末次冰消期以来冲绳海槽深水氧化性与通风演化研究进展与展望

窦衍光, 孙呈慧, 邹建军, 丛静艺, 张勇, 吴永华, 石学法

窦衍光,孙呈慧,邹建军,等. 末次冰消期以来冲绳海槽深水氧化性与通风演化研究进展与展望[J]. 海洋地质与第四纪地质,2023,43(3): 74-83. DOI: 10.16562/j.cnki.0256-1492.2023051602
引用本文: 窦衍光,孙呈慧,邹建军,等. 末次冰消期以来冲绳海槽深水氧化性与通风演化研究进展与展望[J]. 海洋地质与第四纪地质,2023,43(3): 74-83. DOI: 10.16562/j.cnki.0256-1492.2023051602
DOU Yanguang,SUN Chenghui,ZOU Jianjun,et al. Research progress and prospects on the evolution of deep water oxygenation and ventilation in the Okinawa Trough since the last Deglaciation[J]. Marine Geology & Quaternary Geology,2023,43(3):74-83. DOI: 10.16562/j.cnki.0256-1492.2023051602
Citation: DOU Yanguang,SUN Chenghui,ZOU Jianjun,et al. Research progress and prospects on the evolution of deep water oxygenation and ventilation in the Okinawa Trough since the last Deglaciation[J]. Marine Geology & Quaternary Geology,2023,43(3):74-83. DOI: 10.16562/j.cnki.0256-1492.2023051602

末次冰消期以来冲绳海槽深水氧化性与通风演化研究进展与展望

基金项目: 国家自然科学基金项目“MIS6期以来东海外陆架–冲绳海槽沉积汇周期性转换过程与机制研究”(42276084),“中全新世浙闽泥质体沉积模式区域差异性与驱动机制研究”(42206078);中国地质调查局地质调查专项(DD20230069)
详细信息
    通讯作者:

    窦衍光(1979—),男,研究员,主要从事海洋沉积地球化学研究,E-mail:douyanguang@gmail.com

  • 中图分类号: P736.2

Research progress and prospects on the evolution of deep water oxygenation and ventilation in the Okinawa Trough since the last Deglaciation

  • 摘要: 过去二十年,末次冰消期以来冲绳海槽深层水沉积氧化性与通风演化、碳埋藏与释放等研究一直备受关注。尽管目前该研究方向已开展了大量的工作,但由于多种替代指标的复杂性和局限性,与冲绳海槽黑潮动力学相关的深水环流和沉积氧化还原研究目前仍然存在较大争议。本文系统总结了末次冰消期以来冲绳海槽深层水沉积氧化性与通风演化的研究进展,发现高有机质沉降通量和高古生产力是末次盛冰期(LGM)至冰消期期间冲绳海槽深层水缺氧的主要原因;Younger Drays(YD)和Heinrich Stadial 1(HS1)事件期间深水通风增强、含氧量增加与北太平洋中层水(NPIW)强化和侵入有关;早全新世以来黑潮加强引发的深水通风抵消了上升流驱动的生产力提高的影响,使得冲绳海槽深层水处于氧化状态。最后提出未来冲绳海槽古海洋学研究应加强对轨道-千年尺度深层水水源识别与演化示踪、不同气候状态下古生产力与沉积氧化还原耦合关系,以及深层水演化的环境与气候效应等方面的研究。
    Abstract: The sedimentary oxygenation and evolution of deepwater ventilation, as well as carbon burial and release in the Okinawa Trough have been highly concerned since the last glacial period over the past two decades. Although many researches have been carried out on this research regime, the coupling relationships between redox conditions and deepwater circulations, biological productivity evolutions are still controversial because of the complexity and limitations of multiple alternative proxies. This paper systematically summarizes the research progress on the oxidation and ventilation evolution of deepwater deposition in the Okinawa Trough since the last glacial period. It was found that the high paleoproductivity and organic matter flux were the main reasons for deep water hypoxia in the Okinawa Trough during the LGM to last deglaciation period. The increase in oxygen content and strengthened deepwater ventilation during the HS1 and YD periods may be related to the intrusion of stronger North Pacific Intermediate Water (NPIW). Since the early Holocene, the deepwater ventilation caused by the Kuroshio has offset the impact of the productivity increase driven by the upwelling, making the deepwater oxidized in the Okinawa Trough. We propose that future research on the paleoceanography of the Okinawa Trough should strengthen the identification and evolution tracing of deep water sources on the orbital millennium time scale, the coupling relationship between paleoproductivity and sedimentary redox under different climate states, and the environmental and climatic effects of deep water evolution.
  • 海湾具有独特的自然环境和优越的地理位置,对人类生存及社会发展具有极其重要的意义[1],然而海湾是一个相对封闭的海洋环境,其水交换能力较差,生态环境较为脆弱,对人工构筑物建设等人类活动的干扰较为敏感[2]。人工构筑物的建设可以有效增加自然岸线、提高海洋资源利用效率,但人工构筑物的建设会改变原有海域的地形条件,直接或间接地影响海洋生态环境[3],导致所在海域潮流、潮位、波浪等水动力条件发生变化[4-5],甚至经常引起更大程度的极端事件以及海平面上升现象[6]。因此,为了保护海湾环境实现可持续发展,研究人工岛建设等人类活动对海湾环境的影响尤为重要[1, 7]

