Coevolution of late Holocene environment and ancient civilization in the middle of the Tianshan Corridor of the Silk Road
-
摘要:
天山廊道古环境变迁与古文明演进的耦合关系是丝绸之路人与自然生命共同体演化研究的重要问题之一。本文对巴音布鲁克湿地泥炭沉积剖面,以花粉作为古气候代用指标,结合花粉主成分分析结果、考古资料,揭示了天山廊道中段晚全新世植被演替历史、环境变化和人类活动演化规律。结果表明:① 青铜时期(
3877 ~2697 cal.aBP),花粉组合以荒漠植被为主,PCA轴1得分偏正,PCA轴2得分偏负,气候以冷干为主。人类活动集中于开都河、孔雀河流域。② 早期铁器时代至秦汉时期(2697 ~1756 cal.aBP),荒漠植被花粉含量下降,桦木属(Betula)优势凸显,禾本科(Poaceae)稳中有增,PCA得分与青铜时期相反,气候转变为暖湿。人工驯化类禾本科花粉频现,早期种植业在沙漠边缘绿洲兴起,人类活动中心向西移至轮台县一带。③ 三国两晋南北朝至隋唐五代十国时期(1756 ~850 cal.aBP),莎草科(Cyperaceae)、禾本科、云杉属(Picea)花粉含量均增加并达到剖面峰值,湿度变大,进入冷湿期,良好的自然条件使沙漠边缘发育了大片绿洲。人工驯化类禾本科花粉稳定增长,农耕文明进一步发展,为人类生产生活提供了稳定的物质资料,人类活动中心转移至库车河、渭干河流域。Abstract:The relationship between paleoenvironment and ancient civilization evolution of the Tianshan Corridor is one of the important issues in the study of the community of life for human being and the nature of the Silk Road. Taking the peat sedimentary profile of the Bayanbulak basin as research material, using pollen as proxy index of paleoclimate, and combining the results of principal component analysis (PCA) and archaeological data, we revealed the vegetation succession history, environmental change, and human activity evolution in the middle of Tianshan Corridor during the late Holocene. Results show that: (1) during the Bronze Age (
3877 ~2697 cal. aBP), the pollen was mainly composed of desert vegetation, with a positive score for PCA axis 1 and a negative score for PCA axis 2. The climate was characterized by cold and dry conditions. Human activities were concentrated in Kaidu and Kongque River basin. (2) From the early Iron Age to the Qin-Han Dynasties (2697 ~1756 cal. aBP), the pollen of desert vegetation decreased, Betula had a significant advantage, and the members of Family Poaceae increased. The PCA score was opposite to that of the Bronze Age, and the climate changed to warm and humid. Pollens of human-domesticated Poaceae species had occurred frequently, early cultivation emerged in desert edge oasis, and human activity centers moved westward to the area of Luntai County. (3) From the Three Kingdoms to Tang Dynasty (1756 ~850 cal. aBP), the percentage of the Cyperaceae, Poaceae, and Picea increased and reached the peak on the profile. The humidity increased and entered a cold-humid period. Good natural conditions favored the development of large oases at the edge of desert. The percentage of human planted crops had increased, and agricultural civilization further developed, providing stable material resources for human production and life. The focus of human activities had shifted to the Kuche River and Weigan River basins.-
Keywords:
- pollen /
- climate /
- human activity /
- coevolution /
- Tianshan Corridor
-
-
图 1 丝绸之路天山廊道采样点及不同时期遗址点分布位置示意图
a: ①托勒库勒湖[11],②草滩湖[12],③天鹅湖[9],④艾比湖[13],⑤卡拉库里湖[14],⑥塔合曼湿地[15],⑦赛里木湖[4],⑧乌伦古湖[16],⑨乌帕尔[17],⑩巴里坤湖[18],⑪博斯腾湖[19],⑫孔雀河[20];b:青铜时期研究区遗址点分布图;c:早期铁器时代至秦汉时期研究区遗址点分布图;d:三国至隋唐时期研究区遗址点分布图。
Figure 1. The sampling location and sites distribution in different periods in the middle of the Tianshan Corridor of the Silk Road
a: ① Tuolekule Lake[11], ② Caotan Lake[12], ③ Swan Lake[9], ④ Ebinur Lake[13], ⑤ Kala-kule Lake[14], ⑥ Taheman wetland[15], ⑦ Sayram[4], ⑧ Wulungu Lake[16], ⑨ Wupaer[17], ⑩ Balikun Lake[18], ⑪ Bosten Lake[19], ⑫ Kongque River[20]; b: the archaeological sites of the Bronze Age in study area; c: the archaeological sites from the Early Iron Age to the Han Dynasties in study area; d: the archaeological sites from the Three Kingdoms to the Tang Dynasties in study area.
