洋科学与工程广东省实验室(珠海)南海西边界流大气-海洋-海底-生物综合调查航次
详细信息
    作者简介:

    苏明(1982—),男,博士,主要从事海洋地质研究,E-mail:suming3@mail.sysu.edu.cn

    通讯作者:

    苏明(1982—),男,博士,主要从事海洋地质研究,E-mail:suming3@mail.sysu.edu.cn

  • 中图分类号: P736.1

Depositional mode for the seamount-terrace-canyon sedimentary combination under the impacts of intermediate and deep circulation dynamics in the northern margin of the South China Sea

  • 摘要: 作为研究水-岩界面物质能量交换的天然实验室,南海北缘陆坡区具有复杂的地形地貌(如凸起海山、平坦阶地、下凹峡谷等),并发育不同类型的深水沉积体系(包括重力流滑移滑塌、浊流和底流沉积等)。基于高分辨率海底地形、地震反射资料,海水温盐深(CTD)观测资料,以及已发表的海洋沉积学及物理海洋数值模拟结果,本文针对南海北缘代表型陆坡区开展中—深层环流格局下海山-阶地-峡谷沉积效应分析。发现了尖峰陆坡区侵蚀型-海山型(环槽-丘状漂积体)和席状/无沉积型底流阶地的沉积组合,以及一统陆坡区海山相关底流沉积(环槽-丘状漂积体)-席状/无沉积型底流阶地-黏附型漂积体-陡坡滑塌/峡谷体系的沉积组合;揭示了这些典型深水沉积组合与南海中—深层环流动力格局的耦合关系。该成果对于深入了解深水沉积过程对中-深层动力格局的响应及其对于大陆边缘形态的塑造具有较好的启示意义。
    Abstract: As a natural laboratory for studying energy and material exchange at water-rock interfaces, the northern slope area of the South China Sea possesses complex geomorphology, such as uplifted seamounts, flat terraces, and depressed canyons. It also develops various types of deep-water depositional systems, including gravity flow slides/slumps, turbidity currents, and contouritic deposits. Based on high-resolution bathymetry and seismic reflection data, CTD data, as well as published results from marine sedimentology and physical oceanic numerical simulations, this study focuses on analyzing the seamount-terrace-canyon sedimentary combination under intermediate and deep circulation bottom currents on the South China Sea northern margins. This study identifies the seamount-related moat-drift systems, the erosional/sheeted-nondepositional/seamount related contourite terraces, the plastered drifts, as well as the steep slopes with slides/slumps and canyons. This research reveals the coupling relationship between these deep-water sedimentary combinations and the hydrodynamic patterns among the intermediate and deep circulations. The findings obtained have significant implications for further understanding of the response of deep-water depositional processes to intermediate and deep circulation hydrodynamics and their impact on shaping continental margin morphology.
  • 中国东部新生代裂陷盆地一般经历从早期裂陷到晚期裂后拗陷的演化过程,裂陷阶段表现为幕式演化,其特征为断裂活动的多期性,断裂活动强度、展布方向和构造格架发生明显的变化[1-2]。珠江口盆地珠一坳陷古近纪裂陷期的演化具有明显的幕式特征,且对湖盆沉积有控制作用[3-5]。番禺4洼位于珠一坳陷西江凹陷的东南侧(图1),面积为1200 km2,古近纪始新世文昌期烃源岩发育,相对于其他洼陷,番禺4洼是小而肥的富生烃洼陷[6-7]。前人以早前地震解释资料为基础,对番禺4洼断裂分布进行研究,认为断裂体系发育的时空差异性受控于滨(环)太平洋、特提斯-喜马拉雅两大构造域的区域演化背景,现今断裂体系特征体现了多期构造运动的叠加效应[8-9],同时有研究者展开地震沉积学研究[10],并对文二段沉积相类型进行了重点分析[11-12]。目前番禺4洼有4口井钻遇文昌组烃源岩,油源对比证实番禺4洼原油来自文四段和文三段半深湖-深湖亚相烃源岩[13]。随着番禺4洼勘探研究的不断深入,岩浆活动对洼陷改造作用逐渐被人们所重视。幕式裂陷过程如何控制番禺4洼的形成?岩浆活动对洼陷结构和烃源岩如何改造?改造程度如何?这些问题从一定程度上制约了勘探及相关研究的进程。本文在最新地震解释成果的基础上,对洼陷幕式裂陷过程及岩浆活动对构造演化的影响进行了详细研究,同时明确了半深湖-深湖亚相烃源岩差异分布的原因,分析了岩浆活动对其影响程度以及重点烃源岩发育层段的生烃潜力,为番禺4洼及珠江口盆地其他岩浆改造型洼陷的烃源岩潜力研究提供了思路,具有一定的借鉴意义。

    图  1  研究区位置图
    Figure  1.  Location map of the study area

    印度板块和欧亚板块的挤压碰撞、太平洋板块的俯冲挤压导致珠江口盆地具有复杂的构造应力环境和构造演化历史。珠江口盆地在燕山期处于典型的主动大陆边缘,强烈的断块升降及岩浆活动导致古生代基底被重建和后期新建造的形成[14]。在左旋压扭的构造应力场作用下,形成了一系列北东走向的逆冲断裂带,在东南印度板块的挤压碰撞作用下,形成了一系列近东西向的逆冲断裂系,二者在燕山期共同控制了盆地基底的基本构造格局[15]

    燕山运动末期(晚白垩世)以后,太平洋板块俯冲速率迅速降低、俯冲带后退,导致中国东部陆缘由挤压环境转变为拉张环境。伴随太平洋俯冲带后撤,华南陆缘由安第斯型大陆边缘转变为拉张离散的被动大陆边缘[16]。晚白垩世断陷盆地普遍进入断陷高峰期,形成NE-NEE走向的主断陷带,控制盆地的展布,同时盆地内部大型 NEE 向先存断裂及隆起对盆地进行分隔,形成了现今珠江口盆地南北分带、东西分块的构造格局。珠一坳陷位于盆地北部坳陷带内,是一个走向 NE 的大型坳陷,坳陷南北缘由一系列 NE-NEE 向对倾边界断裂组成,自西向东依次发育恩平凹陷、西江凹陷、惠州凹陷、陆丰凹陷、韩江凹陷五个大型凹陷,凹陷间以 NWW 向低凸起等相隔,构成坳陷内隆凹相间的构造格局。珠一坳陷在新生代历经五次重要的构造运动:断陷期的神狐运动、珠琼运动一幕、珠琼运动二幕,断拗转换期的南海运动,坳陷期的东沙运动(图2a)。

    图  2  珠一坳陷地层-构造演化综合柱状图(a)及番禺4洼T80和T83顶面构造图(b、c)
    Figure  2.  An integrated stratigraphic column showing tectonic evolution of the Zhu 1 depression (a)and the structural maps of T80 and T83 in the Panyu 4 sag(b, c)