    围填海工程建设等人类活动对水动力环境的影响,一直以来吸引着国内外学者的广泛关注。近岸潮汐的变化与围填海工程的建设密切相关[8],Byun等[9]认为在潮汐占主导地位、壅塞的河口或港湾环境中建造堤坝或海堤等围填海工程,可能导致潮汐振幅显著增加和水流速度下降。围填海工程的建设不会导致潮流特征大范围改变,仅在工程区域附近有较大变化[10],流向受工程影响会发生偏转,工程防波堤等会引起挑流作用的区域流速增大,其余区域流速普遍减小[11-12]。法国兰斯河口世界第二大潮汐电站[13]以及加拿大芬迪湾潮汐动力潟湖工程[14]对附近潮流也产生了类似的影响。海岸的形态对于波浪能的耗散具有关键作用[15],围填海工程造成的海岸形态的改变往往会中断与波浪条件相关联的沿岸泥沙输运,同时会破坏海岸抵抗风暴的能力[16],但设计良好的防波堤会有效减小入港波浪的有效波高,从而达到保护港口的目的[17-18]。围填海造成的海域面积减小会直接导致纳潮量减少[19-20],例如马尔代夫国际机场扩建工程[21]、雅加达湾巨型海堤[22]以及胶州湾围填海工程[23]等。水交换也会受到围填海工程的影响[24],岸线大规模的改变会导致水交换能力减弱,通过修复岸线对水交换能力具有促进作用[25],岸线变迁引起的水动力环境的改变是影响水交换率的主要因素[26]。此外,还有学者在水动力环境变化的基础上探讨了冲淤环境以及地貌演变对海岸工程建设的响应[27-29],同时对于围填海工程造成的水质污染[30-31]、海洋生物受损[32-33]等方面的研究也有很多学者涉猎。然而,前人的研究多集中于河口或者较为开阔的海湾或海域中围填海工程的建设,对于小海湾中大规模离岸人工岛群建设对海洋环境影响的相关研究却鲜有报道,因此,本文针对龙口湾水动力特征及其对人工岛群建设的响应进行较为全面的研究。

    龙口湾面积约84.13 km2,龙口人工岛面积约35.23 km2,约占龙口湾面积的41%,因此,在龙口湾这类小海湾中建设大规模的围填海工程,势必对其海洋生态环境造成明显影响。刘星池[34]等通过建立龙口湾水沙数值模型来预测人工岛建设对海洋环境的影响,人工岛建设会导致龙口湾潮流流速流向均发生不同程度的变化,冲淤特征表现为人工岛北侧和西南侧海域以冲淤为主,西侧海域以侵蚀为主[35],人工岛外悬浮泥沙浓度和悬沙通量大于岛内水道[36],同时表层沉积物组合特征也产生了重要变化[37]。但是,目前对于人工岛群建设对龙口湾水环境的影响研究主要集中在潮流场变化,缺乏其对水动力环境的系统研究;同时,龙口人工岛的实际建设方案与设计方案存在明显差异,导致前人对于该区域的研究存在误差,不能完全反映人工岛群建设对龙口湾水动力特征的影响。因此,本文利用龙口湾以及附近海域的水深地形、潮汐潮流等实测资料,利用Mike21数学模型,分析了人工岛建设前后龙口湾的水动力特征,并在此基础上探讨了人工岛群建设对龙口湾潮流、波浪、潮位、纳潮量以及水交换的影响。

    龙口湾为莱州湾的一个附属海湾,湾廓呈半圆形,是典型的连岛坝成因的次生海湾[38]。20世纪90年代以来龙口湾海岸开发活动不断增多,极大地改变了龙口湾的海岸形态和地形地貌[39],其中以龙口人工岛规模最大。除航道外,湾内水深不足10 m,湾外水深一般为10~20 m(图1)。屺坶岛以南的连岛海岸以基岩海岸或人工岸线为主,人工岛群以南主要为砂质海岸。表层沉积物主要以粉砂和砂为主,湾外沉积物粒径较粗[40]。潮汐性质为不规则半日潮,潮流性质以不规则半日潮流为主,潮流运动形式主要为往复流[41]。波浪以风浪为主,湾内常浪向为SW向,强浪向为WSW向,湾外常浪和强浪向均为NE向[42]