图 5 巴音布鲁克剖面气候演变序列及其与大区域古气候记录对比
a:巴音布鲁克PCA 轴 1 (本文),b:赛里木湖A/C值[27],c:赛里木湖碳酸盐含量[4],d:新疆北部湿度指数[26],e:中亚干旱区模拟降水量[28],f:孔雀河黏土含量[20],g:乌伦古湖碳酸盐含量[16],h:博斯腾湖碳酸盐含量[19],i:巴音布鲁克PCA 轴 2 (本文)。
Figure 5. The climate evolution sequence of the Bayanbulak section and their comparison with other regional paleoclimate records
a: PCA axis 1 of the Bayanbulak section (this study), b: the Artemisia/Chenopodiaceae ratios of the Sayram Lake[27], c: the carbonate content of Sayram Lake[4], d: moisture index of the northern Xinjiang[26], e: precipitation changes in arid central Asia[28], f: clay content in the Kongque River[20], g: the carbonate content of the Wulungu Lake[16], h: the carbonate content of the Bosten Lake[19], i: PCA axis 2 of the Bayanbulak section (this study).
表 1 巴音布鲁克剖面年代测试结果
Table 1 AMS14C dates and calibrated age in the Bayanbulak section
编号 深度/cm 14C年龄/ aBP 日历年龄/ cal.aBP BA193057 35~36 920±20 850±61 BA212558 57~58 1675 ±251576 ±45BA212559 125~126 2705 ±252806 ±46BA212567 152~153 3565 ±253877 ±51注:测年材料为全有机质。 表 2 天山廊道中段不同时期人类活动遗址数量
Table 2 Number of human activity sites in different periods in the middle section of the Tianshan Corridor
个 青铜时代 早期铁器时代 秦汉 三国两晋南北朝 隋唐五代十国 塔里木盆地东北缘① 26 19 74 16 50 塔里木盆地北缘② 10 10 47 54 105 注:①包括库尔勒市、焉耆回族自治县、和静县、和硕县、博湖县、尉犁县、罗布泊地区,②包括轮台县、库车县、拜城县、新和县、沙雅县。 -
[1] Tan L C, Dong G H, An Z S, et al. Megadrought and cultural exchange along the proto-silk road[J]. Science Bulletin, 2021, 66(6): 603-611. doi: 10.1016/j.scib.2020.10.011
[2] 郭物. 新疆史前晚期社会的考古学研究[M]. 上海: 上海古籍出版社, 2012: 419-431 GUO Wu. Archaeological Research on the Societies of the Late Prehistoric Xinjiang[M]. Shanghai: Shanghai Classics Publishing House, 2012: 419-431.]
[3] Yao F L, Ma C M, Zhu C, et al. Holocene climate change in the western part of Taihu Lake region, East China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 963-973. doi: 10.1016/j.palaeo.2017.08.022
[4] Lan J H, Zhang J, Cheng P, et al. Late Holocene hydroclimatic variation in central Asia and its response to mid-latitude Westerlies and solar irradiance[J]. Quaternary Science Reviews, 2020, 238: 106330. doi: 10.1016/j.quascirev.2020.106330
[5] 姚付龙, 朱诚, 夏倩倩, 等. 高分辨率泥炭孢粉记录的天山北坡2400 cal. a BP以来植被演替及其对气候变化的响应[J]. 地层学杂志, 2020, 44(1): 104-112 YAO Fulong, ZHU Cheng, XIA Qianqian, et al. Vegetation succession and its response to climate changes since 2400 cal yr B. P. by pollen record from a high resolution peat profile in the northern slope of Tianshan, China[J]. Journal of Stratigraphy, 2020, 44(1): 104-112.]
[6] 安成邦, 王伟, 刘依, 等. 新疆全新世环境变迁与史前文化交流[J]. 中国科学: 地球科学, 2020, 50(5): 677-687 doi: 10.1360/SSTe-2019-0049 AN Chengbang, WANG Wei, LIU Yi, et al. The Holocene environmental change in Xinjiang and its impact on prehistoric cultural exchange[J]. Scientia Sinica Terrae, 2020, 50(5): 677-687.] doi: 10.1360/SSTe-2019-0049
[7] 熊嘉武. 新疆天山东部山地综合科学考察[M]. 北京: 中国林业出版社, 2015: 86-94 XIONG Jiawu. Comprehensive Scientific Investigation of the Eastern Tianshan Mountains in Xinjiang[M]. Beijing: China Forestry Publishing House, 2015: 86-94.]