    珠琼运动一幕后,开始文昌组和恩平组沉积,珠一坳陷整个裂陷期的断裂活动强度具有典型的旋回性强弱变化,分别在文昌和恩平期构成两个强度峰值,加上文昌、恩平之间存在 T80 这个区域性不整合面,从根本上表明研究区的整个裂陷作用分文昌和恩平两个大的裂陷幕,即裂陷Ⅰ幕和裂陷Ⅱ幕,每一幕断裂活动强度均为“弱-强-弱”型式,体现了裂陷作用从初始到强烈再到萎缩的完整过程。裂陷I幕中存在一个关键的构造转换期(惠州运动):裂陷由南向北迁移、由西向东萎缩、NE-SW到NEE-SWW 构造转换、局部隆起、岩浆活动,即裂陷I幕内部分为两个次一级幕式裂陷——a期和b期。裂陷I幕裂陷结束后发生珠琼运动二幕,发生更强烈的岩浆活动,文昌组被构造和岩浆活动强烈改造,同时开始恩平组沉积,裂陷II幕结束后,文昌期洼陷结构基本定型。

    珠琼运动一幕后盆地开始裂陷I幕(49~39 Ma)的演化,对应文昌组沉积,断陷的深度和面积增大,形成了许多深水湖盆,烃源岩大面积发育。珠一坳陷约43 Ma发生惠州运动,主要表现为裂陷作用的南北转变和沿断裂走向的迁移、基底隆升、岩浆底辟以及地层剥蚀等[17],将裂陷I幕分为a和b期,对应下文昌组和上文昌组沉积(图2bc)。

    裂陷I幕a期,裂陷分为初始期、扩展期、强烈期,分别对应文六、五、四段沉积时期,受NEE-NE和EW向断裂控制,番禺4洼内部形成北洼、南洼和西洼。Fpy04 断裂位于西江凹陷南部,控制番禺4 洼的结构和沉积充填。该断裂的平面延伸长度约为37.6 km,走向近NEE向,倾向NNW,倾角20°左右,为低角度正断层,断面形态呈铲形。

    北洼和南洼南部的陡坡隆起带为东沙隆起,北洼走向约为 36°,呈近 NEE 向,洼陷最大厚度约1260 m,受控于边界断裂 Fpy04N(Fpy04 北段)和北部边界断裂。裂陷初始期断裂未活动,裂陷扩展期Fpy04N与对向断层一起活动,裂陷强烈期沉降速率达500 m/Ma,形成下文昌期北洼。南洼走向约为 43°,呈 NE 向,最大厚度约 1030 m,受控于边界断裂Fpy04S(Fpy04南段)边界断裂,裂陷扩展期Fpy04S断裂位移与Fpy04N基本相同,但强烈裂陷期沉降速率比北洼小,为320 m/Ma。西洼是位于北洼和南洼西部次级洼陷,主体受控于近东西走向 Fpy4W断裂,裂陷Ⅰa幕走向约 88°,呈 EW 走向发育展布,主体走向与北和南两个主洼的走向大角度斜交,该时期洼陷最大发育厚度约720 m,裂陷扩展期Fpy4W断裂位移很小,到强烈裂陷期稍有增大,沉降速率为280 m/Ma(图3)。

    图  3  番禺4洼各次洼断裂位移和沉降速率棒状图
    Figure  3.  Correlation chart of fault displacement and subsidence rate for each Sub-depression of Panyu 4 sag

    裂陷I幕a期和b期之间,南海北部陆缘岩石圈快速减薄,发生区域性基底隆升和岩浆底辟作用[17]。番禺4洼岩浆底辟位于北洼下部,岩浆向上侵入时的牵引作用使同向轴向上抬起,变形强烈,并诱发较多与岩浆底辟有关的断层,地层向洼陷中心方向迅速减薄。裂陷I幕a期,在裂陷作用和岩浆改造的影响下,北洼形成NE-SW向双断地堑结构样式,上部被抬升剥蚀后厚度仍然比南洼大,南洼也比北洼面积小,为南断北超的半地堑结构,地层呈楔状,靠近Fpy04S断裂厚度大,向北超覆减薄,地层具有较强烈的掀斜旋转,西洼呈典型的楔形,北断南超半地堑结构样式,厚度最薄。

    裂陷I幕b期,裂陷分为转换期、收缩期、萎缩期,分别对应文三、文二、文一段沉积时期,受NNE-NE和EW-NWW向断裂控制,除北洼、南洼和西洼外,新生成了EW-NWW向断裂控制的北西洼。Fpy04N断裂控制的北洼的结构发生了显著变化,洼陷仍为NEE走向,走向由36°变为34°,洼陷最大厚度仅为510 m,I幕a期末的惠州运动和岩浆底辟作用造成北洼下部地层抬升,I幕b期洼陷规模小很多,内部地层较薄,向两侧超覆沉积,呈碟状、近水平展布,转换期沉降速率为310 m/Ma。南洼在I幕b期继承性发育,受Fpy04S断裂控制,走向由43°转变为34°,呈NEE,最大厚度为1620 m,断裂位移比Fpy04N大很多,规模比I幕a期变大较多,沉降速率为780 m/Ma。裂陷I幕Fpy04活动性南北差异较大,北洼表现出与区域构造活动相符的转换-萎缩的特征,但I幕b期洼陷迁移到南洼,南洼在转换期却表现出了强烈的裂陷,收缩期和萎缩期继续裂陷,岩浆底辟作用导致I幕a期到b期裂陷强度从北向南迁移。西洼仍受北部边界断裂Fpy4W的控制,走向由88°转变为86°,呈EW 走向发育,洼陷最大厚度约 1200 m,相对于裂陷I幕a期,断裂位移减小,沉降速率稍有减小,为210 m/Ma。裂陷I幕b期,Fpy4NW 断裂开始活动,形成新的北西洼,走向为EW-NWW,与西洼基本相同,断裂位移明显大于西洼,沉降速率几乎为西洼的2倍,为390 m/Ma(图3)。

    裂陷I幕b期,构造应力方向由NW-SE转变为NNW-SSE,导致Fpy04断裂控制下的北洼和南洼旋转,但I幕a期末的岩浆底辟作用导致北洼快速萎缩,表现为坳陷结构样式;洼陷主体向SW迁移,南洼的规模快速增大。同时EW-NWW向断层活动性向北增强,洼陷向北迁移,形成新的北西洼。

    珠琼运动二幕持续时间长,构造运动强烈,使盆地再次抬升并遭受强烈剥蚀,番禺4南洼、西洼和北西洼地层均呈楔形,为半地堑结构样式,具有较强的掀斜旋转特征:南洼向北超覆减薄,靠近南部边界断裂一侧厚;西洼和北西洼地层,北断南超,靠近北部边界断裂一侧地层厚度最大,向南部缓坡带超覆减薄;南洼和北西洼中间存在着具有双断结构的转换带。

    多年勘探实践表明,珠江口盆地文昌组为半深湖-深湖亚相沉积(优质烃源岩,大套厚层且质纯的泥岩),番禺4洼共钻遇文昌组井4口,其中PY1井地层较全,岩屑录井显示文五段至文三段有厚度较大的灰黑色和灰褐色泥岩,夹少量粗砂岩或砾岩(图4a)。总体上富含有机质的泥岩段测井响应特征为四高一低,即自然伽马高、电阻率高、声波时差高、密度低。珠一坳陷烃源岩的揭示程度较低,通常采用地震资料进行预测,认为半深湖-深湖亚相即为烃源岩分布区。半深湖-深湖亚相在地震剖面上表现为低频、连续、强振幅、平行反射地震相,席状-低频弱振幅至空白的地震反射亦可成为半深湖-深湖亚相的反射标志(图5),在其他洼陷勘探中取得了良好的效果[18-20]。番禺4洼北洼半深湖-深湖亚相多与陡坡带楔形和杂乱充填的近岸水下冲积扇相接。