    图  1  研究区地理位置
    Figure  1.  Location of the study area

    本文潮流场模拟采用Mike21中的Flow Model FM HD模块[43]进行,模拟采用非结构三角网格剖分计算域,计算域范围如图2所示,坐标范围为36°59′15.743″~40°59′21.417″N、117°32′22.881″~122°39′30.992″E,覆盖整个渤海海域及部分北黄海海域[44]。人工岛群建设前后除工程区域外其他位置的网格一致,增强了前后对比的准确性和可靠性。

    图  2  研究区计算网格图
    Figure  2.  Gridding of the study area

    对位于潮滩区的干、湿网格采用动边界的方法进行处理。为能清楚了解研究区所在海域潮流场特征,对该海域网格作局部加密处理。水深资料采用中国人民解放军海军航海保证部制作的海图1∶100万(10011号)、1∶15万(11370号、11570号、11710号、11840号、11910号、11932号)水深资料及研究区附近海域最新实测水深资料。

    波浪场模拟采用Mike21中的SW浅水波浪数值模块,该模型广泛适用于大范围或者局部区域的波浪预报和分析以及不同历史条件下近海、海岸和港口结构物设计过程中的波浪情况预报[45]

    波浪数值模拟的计算域及网格、岸界和水深资料与本文潮流场数值模拟设置一致,分别模拟了研究区N向和SW向六级风(12 m/s)作用24小时下的波浪场状况,以此来探讨人工岛群建设对龙口湾波浪场的影响。

    纳潮量是一个水域可以接纳潮水的体积,海湾的纳潮量不仅是衡量海湾开发价值的一个水文指标,而且也是反映湾内外水交换的一个重要参数[46],本文对纳潮量的计算采用叶海桃[47]等对三沙湾纳潮量的算法,其公式如下:

    $$ P = \Delta H{A_0} + \mathop \sum \nolimits_{i = 1}^n \Delta H_i'{A_i}$$ (1)

    式中:$ P $为纳潮量,单位:m3

    $ \Delta H $为潮差,单位:m;

    $ {A}_{0} $为最低潮位下水域面积,单位:m2

    $ \Delta {H}_{i}' $为潮滩上第$ i $个网格高潮位时的水深,单位:m;

    $ {A}_{i} $为第$ i $个网格上最低潮位时的水域面积,单位:m2

    由于龙口人工岛最西侧填海区域超出了龙口湾界线(37°32′15.982″~37°40′12.993″N、120°13′26.819″~120°13′43.580″E),无法采用原龙口湾的界线来计算纳潮量,因此本文选取从屺坶岛至石虎咀断面和海岸线封闭的区域为本文计算区域(图1),以下简称“计算区域”。

    水交换是海洋环境科学研究的一个基本命题,水交换率的计算是研究海湾自净能力的重要指标和手段[48]。本文对水交换率的计算采用保守污染物浓度扩散的方法[49],在Mike21水动力数值模型中,初始时刻将计算区域内示踪剂浓度设为1,外海域设为0,其他水动力条件保持不变,得到水交换率等于(1–浓度值)×100%。水交换计算区域与纳潮量计算区域一致,计算时长30 d。

    本文收集了大连、旅顺、鲅鱼圈、曹妃甸、大口河、潍坊港、北隍城、八角、烟台港、龙口港等10个潮位站历史观测资料并采用傅氏分析方法[50]进行调和分析,选用M2、S2、K1、O1四个分潮的调和常数预报出大潮期的潮位变化,同时结合中国海洋大学2017年5月10—11日在工程附近进行的2个站位的潮位观测资料进行潮位验证;采用2017年5月10— 11日(大潮)6个站位27小时海流同步连续观测资料进行流向流速验证,验证结果表明,模拟结果和实测值吻合较好。限于篇幅限制,本文仅列出研究区周边的潮位验证曲线(C4站位和龙口港)和潮流验证曲线(C4、C5和C6站位),见图3图4

    图  3  潮位验证曲线
    Figure  3.  Tide verification curve
    图  4  流速流向验证曲线
    Figure  4.  Current velocity and direction validation curve

    潮流场数值模拟结果表明,在涨急时刻,湾外潮流流向整体上为西南向,受地形影响较小,流向变化较小,湾内潮流方向主要为西南向和南向,在屺坶岛西南侧潮流转为东南向,进入湾内则变为东向,向南逐渐转为西南向;流速在屺坶岛西侧最大,可达0.68 m/s,龙口湾内流速较小,整体小于0.2 m/s,且越靠近岸线流速越小。落急时刻的整体规律与涨急时刻相反,潮流带为明显的往复流形式,湾外潮流流向整体上为东北向,湾内潮流流向在龙口湾内受地形影响发生逆时针旋转,转为西北向至屺坶岛流向湾外;流速在屺坶岛西北侧最大,可达0.8 m/s,龙口湾内流速分布与涨急时刻类似(图5)。