[8] 陈曦. 中国干旱区自然地理[M]. 北京: 科学出版社, 2010: 163-170 CHEN Xi. Physical Geography of Arid Land in China[M]. Beijing: Science Press, 2010: 163-170.]
[9] Huang X Z, Chen C Z, Jia W N, et al. Vegetation and climate history reconstructed from an alpine lake in central Tienshan Mountains since 8.5 kaBP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 432: 36-48. doi: 10.1016/j.palaeo.2015.04.027
[10] 国家文物局. 中国文物地图集·新疆维吾尔自治区分册[M]. 北京: 文物出版社, 2012: 142-172 State Administration Cultural Heritage. An Atlas of Chinese culture relics in Xinjiang Province[M]. Beijing: Cultural Relics Press, 2012:142-172.]
[11] 陶士臣, 安成邦, 陈发虎, 等. 新疆托勒库勒湖孢粉记录的4.2 kaBP气候事件[J]. 古生物学报, 2013, 52(2): 234-242 TAO Shichen, AN Chengbang, CHEN Fahu, et al. An abrupt climatic event around 4.2 cal. kaBP documented by fossil pollen of Tuolekule lake in the eastern Xinjiang Uyghur autonomous region[J]. Acta Palaeontologica Sinica, 2013, 52(2): 234-242.]
[12] Zhang Y, Kong Z C, Ni J, et al. Late Holocene palaeoenvironment change in central Tianshan of Xinjiang, northwest China[J]. Grana, 2007, 46(3): 197-213. doi: 10.1080/00173130701564748
[13] 延琪瑶, 王力, 张芸, 等. 新疆艾比湖小叶桦湿地3900年以来的植被及环境演变[J]. 应用生态学报, 2021, 32(2): 486-494 doi: 10.13287/j.1001-9332.202102.007 YAN Qiyao, WANG Li, ZHANG Yun, et al. Changes in vegetation and environment in the Betula microphylla wetland of Ebinur Lake in Xinjiang, China since 3900 cal. aBP[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 486-494.] doi: 10.13287/j.1001-9332.202102.007
[14] Aichner B, Feakins S J, Lee J E, et al. High-resolution leaf wax carbon and hydrogen isotopic record of the Late Holocene paleoclimate in arid Central Asia[J]. Climate of the Past, 2015, 11(4): 619-633. doi: 10.5194/cp-11-619-2015
[15] 王馨, 冉敏, 杨运鹏, 等. 泥炭记录的帕米尔高原晚全新世温度变化研究[J]. 地理科学进展, 2022, 41(8): 1467-1477 doi: 10.18306/dlkxjz.2022.08.010 WANG Xin, RAN Min, YANG Yunpeng, et al. Peat δ13Cα-cellulose-based Late Holocene temperature reconstruction in Pamir, China[J]. Progress in Geography, 2022, 41(8): 1467-1477.] doi: 10.18306/dlkxjz.2022.08.010
[16] Liu X Q, Herzschuh U, Shen J, et al. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China[J]. Quaternary Research, 2008, 70(3): 412-415. doi: 10.1016/j.yqres.2008.06.005
[17] Zhao K L, Li X Q, Dodson J, et al. Climatic variations over the last 4000 cal yr BP in the western margin of the Tarim Basin, Xinjiang, reconstructed from pollen data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 321-322: 16-23. doi: 10.1016/j.palaeo.2012.01.012
[18] 陶士臣, 安成邦, 陈发虎, 等. 孢粉记录的新疆巴里坤湖16.7 cal. kaBP以来的植被与环境[J]. 科学通报, 2010, 55(11): 1026-1035 TAO Shichen, AN Chengbang, CHEN Fahu, et al. Pollen-inferred vegetation and environmental changes since 16.7 kaBP at Balikun Lake, Xinjiang[J]. Chinese Science Bulletin, 2010, 55(22): 2449-2457.]
[19] Wünnemann B, Mischke S, Chen F H. A Holocene sedimentary record from Bosten Lake, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 234(2-4): 223-238. doi: 10.1016/j.palaeo.2005.10.016
[20] Zhang Y F, Mo D W, Hu K, et al. Holocene environmental changes around Xiaohe Cemetery and its effects on human occupation, Xinjiang, China[J]. Journal of Geographical Sciences, 2017, 27(6): 752-768. doi: 10.1007/s11442-017-1404-6
[21] Faegri K, Kaland P E, Krzywinski K. Textbook of Pollen Analysis[M]. 4th ed. London: John Wiley & Sons Inc. , 1989.