    图  4  PY1井文昌组沉积相综合柱状图及辉绿岩层岩性特征
    Figure  4.  Integrated column of lithofacies and lithologic characteristics of diabase in Wenchang Formation of well PY1
    图  5  番禺4洼半深湖-深湖相地震相特征
    Figure  5.  Seismic facies characteristics of semi-deep and deep lacastrine facies in Panyu 4 sag

    I幕a期的裂陷扩展期,属湖盆发育初期,半深湖-深湖亚相较窄,文五段烃源岩发育程度较低;裂陷强烈期湖盆迅速扩大和加深,形成文四段沉积,PY1井证实半深湖-深湖亚相烃源岩以灰褐色泥岩为主。I幕a期洼陷发育时北洼比南洼沉降速率大,北洼半深湖-深湖亚相规模较大,但a期末发生惠州运动,且岩浆底辟作用位于北洼靠近中心的位置,使北洼被强烈剥蚀,导致部分烃源岩被破坏。裂陷I幕b期,虽然此时区域上强烈裂陷期已结束,但番禺4洼裂陷在其西南部继续发育,洼陷主体由北洼转换到南洼,且形成了新的北西洼,沉积中心整体上向西南方向迁移。裂陷转换期,湖盆扩大到最大范围,形成文三段沉积,半深湖-深湖亚相烃源岩广泛分布,PY1井证实半深湖-深湖亚相烃源岩以灰黑色泥岩为主。裂陷收缩期,湖盆全部迁移至南洼和西洼,裂陷萎缩期湖盆面积继续缩小,形成文二、文一段沉积。珠琼运动二幕时,区域抬升,番禺4洼边缘被剥蚀,只有北洼东北部有小面积剥蚀到文三段烃源岩。因此,文四段和文三段为半深湖-深湖亚相烃源岩发育的主要层段,且具有差异分布特征:文四段面积小,北洼和南洼均有分布,虽然北洼沉降量大,但也被抬升剥蚀,南洼厚度较大;文三段面积大,主要分布于南洼,西洼、北西洼和北洼厚度均较薄(图6)。

    图  6  番禺4洼文昌组各段沉积相分布图
    Figure  6.  Distribution of sedimentary facies for each Members of Wenchang Formation in Panyu 4 sag

    总之,珠一坳陷古近纪始新世早期裂陷发育具有多幕性和层次性[2],番禺4洼裂陷I幕较为复杂,包括初始裂陷、强烈裂陷、构造抬升和岩浆底辟、继续裂陷、区域抬升剥蚀等过程。构造抬升和岩浆底辟作用发生前后,洼陷向南西方向迁移,此次构造转换,使洼陷北部抬升、半深湖-深湖亚相向西南迁移。幕式裂陷背景下,a期末的岩浆底辟作用及a期末和b期末两次抬升剥蚀,造成了现今番禺4洼内部下文昌组和上文昌组、东北和西南烃源岩的差异分布。

    PY1井揭示164.4 m辉绿岩(图4b),暗绿色,块状构造,具辉绿结构,主要矿物为基性斜长石、单斜辉石。其中斜长石占 45%~65%,杂乱排列,呈柱状,在斜长石构成的格架中充填有辉石、绿泥石和磁铁矿等;辉石约占 15%~30%,呈他形粒状;易变辉石,淡粉色-黄白多色性,他形、正高突起、斜消光、裂理发育,约占5%(图4cd)。辉绿岩是深源玄武质岩浆向地壳浅部侵入结晶形成,常呈岩脉、岩墙、岩床或充填于玄武岩火山口附近。PY1井中的辉绿岩中发现少量易变辉石,说明该岩体在火山口附近,但不在火山通道上。

    辉绿岩密度和声波速度均较大,与上下泥岩的反射差别比较明显,辉绿岩层上部泥岩夹薄层砂岩,下部泥岩为低速层,辉绿岩致密高速层,强振幅、中低频率、连续性好。厚层辉绿岩使下部低速泥岩和高速砾岩层成像效果较差。辉绿岩测井响应上表现为低伽马、低声波、高电阻率的特征,伽马和声波曲线呈低幅箱形,岩层上、下部与围岩接触,温度骤降导致冷凝收缩,形成裂缝并接受溶蚀改造的可能性较大,因此,测井曲线齿化明显,而岩层中部曲线平滑(图4a)。岩浆的侵入及热液的影响,增加了沉积相测井、地震识别的难度,PY1井对区域岩浆活动、洼陷结构、沉积相分布等方面的研究可起到一定的借鉴作用。

    结合钻遇辉绿岩的岩性和地球物理特征,利用三维地震资料圈定了侵入体的范围,并发现在剖面上辉绿岩岩床与围岩呈指状顺层嵌入厚层泥岩中,PY1井附近1 km左右T83顶面发现圆形塌陷,推测为火山口。T83顶面发现明显的削截特征,基底下部具有丘状或座钟状反射特征,即北洼文四段沉积末期岩浆活动,形成较大规模的岩浆底辟,地层抬升剥蚀,局部火山喷发,未喷出地表的岩浆于地下侵位形成同期的小型浅成侵入体。北洼下部多处岩浆侵入基底,同时上部文四段表现为大规模的削截(图7)。有研究认为这是由于在地壳伸展减薄情况下,上地幔压力减小促使部分熔融,使基性岩浆底侵到下地壳底部形成熔岩垫,构成下地壳高速体,而该过程会对地壳产生抬升作用[21]。珠一坳陷南部的白云凹陷由初始张裂到快速减薄的转变发生在裂陷Ia和Ib幕之间,下地幔部分熔融,岩浆底辟大规模发育[17],推测番禺4洼的岩浆作用也是南海北部陆缘岩石圈快速减薄的结果。

    图  7  番禺4洼岩浆底辟典型地震反射剖面
    剖面位置见图2
    Figure  7.  Typical seismic reflection profiles of magmatic diapir in Panyu 4 sag
    The profiles’ locations are in Fig.2.

    I幕a期和b期之间发生的岩浆底辟作用,除了影响b期洼陷形成时的古地貌造成北洼大规模缩小外,对a期形成的半深湖-深湖亚相泥岩的生烃也有一定的影响。从PY1井文昌组烃源岩地球化学参数来看,各段均为好烃源岩,有机质丰度均很高。以侵入体为界,文三段和文四段上部有机质丰度高,文四段下部和文五段有机质丰度较低。侵入作用发生于文三段沉积前,侵入体带来的热仅作用于文四段泥岩,既有正面也有负面影响。根据趋势面法恢复北洼剥蚀量约为92~115 m,去除压实等因素的影响,辉绿岩侵入时其上部泥岩埋深约为300 m,其下部泥岩埋深约为500~1000 m,显然侵入作用发生在烃源岩大规模生烃之前,热作用使在其影响范围内的烃源岩有机质加速成熟、快速生烃,即起到促效作用[22]。裂陷I幕a期末的火山活动为水下喷发,火山物质与泥岩混合,促使湖盆富营养化,提高有机质丰度[23]。但烃源岩离侵入体较近的范围内,距离接触面越近,TOC、Ro、Tmax、S1+S2均降低,可能是岩浆侵入带来的热量在接触面使液态烃发生裂解造成的[24]。与松辽盆地英台断陷龙深1井闪长岩侵入体对烃源岩的影响不同,番禺4洼辉绿岩属于超浅成侵入体,属于烃源岩开始大规模生烃前侵入,总体上起到促进有机质成熟、加速生烃的作用,影响有限。烃源岩的规模和质量仍取决于半深湖-深湖亚相泥岩厚度、范围、有机质成熟度和丰度。