    图  5  人工岛建设前涨急和落急时刻潮流场分布图(大潮期)
    Figure  5.  Current fields during flood and ebb of tide before construction of artificial island (spring tide)

    人工岛建设后,龙口湾潮流场特征发生了明显的改变。涨急时刻,湾外潮流流向整体上为西南向,流向变化较小,湾内潮流流向较为复杂,整体上围绕人工岛外侧流出湾内,小部分进入岛内水道,在人工岛防波堤内存在一个漩涡;湾外流速较大,为0.2~0.8 m/s,流速由北向南逐渐减小,湾内流速整体小于0.1 m/s。落急时刻潮流流向整体上与涨急时刻相反,湾外潮流流向整体上为东北向,湾内潮流在人工岛南部逆时针转为西北向,在人工岛防波堤处一部分向北流出湾内,一部分转为东方向进入龙口港围绕岸线流向湾外;湾外流速为0.2~0.8 m/s,湾内流速整体上小于0.1 m/s(图6)。

    图  6  人工岛建设后涨急和落急时刻潮流场分布图(大潮期)
    Figure  6.  Current fields during flood and ebb of tide after construction of artificial island (spring tide)

    人工岛建设前,SW向6级风(风速12 m/s)作用12小时情况下,湾外有效波高较大,大部分区域有效波高大于1.2 m,受SW向风和地形的影响,波高等值线形态向南凸出。湾内有效波高整体小于1.2 m,近岸人工构筑物的掩蔽作用[51]较为明显,在龙口港内以及屺坶岛南侧部分半封闭区域形成波影区,有效波高小于0.4 m;受湾内水深影响,波高等值线变化率较快,且逐渐趋于与岸线平行(图7)。

    图  7  SW向6级风下人工岛建设前后波浪场分布图
    Figure  7.  Wave fields before and after construction of artificial island under southwest wind

    人工岛建设后,SW向6级风作用12小时情况下,湾外的波浪特征并未发生明显的变化,有效波高整体上大于1.2 m,波高等值线形态向南凸出。湾内有效波高整体减小,屺坶岛南侧局部区域有效波高能达到1.3 m左右,其他区域有效波高小于1.1 m。人工岛的建设使得龙口湾的地形变得更为复杂,除龙口港内和屺坶岛附近形成波影区外,人工岛水道内也形成波影区,波影区有效波高小于0.4 m。

    人工岛建设前,N向6级风(12 m/s)作用12小时情况下,湾外有效波高整体较大,大部分区域有效波高大于1.65 m,受N向风和地形的影响,波高等值线形态向南凸出。湾内有效波高整体小于1.2 m,波高等值线形态向东凸出,受湾内水深影响,波高等值线变化率较快,且逐渐趋于与岸线平行(图8)。

    图  8  N向6级风下人工岛建设前后波浪场分布图
    Figure  8.  Wave fields before and after construction of artificial island under north wind

    人工岛建设后,N向6级风作用12小时情况下,湾外的波浪特征并未发生明显的变化,有效波高整体上大于1.65 m。湾内有效波高整体减小,在人工岛防波堤处波高骤减,形成波影区,湾内有效波高整体小于1.35 m,人工岛建设区域有效波高形态变化较大,人工岛北侧区域有效波高形态变化较小。

    本文分别计算了人工岛建设前后大潮期和小潮期的纳潮量,结果如表1所示,人工岛建设前大潮期纳潮量1.3620×108 m3,小潮期纳潮量9.1227×107 m3,平均纳潮量1.1371×108 m3;人工岛建设后大潮期纳潮量1.1749×108 m3,小潮期纳潮量7.8660×107 m3,平均纳潮量9.8075×107 m3。相比工程建设前后,大潮期纳潮量减小了13.74%,小潮期纳潮量减小了13.78%,平均减小了13.75%,可见人工岛的建设对计算区域纳潮量的影响很大。

    表  1  人工岛建设前后纳潮量
    Table  1.  Tidal prism before and after construction of artificial island
    潮况建设前纳潮量/m3建设后纳潮量/m3变化量/m3变化率/%
    大潮1.3620×1081.1749×108−1.8710×107−13.74
    小潮9.1227×1077.8660×107−1.2567×107−13.78
    平均1.1371×1089.8075×107−1.5635×107−13.75
    下载: 导出CSV 
    | 显示表格

    根据计算区域30 d的水交换率计算结果(图9),人工岛建设前,30 d平均水交换率为62.58%,在计算边界附近水交换能力最强,水交换率为80%~90%,水交换率由边界处向湾内依次递减,越靠近岸线减小速率越快,在龙口港附近最弱,水交换率小于20%。人工岛建设后,30 d平均水交换率59.82%,在计算边界附近水交换率在80%左右,在龙口港附近及人工岛内部水域水交换率迅速减小,龙口湾内水交换率小于20%,局部区域小于5%,人工岛内部水道水交换率为0~80%,南部和西部区域可达80%,中间水道局部区域水交换率小于5%。