[22] 席以珍, 宁建长. 中国干旱半干旱地区花粉形态研究[J]. 玉山生物学报, 1994, 11: 119-191 XI Yizhen, NING Jianchang. Study on pollen morphology of plants from dry and semidry area in China[J]. Yushania, 1994, 11: 119-191.]
[23] 王伏雄, 钱南芬, 张玉龙, 等. 中国植物花粉形态[M]. 2版. 北京: 科学出版社, 1995: 1-461 WANG Fuxiong, QIAN Nanfen, ZHANG Yulong, et al. Pollen Flora of China[M]. 2nd ed. Beijing: Science Press, 1995: 1-461.]
[24] 唐领余, 毛礼米, 舒军武, 等. 中国第四纪孢粉图鉴[M]. 北京: 科学出版社, 2016: 1-556 TANG Lingyu, MAO Limi, SHU Junwu, et al. An Illustrated Handbook of Quaternary Pollen and Spores in China[M]. Beijing: Science Press, 2016: 1-556.]
[25] 张全超, 朱泓. 新疆古墓沟墓地人骨的稳定同位素分析: 早期罗布泊先民饮食结构初探[J]. 西域研究, 2011(3): 91-96, 142 ZHANG Quanchao, ZHU Hong. Carbon and nitrogen stable isotope analysis of the human bones from the Gumugou Cemetery in Xinjiang: A preliminary exploration of the early population dietary in Lop Nur[J]. The Western Regions Studies, 2011(3): 91-96, 142.]
[26] Wang W, Feng Z D, Ran M, et al. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-central Asia[J]. Quaternary International, 2013, 311: 54-62. doi: 10.1016/j.quaint.2013.07.034
[27] Jiang Q F, Ji J F, Shen J, et al. Holocene vegetational and climatic variation in westerly-dominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China[J]. Science China Earth Sciences, 2013, 56(3): 339-353. doi: 10.1007/s11430-012-4550-9
[28] Zhang X J, Jin L Y, Chen J, et al. Detecting the relationship between moisture changes in arid central Asia and East Asia during the Holocene by model-proxy comparison[J]. Quaternary Science Reviews, 2017, 176: 36-50. doi: 10.1016/j.quascirev.2017.09.012
[29] 郭超, 马玉贞, 李金凤. 中国及周边地区中晚全新世湿度演化及其可能机制[J]. 第四纪研究, 2022, 42(4): 1058-1077 doi: 10.11928/j.issn.1001-7410.2022.04.11 GUO Chao, MA Yuzhen, LI Jinfeng. Mid-to Late Holocene moisture evolution in China and surroundings: Spatial patterns and possible mechanisms[J]. Quaternary Sciences, 2022, 42(4): 1058-1077.] doi: 10.11928/j.issn.1001-7410.2022.04.11
[30] Yang Y P, Feng Z D, Ran M, et al. Holocene vegetation and hydrology variations and their associations with climate changes: a multi-proxy analysis of a sediment core from an alpine basin in the middle Tianshan Mountains[J]. Climate Dynamics, 2021, 56(11): 3835-3852.