    通过测井预测模型计算烃源岩总有机碳含量[25],再进一步预测生烃量和生烃强度,计算结果可知,虽然裂陷I幕a期末构造抬升和岩浆底辟造成北洼文四段厚度变薄,但岩浆侵入的热作用对生烃总体上起到了促进作用;文三段虽然半深湖-深湖亚相面积大,洼陷整体向南西迁移,北洼、西洼和北西洼厚度薄、面积小,主要生烃区为南洼。幕式裂陷作用仍是控制半深湖-深湖亚相烃源岩分布的主要因素,番禺4洼的烃源岩主要分布于文四段和文三段,文四段优势是厚层烃源岩面积较大,有岩浆活动促进生烃、加速成熟;文三段的优势是自身有机质含量高(图8),虽然烃源岩面积大,但厚层烃源岩面积小。总体上文四段的生烃条件要优于文三段,加之文五段具备一定的生烃能力,即下文昌的生烃强度优于上文昌(图9)。番禺4洼在幕式裂陷环境中形成,经历岩浆底辟、洼陷迁移,洼陷内部形成变换带、洼中隆等构造,尤其是距离下文昌组烃源岩距离较近的这类洼陷内部的构造高点,容易形成有效圈闭并聚集油气成藏。

    图  8  PY1井岩浆侵入体附近围岩有机地球化学参数分布
    Figure  8.  Distribution of organic geochemical parameters in the rocks surrounding the intrusive body in well PY1
    图  9  番禺4洼文昌组各段生烃强度(MMT/km2)分布图
    Figure  9.  Hydrocarbon-generating intensity (MMT/km2) of each members of Wenchang Formation in Panyu 4 sag

    (1)珠琼运动I幕后,番禺4洼裂陷I幕内部经历两个次一级的幕式裂陷——a期和b期。裂陷I幕a期经历扩展期、强烈期,洼陷整体走向为NE-SW,发育北洼、南洼和西洼,a期末受惠州运动影响使北部发生构造抬升和岩浆底辟;I幕b期继续裂陷,走向转换为NEE-SSW,洼陷整体向SW迁移;珠琼运动II幕时,区域抬升剥蚀,番禺4洼萎缩至SW方向,最终形成上下文昌组双层结构。

    (2)番禺4洼历经裂陷I幕从a期到b期及二者之间的构造转换和岩浆底辟作用,洼陷主体由北洼迁移到南洼,半深湖-深湖亚相烃源岩主要分布于文四段和文三段。文四段烃源岩面积小,北洼和南洼均有分布,南洼厚度相对较大;文三段面积大,主要分布于南洼,西洼、北西洼和北洼厚度均较薄。

    (3)幕式裂陷作用仍是控制半深湖-深湖亚相烃源岩分布的主要因素,裂陷I幕a期末的岩浆活动影响对北洼文四段烃源岩总体上起到正面的促进生烃、加速成熟的作用,文四段厚层烃源岩面积较大;文三段自身有机质含量高,虽然烃源岩面积大,但厚层烃源岩面积小。总体上文四段的生烃条件要优于文三段,加之文五段具备一定的生烃能力,即下文昌组的生烃强度优于上文昌组。上文昌组距离优质烃源岩最近,其内部位于变换带、洼中隆等位置的构造高点,是有利的勘探目标。

  • 图  1   基于海底几何形状和底层结构识别的各种侵蚀、无沉积和沉积特征

    Figure  1.   The diagnosis of seismic reflections of various erosive, non-depositional, and depositional features based on seafloor geometries and underlying architectures

    图  2   南海北部陆缘综合概况图(a)和过尖峰陆坡东沙南海山综合剖面图(b)

    Figure  2.   Overview map of the northern part of the South China Sea (SCS) with various geographical domains (a) and comprehensive cross-seamount section on the Jianfeng Slope (b)

    图  3   尖峰陆坡东沙南海山附近深水沉积体系分布图(左)及坡度图(右)

    DSN: 东沙南海山,BJX: 笔架西凸起,LC: 李春海山,SYX: 宋应星海丘;S1/S2: CTD站位。

    Figure  3.   Distribution map of deep-water sedimentary systems (Left) and slope gradient map (Right) over the Jianfeng Slope

    图  4   一统陆坡东沙南海山附近深水沉积体系分布图(左)及坡度图(右)

    T1、T2为CTD站位。

    Figure  4.   Distribution map of deep-water sedimentary systems (Left) and slope gradient map (Right) over the Yitong Slope

    图  5   中-深层环流格局下海山-阶地-峡谷沉积效应模式图

    以一统陆坡为例。

    Figure  5.   Depositional mode for the seamount-terrace-canyon sedimentary combination under the impacts of intermediate and deep circulation dynamics

    Taking the Yitong Slope as an example

    表  1   物理海洋CTD观测站位信息

    Table  1   Information of CTD stations

    站位号位置CTD最大采水深度/m
    S120.059°N 、117.424°E208
    S220.006°N 、117.573°E1 791
    T119.619°N 、114.150°E544
    T219.024°N 、114.424°E1 604
    下载: 导出CSV
  • [1] 汪品先. 深海沉积与地球系统[J]. 海洋地质与第四纪地质, 2009, 29(4):1-11

    WANG Pinxian. Deep sea sediments and Earth system [J]. Marine Geology & Quaternary Geology, 2009, 29(4): 1-11.

    [2] 田纪伟, 曲堂栋. 南海深海环流研究进展[J]. 科学通报, 2012, 57(24):3115-3120 doi: 10.1007/s11434-012-5269-x

    TIAN Jiwei, QU Tangdong. Advances in research on the deep South China Sea circulation [J]. Chinese Science Bulletin, 2012, 57(24): 3115-3120. doi: 10.1007/s11434-012-5269-x

    [3]

    Mulder T, Hüneke H, Van Loon A J. Progress in deep-sea sedimentology[M]//Hüneke H, Mulder T. Deep-Sea Sediments: Developments in Sedimentology. Amsterdam: Elsevier, 2011: 1-24.

    [4]

    Micallef A, Krastel S, Savini A. Submarine Geomorphology[M]. Cham: Springer, 2018.

    [5]

    Stow D A V, Faugères J C, Howe J A, et al. Bottom currents, contourites and deep-sea sediment drifts: current state-of-the-art[C]//Stow D A V, Pudsey C J, Howe J A, et al. Deep-Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics. London: Geological Society of London, 2002: 7-20.

    [6]

    Rebesco M, Camerlenghi A, Van Loon A J. Contourite research: a field in full development[C]//Rebesco M, Camerlenghi A. Contourites: Developments in Sedimentology. Amsterdam: Elsevier, 2008: 1-10.

    [7] 高抒. 海洋沉积地质过程模拟: 性质与问题及前景[J]. 海洋地质与第四纪地质, 2011, 31(5):1-7

    GAO Shu. Numerical modeling of marine sedimentary processes: the nature, scientific problems, and prospect [J]. Marine Geology & Quaternary Geology, 2011, 31(5): 1-7.