    图  9  人工岛建设前后30 d水交换率分布图
    Figure  9.  30 days water exchange rate before and after construction of artificial island

    (1)潮流流向变化

    人工构筑物的建设会引起潮流流向的偏转[52],本文中将人工岛建设前后的流场进行了叠加并将变化明显的区域进行了局部放大(图10图11)。可见人工岛建设后,在涨急时刻人工岛西北侧(A区域)流向顺时针偏转,人工岛北侧区域(B区域)由原来的开放海域变成半封闭海域,潮流流向在此变化较为复杂,整体上顺时针偏转,人工岛西侧(C区域)由于人工岛防波堤的挑流作用形成了一个逆时针旋转的漩涡,人工岛南侧(D区域)潮流流向逆时针偏转(图10)。在落急时刻人工岛西北侧(A区域)流向顺时针偏转,人工岛北侧(B区域)流向整体上逆时针偏转,人工岛西侧(C区域)和人工岛南侧(D区域)流向逆时针偏转(图11)。

    图  10  人工岛建设前后涨急时刻流向对比图(大潮期)
    Figure  10.  Current direction during flood of tide before and after construction of artificial island (spring tide)
    图  11  人工岛建设前后落急时刻流向对比图(大潮期)
    Figure  11.  Current direction during ebb of tide before and after construction of artificial island (spring tide)

    (2)潮流流速变化

    本文分别选取了工程建设前后大潮期涨急时刻和落急时刻的潮流场进行了流速对比(图12)。通过对比分析,龙口人工岛建设前后,研究区的潮流场特征发生了较为明显的变化,尤其是在人工岛附近区域变化更为明显,具体表现在:人工岛西部靠近防波堤的区域由于挑流作用[53]流速增大,最大流速变化超过0.4 m/s,变化率可达60%,涨急时刻流速变化相比落急时刻变化较大,距离防波堤越远,流速变化越小。李池鸿[54]等基于Mike21模型对新建的洋浦神头港区南港区码头工程进行了研究,结果表明工程后防波堤口门附近涨、落潮都会因挑流的影响局部流速会变大。人工岛的建设阻挡了部分区域原有潮流的流动,致使潮流流速减小,在人工岛北部,流速整体减小,涨急时刻减小范围大多为0.08~0.16 m/s(变化率30%~70%),极少数区域超过0.16 m/s;落急时刻流速变化较大,流速减小超过0.16 m/s(变化率约70%)的区域大幅增加;在人工岛内部水道以及人工岛南部区域,流速减小,涨落急时刻变化较为相似,流速减小范围整体上为0.08~0.16 m/s(变化率30%~70%),在界河口的一小部分区域流速减小范围超过0.16 m/s。潮流流速的变化可能是引起人工岛北侧、西南侧和内部水道产生淤积以及人工岛西侧发生冲刷[35]的主要原因。

    图  12  人工岛建设前后涨急和落急时刻流速对比图(大潮期)
    Figure  12.  Current velocity during flood and ebb of tide before and after construction of artificial island (spring tide)

    (3)余流场变化

    为了分析人工岛建设对龙口湾余流场的影响,本文选取了潮流数模结果中一个完整大小潮周期(15天)的流速流向计算了人工岛建设前后研究区的欧拉余流(图13),并进行了差值对比(图14)。人工岛建设前,龙口湾湾外除屺坶岛附近区域外余流流向整体上为北向,流速普遍在0.05 m/s左右,在屺坶岛西北侧和西南侧分别形成一个顺时针漩涡和逆时针漩涡,流速为0.05~0.15 m/s,龙口湾西侧存在一个顺时针漩涡,其流速在0.05 m/s左右;湾内余流流向较为复杂,余流从龙口湾西北侧进入后分为两支,一支整体呈逆时针运移在龙口湾北侧流出,另一支呈顺时针运移在龙口湾南侧流出。

    图  13  人工岛建设前后余流特征
    Figure  13.  Residual current characteristics before and after the construction of artificial island
    图  14  人工岛建设前后余流流速对比图
    Figure  14.  Comparison of residual flow velocity before and after the construction of artificial island

    人工岛建设后,湾外余流场未发生明显变化,湾内余流场变化较为明显,具体表现在人工岛西侧形成一个逆时针旋转的新漩涡,且流速增大,增大范围为0.03~0.4 m/s,人工岛北部余流整体上分为两支,一支逆时针运移在屺坶岛附近流出龙口湾,流速较人工岛建设前减小,另一支顺时针运移在人工岛防波堤处流出,流速略有增大,人工岛西南侧区域余流整体上向西南方向运移,流速较人工岛建设前减小。