[31] 陈发虎, 黄小忠, 杨美临, 等. 亚洲中部干旱区全新世气候变化的西风模式: 以新疆博斯腾湖记录为例[J]. 第四纪研究, 2006, 26(6): 881-887 doi: 10.3321/j.issn:1001-7410.2006.06.001 CHEN Fahu, HUANG Xiaozhong, YANG Meilin, et al. Westerly dominated Holocene climate model in arid central Asia: case study on Bosten lake, Xinjiang, China[J]. Quaternary Sciences, 2006, 26(6): 881-887.] doi: 10.3321/j.issn:1001-7410.2006.06.001
[32] Hong Y T, Hong B, Lin Q H, et al. Inverse phase oscillations between the East Asian and Indian Ocean Summer monsoons during the last 12000 years and paleo-El Niño[J]. Earth and Planetary Science Letters, 2005, 231(3-4): 337-346. doi: 10.1016/j.jpgl.2004.12.025
[33] 吴鹏飞, 刘征宇, 程军, 等. 中全新世以来东亚夏季降水时空演变不一致性的模拟研究[J]. 第四纪研究, 2013, 33(6): 1138-1147 doi: 10.3969/j.issn.1001-7410.2013.06.10 WU Pengfei, LIU Zhengyu, CHENG Jun, et al. A simulation study on spatio-temporal asynchronism of East Asian summer’s precipitation variation since the mid-Holocene[J]. Quaternary Sciences, 2013, 33(6): 1138-1147.] doi: 10.3969/j.issn.1001-7410.2013.06.10
[34] 姚付龙, 马春梅, 朱诚, 等. 中国西天山北坡表土花粉与区域植被关系[J]. 古生物学报, 2021, 60(3): 471-482 doi: 10.19800/j.cnki.aps.2020064 YAO Fulong, MA Chunmei, ZHU Cheng, et al. Relationship between surface pollen and vegetation on the northern slope of West Tianshan Mountains, China[J]. Acta Palaeontologica Sinica, 2021, 60(3): 471-482.] doi: 10.19800/j.cnki.aps.2020064
[35] Feng S N, Liu X Q, Mao X. Vegetation dynamics in arid central Asia over the past two millennia linked to NAO variability and solar forcing[J]. Quaternary Science Reviews, 2023, 310: 108134. doi: 10.1016/j.quascirev.2023.108134
[36] 郑景云, 郝志新, 张学珍, 等. 中国东部过去2000年百年冷暖的旱涝格局[J]. 科学通报, 2014, 59(30): 2964-2971 doi: 10.1360/N972014-00393 ZHENG Jingyun, HAO Zhixin, ZHANG Xuezhen, et al. Drought/flood spatial patterns in centennial cold and warm periods of the past 2000 years over eastern China[J]. Chinese Science Bulletin, 2014, 59(30): 2964-2971.] doi: 10.1360/N972014-00393
[37] 方修琦, 苏筠, 郑景云, 等. 历史气候变化对中国社会经济的影响[M]. 北京: 科学出版社, 2019: 34-38 FANG Xiuqi, SU Jun, ZHENG Jingyun, et al. The Impacts of Climate on the Society and Economic of China During Historical Times[M]. Beijing: Science Press, 2019: 34-38.]
[38] 邵会秋. 新疆史前时期文化格局的演进及其与周邻文化的关系[M]. 北京: 科学出版社, 2018 SHAO Huiqiu. The Development of the Pre-historic Cultures in Xinjiang and the Interaction with Neighbor Cultures[M]. Beijing: Science Press, 2018.]
[39] Zhao K L, Li X Q, Zhou X Y, et al. Impact of agriculture on an oasis landscape during the Late Holocene: Palynological evidence from the Xintala site in Xinjiang, NW China[J]. Quaternary International, 2013, 311: 81-86. doi: 10.1016/j.quaint.2013.06.035
[40] Tarasov P E, Demske D, Leipe C, et al. An 8500-year palynological record of vegetation, climate change and human activity in the Bosten Lake region of Northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516: 166-178. doi: 10.1016/j.palaeo.2018.11.038
[41] 张成君, 郑绵平, Prokopenko A, 等. 博斯腾湖碳酸盐和同位素组成的全新世古环境演变高分辨记录及与冰川活动的响应[J]. 地质学报, 2007, 81(12): 1658-1671 doi: 10.3321/j.issn:0001-5717.2007.12.007 ZHANG Chengjun, ZHENG Mianping, Prokopenko A, et al. The palaeoenvironmental variation from the high-resolution record of the Holocene sediment carbonate and isotopic composition in Bosten Lake and responding to glacial activity[J]. Acta Geologica Sinica, 2007, 81(12): 1658-1671.] doi: 10.3321/j.issn:0001-5717.2007.12.007
[42] 李帅丽, 王继龙, 彭博, 等. 全新世以来福建宁德地区环境演变及人类活动的孢粉记录[J]. 海洋地质与第四纪地质, 2021, 41(3): 170-181 doi: 10.16562/j.cnki.0256-1492.2020102201 LI Shuaili, WANG Jilong, PENG Bo, et al. Palynological evidence for palaeoenviromental change and human activity in Ningde of Fujian province during Holocene[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 170-181.] doi: 10.16562/j.cnki.0256-1492.2020102201
[43] 段晓红, 张芸, 杨振京, 等. 新疆石河子蘑菇湖湿地4800年以来的环境演变[J]. 海洋地质与第四纪地质, 2018, 38(4): 203-211 doi: 10.16562/j.cnki.0256-1492.2018.04.018 DUAN Xiaohong, ZHANG Yun, YANG Zhenjing, et al. Environmental evolution of the Moguhu Wetland of Shihezi City in Xinjiang since 4800 cal. aBP[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 203-211.] doi: 10.16562/j.cnki.0256-1492.2018.04.018