    [8]

    Hernández-Molina F J, Serra N, Stow D A V, et al. Along-slope oceanographic processes and sedimentary products around the Iberian margin [J]. Geo-Marine Letters, 2011, 31(5): 315-341.

    [9]

    Rebesco M, Hernández-Molina F J, Van Rooij D, et al. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations [J]. Marine Geology, 2014, 352: 111-154. doi: 10.1016/j.margeo.2014.03.011

    [10] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义: 国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12):1287-1296

    ZHAO Yulong, LIU Zhifei. Spatial distribution of contourites in global ocean and its paleoclimatic significance: the contribution of international ocean drilling to the studies of contourites [J]. Advances in Earth Science, 2017, 32(12): 1287-1296.

    [11] 吴立新. 气候变暖背景下全球平均海洋环流在加速[J]. 中国科学:地球科学, 2020, 63(7):1039-1040 doi: 10.1007/s11430-020-9610-9

    WU Lixin. Acceleration of global mean ocean circulation under the climate warming [J]. Science in China:Earth Sciences, 2020, 63(7): 1039-1040. doi: 10.1007/s11430-020-9610-9

    [12]

    Chen H, Xie X N, Van Rooij D, et al. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest Sub-Basin, South China Sea [J]. Marine Geology, 2014, 355: 36-53. doi: 10.1016/j.margeo.2014.05.008

    [13]

    Chen H, Xie X N, Zhang W Y, et al. Deep-water sedimentary systems and their relationship with bottom currents at the intersection of Xisha Trough and Northwest Sub-Basin, South China Sea [J]. Marine Geology, 2016, 378: 101-113. doi: 10.1016/j.margeo.2015.11.002

    [14]

    Chen H, Zhang W Y, Xie X N, et al. Sediment dynamics driven by contour currents and mesoscale eddies along continental slope: A case study of the northern South China Sea [J]. Marine Geology, 2019, 409: 48-66. doi: 10.1016/j.margeo.2018.12.012

    [15]

    Delivet S, Van Eetvelt B, Monteys X, et al. Seismic geomorphological reconstructions of Plio-Pleistocene bottom current variability at Goban Spur [J]. Marine Geology, 2016, 378: 261-275. doi: 10.1016/j.margeo.2016.01.001

    [16]

    Ribó M, Puig P, Muñoz A, et al. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean) [J]. Geomorphology, 2016, 253: 22-37. doi: 10.1016/j.geomorph.2015.09.027

    [17]

    Shu Y Q, Xue H J, Wang D X, et al. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea [J]. Scientific Reports, 2016, 6: 24338. doi: 10.1038/srep24338

    [18]

    Thran A C, Dutkiewicz A, Spence P, et al. Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model [J]. Earth and Planetary Science Letters, 2018, 489: 228-240. doi: 10.1016/j.jpgl.2018.02.044

    [19]

    Tang Q S, Gulick S P S, Sun J, et al. Submesoscale features and turbulent mixing of an oblique anticyclonic eddy in the gulf of Alaska investigated by marine seismic survey data [J]. Journal of Geophysical Research:Oceans, 2020, 39: e2019JC015393.

    [20]

    Turnewitsch R, Falahat S, Nycander J, et al. Deep-sea fluid and sediment dynamics-influence of hill- to seamount-scale seafloor topography [J]. Earth-Science Reviews, 2013, 127: 203-241. doi: 10.1016/j.earscirev.2013.10.005

    [21]

    Llave E, Hernández-Molina F J, Stow D A V, et al. Reconstructions of the Mediterranean Outflow Water during the Quaternary based on the study of changes in buried mounded drift stacking pattern in the Gulf of Cadiz [J]. Marine Geophysical Researches, 2007, 28(4): 379-394. doi: 10.1007/s11001-007-9040-7

    [22]

    Hernández-Molina F J, Larter R D, Rebesco M, et al. Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: stratigraphic evidence from a contourite sedimentary tail [J]. Marine Geology, 2006, 228(1-4): 93-116. doi: 10.1016/j.margeo.2005.12.010

    [23]

    Preu B, Hernández-Molina F J, Violante R, et al. Morphosedimentary and hydrographic features of the northern Argentine margin: the interplay between erosive, depositional and gravitational processes and its conceptual implications [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2013, 75: 157-174. doi: 10.1016/j.dsr.2012.12.013

    [24]

    Thiéblemont A, Hernández-Molina F J, Miramontes E, et al. Contourite depositional systems along the Mozambique channel: the interplay between bottom currents and sedimentary processes [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2019, 147: 79-99. doi: 10.1016/j.dsr.2019.03.012

    [25]

    Rodrigues S, Roque C, Hernández-Molina F J, et al. The Sines contourite depositional system along the SW Portuguese margin: Onset, evolution and conceptual implications [J]. Marine Geology, 2020, 430: 106357. doi: 10.1016/j.margeo.2020.106357

    [26]

    Yenes M, Casas D, Nespereira J, et al. The Guadiaro-Baños contourite drifts (SW Mediterranean). A geotechnical approach to stability analysis [J]. Marine Geology, 2021, 437: 106505. doi: 10.1016/j.margeo.2021.106505

    [27]

    Miramontes E, Thiéblemont A, Babonneau N, et al. Contourite and mixed turbidite-contourite systems in the Mozambique Channel (SW Indian Ocean): link between geometry, sediment characteristics and modelled bottom currents [J]. Marine Geology, 2021, 437: 106502. doi: 10.1016/j.margeo.2021.106502

    [28]

    Hernández-Molina F J, Wåhlin A, Bruno M, et al. Oceanographic processes and morphosedimentary products along the Iberian margins: A new multidisciplinary approach [J]. Marine Geology, 2016, 378: 127-156. doi: 10.1016/j.margeo.2015.12.008

    [29]

    Hernández-Molina F J, Campbell S, Badalini G, et al. Large bedforms on contourite terraces: Sedimentary and conceptual implications [J]. Geology, 2018, 46(1): 27-30. doi: 10.1130/G39655.1

    [30]

    Steinmann L, Baques M, Wenau S, et al. Discovery of a giant cold-water coral mound province along the northern Argentine margin and its link to the regional Contourite Depositional System and oceanographic setting [J]. Marine Geology, 2020, 427: 106223. doi: 10.1016/j.margeo.2020.106223

    [31]

    Shanmugam G. A preliminary experimental study of turbidite fan deposits: discussion [J]. Journal of Sedimentary Research, 2003, 73(5): 838-839. doi: 10.1306/101002730838

    [32]

    Moscardelli L, Wood L. New classification system for mass transport complexes in offshore Trinidad [J]. Basin Research, 2008, 20(1): 73-98. doi: 10.1111/j.1365-2117.2007.00340.x

    [33]

    Twichell D C, Roberts D G. Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson arid Baltimore Canyons [J]. Geology, 1982, 10(8): 408-412. doi: 10.1130/0091-7613(1982)10<408:MDADOS>2.0.CO;2

    [34]

    Farre J A, McGregor B A, Ryan W B F, et al. Breaching the shelfbreak: passage from youthful to mature phase in submarine canyon evolution[M]//Stanley D J, Moore G T. The Shelfbreak: Critical Interface on Continental Margins. Tulsa: SEPM, 1983, 33: 25-39.