    海域波浪场的分布特征与水深、地形和风速风向等要素密切相关,在岸线走向、海底地形、风速风向的影响下,波浪在传播过程中会发生一定的折减、绕射等衰减现象[55-56]。本文为了更好地分析人工岛的建设对波浪场的影响,将人工岛建设前后的有效波高做了差值对比(图15),在SW向6级风作用下,湾外有效波高未发生明显变化;湾内变化主要集中在人工岛北部及内部水道区域,其中人工岛内部区域有效波高变化最为明显,人工岛对该区域的掩蔽作用较强,导致有效波高在此明显减小,有效波高减小范围为0.3~1.2 m(变化率24%~96%);人工岛北部海域人工岛的掩蔽作用较小,该区域有效波高减小,减小范围为0.15~0.6 m(变换率12%~48%)。在N向6级风作用下,湾外有效波高未发生明显变化,湾内变化主要集中在人工岛水道及人工岛西南侧区域,人工岛的掩蔽作用导致该区域的有效波高相对人工岛建设前整体减小,在人工岛防波堤处有效波高减小可达1.2 m,变化率可达96%。

    图  15  人工岛建设前后波浪场对比图
    Figure  15.  Comparison of wave field before and after the construction of artificial island

    波浪对比结果表明,龙口人工岛的建设导致工程附近区域的波浪有效波高整体减小,其影响范围主要集中在人工岛周边。顾杰[57]等研究结果也表明工程实施前后的波高变化仅集中在工程区域附近,工程的建设使该区域波高显著减小。

    围填海的建设会导致潮位产生一定的变化[58],为此,我们在人工岛北部、西部、南部以及人工岛内部共选取了12个代表点(图1)分别计算了大潮期一个潮周期内的最大潮差变化,计算结果如表2所示。通过对比分析发现,在人工岛北部潮差减小,最大潮差变化在–0.017 m左右,这主要是由于人工岛的建设使得该区域的潮汐动力减弱,致使潮差变小[59];在人工岛西侧潮差变化较小,呈现出离人工岛越远变化越小的趋势;人工岛南部潮差增大,距人工岛1000 m的位置潮差增大约0.014 m,远离人工岛变化逐渐变小;人工岛内部水道由于壅水作用[60]潮差变化最为明显,最大潮差变化可达0.047 m。胶州湾跨海大桥的建设对胶州湾潮差的影响普遍小于0.01 m[61],相比龙口人工岛建设引起的潮差变化较小,其主要原因是龙口人工岛占据的过水面积比例更大,对水流特征的影响更明显。

    表  2  人工岛建设前后代表点潮位变化
    Table  2.  Tide changes before and after construction of artificial island (spring tide)
    位置站号工程前最大潮差/m工程后最大潮差/m最大潮差变化/m
    人工岛北11.0801.063−0.017
    21.0761.063−0.013
    人工岛西31.0951.087−0.008
    41.1001.094−0.006
    51.1091.104−0.005
    人工岛南61.1071.1210.014
    71.1181.1260.008
    81.1381.1390.001
    人工岛内91.0851.066−0.019
    101.0921.1390.046
    111.0911.070−0.021
    121.0971.1440.047
    下载: 导出CSV 
    | 显示表格

    人工岛群的建设直接占用了计算区域的海域面积,改变了原有水动力环境,龙口人工岛建设后,本文计算区域的海域面积减少20.68%,大潮期纳潮量减少13.74%,小潮期纳潮量减少13.78%,平均纳潮量减少13.75%。本文整理了前人对于不同海湾纳潮量的研究成果(表3),通过对比发现,莱州湾和罗源湾围填海造成的海域面积减少对纳潮量的影响相对较小[62-63](纳潮量变化率小于海域面积变化率),锦州湾、芝罘湾、湛江湾以及象山港海域面积减小引起的纳潮量变化较大[64-67](纳潮量变化率大于海域面积变化率),可见,本文计算区域纳潮量的变化与莱州湾和罗源湾较为相似。总体而言,人工岛群的建设是造成计算区域纳潮量减少的主要原因,这与诸多海湾受围填海影响导致纳潮量减小的结果是相符的。

    表  3  不同海湾纳潮量变化对比
    Table  3.  Variation of tide prism in different bays
    区域海域面积
    变化率/%
    大潮期
    变化率/%
    小潮期
    变化率/%
    平均
    变化率/%
    计算区域−20.68−13.74−13.78−13.75
    莱州湾[62]−7.38−6.05−4.90−5.57
    锦州湾[63]−22.87−29.76−29.72−29.74
    芝罘湾[64]−19.69−19.66−19.86−19.75
    罗源湾[65]−31.74−22.94−21.13−28.38
    湛江湾[66]−3.2−3.4
    象山港[67]−7.5−8.9−8.0−8.6
    下载: 导出CSV 
    | 显示表格