    [35]

    Harris P T, Whiteway T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins [J]. Marine Geology, 2011, 285(1-4): 69-86. doi: 10.1016/j.margeo.2011.05.008

    [36] 徐景平. 科学与技术并进: 近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5):552-558

    XU Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons [J]. Advances in Earth Science, 2013, 28(5): 552-558.

    [37] 徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014, 44(10):98-105

    XU Jingping. Review on the research of submarine turbidity current in one hundred years [J]. Periodical of Ocean University of China, 2014, 44(10): 98-105.

    [38] 钟广法. 海底峡谷科学深潜考察研究现状[J]. 地球科学进展, 2019, 34(11):1111-1119

    ZHONG Guangfa. Current status of scientific deep-diving investigations in submarine canyons [J]. Advances in Earth Science, 2019, 34(11): 1111-1119.

    [39]

    Laursen J, Scholl D W, von Huene R. Neotectonic deformation of the central Chile margin: Deepwater forearc basin formation in response to hot spot ridge and seamount subduction[T]. Tectonics, 2002, 21(5): 2-1-2-27.

    [40]

    Antobreh A A, Krastel S. Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: A newly discovered canyon preserved-off a major arid climatic region [J]. Marine and Petroleum Geology, 2006, 23(1): 37-59. doi: 10.1016/j.marpetgeo.2005.06.003

    [41]

    Xu J P, Noble M A, Rosenfeld L K. In-situ measurements of velocity structure within turbidity currents [J]. Geophysical Research Letters, 2004, 31(9): L09311.

    [42]

    Xu J P, Swarzenski P W, Noble M, et al. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California [J]. Marine Geology, 2010, 269(1-2): 74-88. doi: 10.1016/j.margeo.2009.12.007

    [43]

    Gavey R, Carter L, Liu J T, et al. Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: Observations from subsea cable breaks off southern Taiwan [J]. Marine Geology, 2017, 384: 147-158. doi: 10.1016/j.margeo.2016.06.001

    [44]

    Zhang Y W, Liu Z F, Zhao Y L, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea [J]. Geology, 2018, 46(8): 675-678. doi: 10.1130/G45178.1

    [45]

    Gong C L, Wang Y M, Rebesco M, et al. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels? [J]. Geology, 2018, 46(6): 551-554. doi: 10.1130/G40204.1

    [46]

    Miramontes E, Jouet G, Thereau E, et al. The impact of internal waves on upper continental slopes: insights from the Mozambican margin (Southwest Indian Ocean) [J]. Earth Surface Processes and Landforms, 2020, 45(6): 1469-1482. doi: 10.1002/esp.4818

    [47]

    Gong C L, Wang Y M, Peng X C, et al. Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific Deep Water into the South China Sea [J]. Marine and Petroleum Geology, 2012, 32(1): 95-109. doi: 10.1016/j.marpetgeo.2011.12.005

    [48]

    Gong C L, Wang Y M, Zhu W L, et al. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin, northern South China Sea [J]. AAPG Bulletin, 2013, 97(2): 285-308. doi: 10.1306/07121211159

    [49]

    Sun Q L, Xie X N, Piper D J W, et al. Three dimensional seismic anatomy of multi-stage mass transport deposits in the Pearl River Mouth Basin, northern South China Sea: their ages and kinematics [J]. Marine Geology, 2017, 393: 93-108. doi: 10.1016/j.margeo.2017.05.005

    [50]

    Yin S R, Hernández-Molina F J, Zhang W Y, et al. The influence of oceanographic processes on contourite features: A multidisciplinary study of the northern South China Sea [J]. Marine Geology, 2019, 415: 105967. doi: 10.1016/j.margeo.2019.105967

    [51]

    Alford M H, Peacock T, MacKinnon J A, et al. The formation and fate of internal waves in the South China Sea [J]. Nature, 2015, 521(7550): 65-69. doi: 10.1038/nature14399

    [52]

    Zhang Y W, Liu Z F, Zhao Y L, et al. Mesoscale eddies transport deep-sea sediments [J]. Scientific Reports, 2014, 4: 5937. doi: 10.1038/srep05937

    [53]

    Xie X H, Liu Q, Zhao Z X, et al. Deep sea currents driven by breaking internal tides on the continental slope [J]. Geophysical Research Letters, 2018, 45(12): 6160-6166.

    [54]

    Lüdmann T, Wong H K, Berglar K. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments [J]. Geophysical Research Letters, 2005, 32(5): L05614.

    [55]

    Shao L, Li X J, Geng J H, et al. Deep water bottom current deposition in the northern South China Sea [J]. Science in China Series D:Earth Sciences, 2007, 50(7): 1060-1066. doi: 10.1007/s11430-007-0015-y

    [56]

    Zhao Y L, Liu Z F, Zhang Y W, et al. In situ observation of contour currents in the northern South China Sea: applications for Deepwater sediment transport [J]. Earth and Planetary Science Letters, 2015, 430: 477-485. doi: 10.1016/j.jpgl.2015.09.008

    [57] 魏泽勋, 郑全安, 杨永增, 等. 中国物理海洋学研究70年: 发展历程、学术成就概览[J]. 海洋学报, 2019, 41(10):23-64

    WEI Zexun, ZHENG Quanan, YANG Yongzeng, et al. Physical oceanography research in China over past 70 years: Overview of development history and academic achievements [J]. Acta Oceanologica Sinica, 2019, 41(10): 23-64.

    [58]

    Wang P X, Li Q Y. The South China Sea: Paleoceanography and Sedimentology[M]. Dordrecht: Springer, 2009: 25-73.

    [59] 谢强, 肖劲根, 王东晓, 等. 基于8个准全球模式模拟的南海深层与底层环流特征分析[J]. 科学通报, 2013, 58(32):4000-4011 doi: 10.1007/s11434-013-5791-5

    XIE Qiang, XIAO Jingen, WANG Dongxiao, et al. Analysis of deep-layer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs [J]. Chinese Science Bulletin, 2013, 58(32): 4000-4011. doi: 10.1007/s11434-013-5791-5

    [60]

    Shu Y Q, Xue H J, Wang D X, et al. Meridional overturning circulation in the South China Sea envisioned from the high-resolution global reanalysis data GLBa0.08 [J]. Journal of Geophysical Research:Oceans, 2014, 119(5): 3012-3028. doi: 10.1002/2013JC009583

    [61]

    Gan J P, Li H, Curchitser E N, et al. Modeling South China Sea circulation: Response to seasonal forcing regimes [J]. Journal of Geophysical Research:Oceans, 2006, 111(C6): C06034.

    [62]

    Wynn R B, Stow D A V. Classification and characterisation of deep-water sediment waves [J]. Marine Geology, 2002, 192(1-3): 7-22. doi: 10.1016/S0025-3227(02)00547-9

    [63]

    Wang D X, Xiao J G, Shu Y Q, et al. Progress on deep circulation and meridional overturning circulation in the South China Sea [J]. Science China Earth Sciences, 2016, 59(9): 1827-1833. doi: 10.1007/s11430-016-5324-6

    [64]

    Cai Z Y, Gan J P, Liu Z Q, et al. Progress on the formation dynamics of the layered circulation in the South China Sea [J]. Progress in Oceanography, 2020, 181: 102246. doi: 10.1016/j.pocean.2019.102246

    [65] 朱伟林, 钟锴, 李友川, 等. 南海北部深水区油气成藏与勘探[J]. 科学通报, 2012, 57(24):3121-3129 doi: 10.1007/s11434-011-4940-y

    ZHU Weiling, ZHONG Kai, LI Youchuan, et al. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deepwater basins [J]. Chinese Science Bulletin, 2012, 57(24): 3121-3129. doi: 10.1007/s11434-011-4940-y

    [66] 袁圣强. 南海北部陆坡区深水水道沉积体系研究[D]. 中国科学院海洋研究所博士学位论文, 2009: 121

    YUAN Shengqiang. Sedimentary system of deepwater channel, the slope area of Northern South China Sea[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2009: 121.