    人工岛群建设后,本文研究区域的地形岸线变得更为复杂,对原有的水交换能力产生了一定的影响,尤其是在人工岛群附近及其内部水道,水交换率有了明显的改变,我们将人工岛建设后的30 d水交换率做了差值对比(图16),在人工岛建设后,计算区域30 d平均水交换率减小2.76%,具体表现在人工岛北部靠近屺坶岛的区域和人工岛南部界河附近区域水交换率明显变大,在人工岛内部水道及北部附近区域水交换率明显减小。本文收集了其他海湾水交换率的变化情况[62, 66-68]表4),通过对比发现,水交换率的变化与海域面积的变化并无明显相关关系,尤其是湛江湾和锦州湾,在减少更多面积的情况下,平均水交换率变化幅度反而减小。因此,围填海造成的海域面积减小对水交换率的直接影响不大,其引起的水动力环境的改变是影响水交换率变化的主要原因[66]

    图  16  人工岛建设前后30 d水交换率对比图
    Figure  16.  Variation of 30 days water exchange rate before and after construction of artificial island
    表  4  不同海湾水交换率变化对比
    Table  4.  Variation of water exchange rate in different bays
    区域交换时间/d海域面积变化/%平均水交换率变化/%
    本文计算区域30−20.68−2.76
    锦州湾[63]−10.61(2000—2005)−17.51
    −22.87(2005—2010)−9.28
    湛江湾[66]7−1.22(2007—2012)−17.45
    7−1.93(2012—2015)−4.83
    象山港[67]30−7.50−3.20
    罗源湾[68]30−31.74−21.42
    下载: 导出CSV 
    | 显示表格

    (1)人工岛建设显著改变了龙口湾潮流场特征,湾内受到人工岛的阻挡,流速普遍减小,局部区域潮流运动形式由往复流变为旋转流,流向变化较大,余流形成多个涡旋;湾外由于堤头挑流作用导致局部区域流速增大和余流流速增大的特征,潮流运动形式未发生明显改变。

    (2)受人工岛的掩蔽作用,人工岛及附近区域的波浪有效波高普遍减小,减小幅度主要为0.3~1.2 m,其中在西南向6级风作用下,人工岛北部有效波高减小明显,在北向6级风作用下,人工岛西南部有效波高减小明显。

    (3)龙口湾潮位出现北部最大潮差变小、南部最大潮差增大的格局,壅水作用导致人工岛内部水道潮差变化最为明显,最大潮差变化可达0.047 m。

    (4)人工岛建设直接占据了龙口湾海域面积,导致其纳潮量明显减小。人工岛建设导致龙口湾水交换率整体减小,呈现出南部和北部增大、人工岛北侧以及内部水道减小的特征,人工岛造成的水动力环境的改变是影响水交换率变化的主要原因。

    (5)人工岛建设显著改变了龙口湾水深地形及海湾形态,导致龙口湾内纳潮量减小、潮流、波浪以及水交换等水动力条件普遍减弱,是引起龙口湾水动力条件变化的根本因素。

  • 图  1   东海环流体系与研究北太平洋中层水影响范围

    a. 东海水文环流体系(深层水环流据[27,32])和以往研究岩芯,b. 北太平洋700 m水深处溶解氧含量的空间分布,c. 溶解氧含量的经向测深断面。溶解氧数据来源于World Ocean Atlas 2018 (https://odv.awi.de/en/data/ocean/world-ocean-atlas-2018/),由ODV软件生成(http://odv.awi.de/). NPIW:北太平洋中层水;PDW:太平洋深层水;SCSIW:南海中层水。

    Figure  1.   The circulation system in the East China Sea and the influence range of the North Pacific Intermediate water

    a: Hydrological Circulation System in the East China Sea (Deep water circulation data[27,32]) and previous research cores; b: spatial distribution of dissolved oxygen content at a depth of 700 meters in the North Pacific Ocean; c: meridional sounding section for dissolved oxygen content. Dissolved oxygen data is sourced from World Ocean Atlas 2018 (https://odv.awi.de/en/data/ocean/world-ocean-atlas-2018/), generated by ODV software (http://odv.awi.de/). NPIW: North Pacific Intermediate Water; PDW: Pacific Deep Water; SCSIW: South China Sea Intermediate Water.