    [67] 苏明. 南海北部琼东南盆地中新世以来中央峡谷体系内部构成及沉积模式[D]. 中国地质大学(武汉), 2011: 138

    SU Ming. Internal composition and depositional model of Central canyon system since Miocene in Qiongdongnan Basin northern South China Sea[D]. China University of Geosciences, 2011: 138. ] (查阅网上资料, 未找到本条文献信息, 请确认

    [68]

    Ding W W, Li J B, Li J, et al. Morphotectonics and evolutionary controls on the Pearl River Canyon system, South China Sea [J]. Marine Geophysical Research, 2013, 34(3): 221-238.

    [69]

    Gong C L, Wang Y M, Zhu W L, et al. The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes [J]. Marine and Petroleum Geology, 2011, 28(9): 1690-1702. doi: 10.1016/j.marpetgeo.2011.06.005

    [70]

    Li C, Lv C F, Chen G J, et al. Source and sink characteristics of the continental slope-parallel Central Canyon in the Qiongdongnan Basin on the northern margin of the South China Sea [J]. Journal of Asian Earth Sciences, 2017, 134: 1-12. doi: 10.1016/j.jseaes.2016.10.014

    [71]

    Su M, Hsiung K H, Zhang C M, et al. The linkage between longitudinal sediment routing systems and basin types in the northern South China Sea in perspective of source-to-sink [J]. Journal of Asian Earth Sciences, 2015, 111: 1-13. doi: 10.1016/j.jseaes.2015.05.011

    [72]

    Su M, Lin Z X, Wang C, et al. Geomorphologic and infilling characteristics of the slope-confined submarine canyons in the Pearl River Mouth Basin, northern South China Sea [J]. Marine Geology, 2020, 424: 106166. doi: 10.1016/j.margeo.2020.106166

    [73]

    Zhong G F, Cartigny M J B, Kuang Z G, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea [J]. Geological Society of America Bulletin, 2015, 127(5-6): 804-824. doi: 10.1130/B31003.1

    [74] 吴时国, 秦蕴珊. 南海北部陆坡深水沉积体系研究[J]. 沉积学报, 2009, 27(5):922-930

    WU Shiguo, QIN Yunshan. The research of deepwater depositional system in the northern South China Sea [J]. Acta Sedimentologica Sinica, 2009, 27(5): 922-930.

    [75] 何云龙. 琼东南盆地陆坡区重力流沉积特征及其成因机制[D]. 中国地质大学(武汉)博士学位论文, 2012: 131

    HE Yunlong. The characteristics and mechanism of sediment gravity flow in slope Area in Qiongdongnan Basin[D]. Doctor Dissertation of China University of Geosciences, 2012: 131.

    [76] 秦志亮. 南海北部陆坡块体搬运沉积体系的沉积过程、分布及成因研究[D]. 中国科学院海洋研究所博士学位论文, 2012: 121

    QIN Zhiliang. Sedimentary process, distribution and mechanism of mass transport deposits, the slope area of Northern South China Sea[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2012: 121.

    [77]

    Li W, Alves T M, Wu S G, et al. A giant, submarine creep zone as a precursor of large-scale slope instability offshore the Dongsha Islands (South China Sea) [J]. Earth and Planetary Science Letters, 2016, 451: 272-284. doi: 10.1016/j.jpgl.2016.07.007

    [78]

    Sun Q L, Alves T M, Lu X Y, et al. True volumes of slope failure estimated from a Quaternary mass-transport deposit in the northern South China Sea [J]. Geophysical Research Letters, 2018, 45(6): 2642-2651. doi: 10.1002/2017GL076484

    [79] 庞雄, 申俊, 袁立忠, 等. 南海珠江深水扇系统及其油气勘探前景[J]. 石油学报, 2006, 27(3):11-15,21

    PANG Xiong, SHEN Jun, YUAN Lizhong, et al. Petroleum prospect in deep-water fan system of the Pearl River in the South China Sea [J]. Acta Petrolei Sinica, 2006, 27(3): 11-15,21.

    [80] 庞雄, 彭大钧, 陈长民, 等. 三级“源-渠-汇”耦合研究珠江深水扇系统[J]. 地质学报, 2007, 81(6):857-864

    PANG Xiong, PENG Dajun, CHEN Changmin, et al. Three hierarchies "Source-Conduit-Sink" coupling analysis of the Pearl River deep-water fan system [J]. Acta Geologica Sinica, 2007, 81(6): 857-864.

    [81]

    Zhu M Z, Graham S, Pang X, et al. Characteristics of migrating submarine canyons from the Middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea [J]. Marine and Petroleum Geology, 2010, 27(1): 307-319. doi: 10.1016/j.marpetgeo.2009.05.005

    [82]

    Wang X X, Zhuo H T, Wang Y M, et al. Controls of contour currents on intra-canyon mixed sedimentary processes: insights from the Pearl River Canyon, northern South China Sea [J]. Marine Geology, 2018, 406: 193-213. doi: 10.1016/j.margeo.2018.09.016

    [83]

    Chen H, Xie X N, Van Rooij D, et al. Depositional characteristics and spatial distribution of deep-water sedimentary systems on the northwestern middle-lower slope of the Northwest Sub-Basin, South China Sea [J]. Marine Geophysical Research, 2013, 34(3): 239-257.

    [84]

    Li H, Wang Y M, Zhu W L, et al. Seismic characteristics and processes of the Plio-Quaternary unidirectionally migrating channels and contourites in the northern slope of the South China Sea [J]. Marine and Petroleum Geology, 2013, 43: 370-380. doi: 10.1016/j.marpetgeo.2012.12.010

    [85]

    Chen H, Zhang W Y, Xie X N, et al. Linking oceanographic processes to contourite features: Numerical modelling of currents influencing a contourite depositional system on the northern South China Sea margin [J]. Marine Geology, 2022, 444: 106714. doi: 10.1016/j.margeo.2021.106714

    [86]

    Wang X X, Kneller B, Wang Y M, et al. Along-strike Quaternary morphological variation of the Baiyun Sag, South China Sea: the interplay between deltas, pre-existing morphology, and oceanographic processes [J]. Marine and Petroleum Geology, 2020, 122: 104640. doi: 10.1016/j.marpetgeo.2020.104640

    [87]

    McCave I N, Hall I R. Size sorting in marine muds: processes, pitfalls, and prospects for paleoflow-speed proxies [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(10): Q10N05.

    [88]

    Zhong Y, Chen Z, Li L, et al. Bottom water hydrodynamic provinces and transport patterns of the northern South China Sea: evidence from grain size of the terrigenous sediments [J]. Continental Shelf Research, 2017, 140: 11-26. doi: 10.1016/j.csr.2017.01.023

    [89]

    Adams G R, Jager A J, Roering C. Investigations of rock fractures around deep level gold mine stopes[C]//Proceedings of the 22nd US Symposium on Rock Mechanics. Cambridge: American Rock Mechanics Association, 1981: 213-218.

    [90]

    Yin S R, Hernández-Molina F J, Lin L, et al. Plate convergence controls long-term full-depth circulation of the South China Sea [J]. Marine Geology, 2023, 459: 107050. doi: 10.1016/j.margeo.2023.107050

    [91]

    Hernández-Molina F, Llave E, Stow D A V. Continental slope contourites[M]//Rebesco M, Camerlenghi A. Contourites: Developments in Sedimentology. Amsterdam: Elsevier, 2008, 60: 379-408.

    [92]

    Viana A R, Almeida Jr W, Machado L C. Different styles of canyon infill related to gravity and bottom current processes: Examples from the upper slope of the Se Brazilian margin[C]//Proceedings of the 6th International Congress of the Brazilian Geophysical Society. Rio de Janeiro, Brazil: European Association of Geoscientists & Engineers, 1999.

    [93]

    He Y L, Xie X N, Kneller B C, et al. Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin, northern South China Sea [J]. Marine and Petroleum Geology, 2013, 41: 264-276. doi: 10.1016/j.marpetgeo.2012.03.002

    [94]

    Chen Y H, Yao G S, Wang X F, et al. Flow processes of the interaction between turbidity flows and bottom currents in sinuous unidirectionally migrating channels: An example from the Oligocene channels in the Rovuma Basin, offshore Mozambique [J]. Sedimentary Geology, 2020, 404: 105680. doi: 10.1016/j.sedgeo.2020.105680

    [95]

    de Castro S, Hernández-Molina F J, de Weger W, et al. Contourite characterization and its discrimination from other deep-water deposits in the Gulf of Cadiz contourite depositional system [J]. Sedimentology, 2021, 68(3): 987-1027. doi: 10.1111/sed.12813

    [96]

    Fonnesu M, Palermo D, Galbiati M, et al. A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique [J]. Marine and Petroleum Geology, 2020, 111: 179-201. doi: 10.1016/j.marpetgeo.2019.07.047

    [97]

    Fuhrmann A, Kane I A, Clare M A, et al. Hybrid turbidite-drift channel complexes: An integrated multiscale model [J]. Geology, 2020, 48(6): 562-568. doi: 10.1130/G47179.1

    [98]

    Puzrin A M, Gray T E, Hill A J. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides [J]. Proceedings of The Royal Society A:Mathematical, Physical and Engineering Sciences, 2015, 471(2175): 20140772. doi: 10.1098/rspa.2014.0772

    [99]

    Laberg J S, Vorren T O. The Trænadjupet Slide, offshore Norway-morphology, evacuation and triggering mechanisms [J]. Marine Geology, 2000, 171(1-4): 95-114. doi: 10.1016/S0025-3227(00)00112-2

    [100]

    Lastras G, Canals M, Amblas D, et al. Eivissa slides, western Mediterranean Sea: morphology and processes [J]. Geo-Marine Letters, 2006, 26(4): 225-233. doi: 10.1007/s00367-006-0032-4

    [101]

    Santek D A, Winguth A. A satellite view of internal waves induced by the Indian Ocean tsunami [J]. International Journal of Remote Sensing, 2007, 28(13-14): 2927-2936. doi: 10.1080/01431160601094534

    [102]

    Pomar L, Morsilli M, Hallock P, et al. Internal waves, an under-explored source of turbulence events in the sedimentary record [J]. Earth-Science Reviews, 2012, 111(1-2): 56-81. doi: 10.1016/j.earscirev.2011.12.005

  • 期刊类型引用(13)

    1. 钟锴,肖张波,朱伟林,黄鑫,边利豪,吴琼玲,冯凯龙. 珠江口盆地陆丰凹陷西北洼原型盆地及迁移演化特征. 海洋地质与第四纪地质. 2025(01): 168-177 . 本站查看
    2. 李振升,彭光荣,陈维涛,蔡国富,张丽,黄荣燕. 珠江口盆地番禺4洼古近系文昌组构造-沉积耦合关系. 海洋地质前沿. 2024(02): 50-58 . 百度学术
    3. 钟锴,李洪博,刘绍文,肖张波,边利豪,吴迪,冯凯龙. 珠江口盆地陆丰13洼原型盆地类型与分段差异演化. 中国海上油气. 2024(03): 60-69 . 百度学术
    4. 李康,单玄龙,郝国丽,热西提·亚力坤,徐川,沈梦蓉. 珠江口盆地西江凹陷裂陷期构造转换及其对沉积的意义. 吉林大学学报(地球科学版). 2024(04): 1095-1109 . 百度学术
    5. 徐长贵,高阳东,刘军,彭光荣,邱欣卫,张晓钊,贾培蒙. 珠江口盆地西江凹陷番禺4洼古近系勘探重大发现及其意义. 石油学报. 2024(07): 1031-1043 . 百度学术
    6. 李丹,程涛,尹川,贾怀存,李明刚,刘正. 巴西桑托斯盆地盐下拗陷期湖相烃源岩发育条件及其地质意义. 海洋地质与第四纪地质. 2024(04): 145-154 . 本站查看
    7. 蔡国富,彭光荣,吴静,白海军,李振升,汪晓萌,杜晓东,熊万林. 珠江口盆地阳江凹陷始新统古湖泊环境与优质烃源岩发育模式. 石油学报. 2023(05): 809-825 . 百度学术
    8. 吴琼玲,肖张波,雷永昌,邱欣卫,张素芳. 珠江口盆地陆丰22洼岩浆活动地震响应及发育模式. 华南地震. 2023(02): 20-34 . 百度学术
    9. 黄鑫,陈维涛,王文勇,黄鹏亮,罗伟. 先存断裂体系差异活化控制下的成盆作用研究——以珠江口盆地西江主洼为例. 华南地震. 2023(02): 11-19 . 百度学术
    10. 彭光荣,张丽丽,许新明,邱欣卫,何金海,刘昭茜. 珠江口盆地西江主洼烃源岩属性、原油分类及成藏主控因素. 地球科学. 2023(06): 2361-2375 . 百度学术
    11. 吴琼玲,彭光荣,肖张波,雷永昌,沈梦蓉,邱欣卫,李敏. 岩浆底辟改造型洼陷复杂结构特征及演化规律——以珠江口盆地陆丰22洼为例. 吉林大学学报(地球科学版). 2023(04): 1048-1065 . 百度学术
    12. 谢世文,王宇辰,舒誉,吴宇翔,张丽丽,刘冬青,王菲. 珠一坳陷湖盆古环境恢复与优质烃源岩发育模式. 海洋地质与第四纪地质. 2022(01): 159-169 . 本站查看
    13. 张丽,吴静,蔡国富,李振升,陈淑慧. 珠江口盆地番禺4洼文昌组储层特征及主控因素. 矿物岩石. 2022(04): 116-127 . 百度学术

    其他类型引用(2)

图(5)  /  表(1)
计量
  • 文章访问数:  1027
  • HTML全文浏览量:  177
  • PDF下载量:  42
  • 被引次数: 15
出版历程
  • 收稿日期:  2023-05-21
  • 修回日期:  2023-06-19
  • 网络出版日期:  2023-07-17
  • 刊出日期:  2023-06-27

目录

/

返回文章
返回