    图  2   末次冰消期以来冲绳海槽古生产力演化(Preact/Al[14]、CaCO3[15]、Ba/Al(未发表数据)、Opal/Al[14]、OCmarFlux[88]、TOC/Al(未发表数据)、OCmarine/Al[14]、OCmarine/Preact[14]

    Figure  2.   Paleoproductivity evolution in the Okinawa Trough since the Last Deglaciation (Preact/Al[14]、CaCO3[15]、Ba/Al(unpublished data)、Opal/Al[14]、OCmarFlux[88]、TOC/Al(unpublished data)、OCmarine/Al[14]、OCmarine/Preact[14])

    图  3   末次冰消期以来冲绳海槽古生产力演化与其控制因素对比(Preact/Al[14]、OCmarFlux[88]、HgEF[89]、P.obliguiloculataMAR[90]、海洋浮游生物贡献[91]、UK’37-SST[92]、海平面变化[93]、东亚季风[94]

    Figure  3.   Comparison of paleoproductivity evolution and the control factors in the Okinawa Trough Since the Last Deglaciation (Preact/Al[14]、OCmarFlux[88]、HgEF[89]、P.obliguiloculataMAR[90]、Contribution of marine plankton[91]、UK’37-SST[92]、sea level[93]、the East Asian monsoon[94])

    图  4   末次冰消期以来冲绳海槽沉积氧化性[13-16]与黑潮演变[90]、深层水通风[12,86,68]、古生产力变化[14-15]的耦合关系

    Figure  4.   The coupling relationships between the sedimentary oxygenation of the Okinawa Trough [13-16] and the evolution of the Kuroshio Current[90], deep water ventilation [12,86,68], and changes in paleoproductivity [14-15]since the last deglaciation period

    表  1   冲绳海槽深层水沉积氧化性与通风演化相关研究

    Table  1   Relative study on sedimentary oxygenation and ventilation evolution of deep water in the Okinawa Trough

    区域钻孔经纬度指标氧化性变化特征影响因素参考文献
    海槽北部U142931.37°N、128.59°EU间冰期缺氧,冰期氧化冰期NPIW侵入含氧量增加[8]
    CSH131.23°N、128.72°E氧化还原敏感
    元素(Mo、U)
    YD, H1冷期和8.5 ka以来氧化性增强;B/A等暖期氧化性降低冷期与NPIW有关、8.5 ka后氧化性增强与黑潮有关[15]
    海槽中部MD01-240426.65°N、125.81°ETS, DOP, Mn, Preact, OCmarine全新世
    含氧量升高
    黑潮引起深水通风[13-14,16]
    E01726.57°N、126.02°E底栖有孔虫冰期-冰消期深层水流通较差冰期隔绝状态,与太平洋水体交换减弱[12]
    MD01-240325.07°N、123.28°ETS全新世含氧量升高黑潮引发深水环流增强[16]
    KX12-3Hg全新世含氧量升高黑潮增强使深水部通风增强[18]
    海槽南部25525.2°N、123.12°E底栖有孔虫冰消期底层水体氧含量低生产力和沉积物中有机质含量高低[11]
    1202B24.48°N、122.30°EδCeLGM和冰消期氧化环境,
    全新世缺氧环境
    LGM通风增强,全新世通风减弱,黑潮引发水体分层[17]
    下载: 导出CSV
  • [1]

    Hoogakker B A A, Elderfield H, Schmiedl G, et al. Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin [J]. Nature Geoscience, 2015, 8(1): 40-43. doi: 10.1038/ngeo2317

    [2]

    Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation [J]. Nature Geoscience, 2012, 5(2): 151-156. doi: 10.1038/ngeo1352

    [3]

    Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide [J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000

    [4]

    Jaccard S L, Galbraith E D, Martínez-García A, et al. Covariation of deep southern Ocean oxygenation and atmospheric CO2 through the last ice age [J]. Nature, 2016, 530(7589): 207-210. doi: 10.1038/nature16514

    [5]

    Du J H, Haley B A, Mix A C, et al. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations [J]. Nature Geoscience, 2018, 11(10): 749-755. doi: 10.1038/s41561-018-0205-6

    [6]

    Detlef H, Sosdian S M, Belt S T, et al. Late Quaternary sea-ice and sedimentary redox conditions in the eastern Bering Sea – Implications for ventilation of the mid-depth North Pacific and an Atlantic-Pacific seesaw mechanism [J]. Quaternary Science Reviews, 2020, 248: 106549. doi: 10.1016/j.quascirev.2020.106549

    [7]

    Nameroff T J, Calvert S E, Murray J W. Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals [J]. Paleoceanography, 2004, 19(1): PA1010.

    [8]

    Zhao D B, Wan S M, Lu Z Y, et al. Delayed collapse of the North Pacific intermediate water after the glacial termination [J]. Geophysical Research Letters, 2021, 48(13): e2021GL092911.

    [9]

    Hu D X, Wu L X, Cai W J, et al. Pacific western boundary currents and their roles in climate [J]. Nature, 2015, 522(7556): 299-308. doi: 10.1038/nature14504

    [10]

    Wang L, Li T M, Zhou T J. Intraseasonal SST variability and air-sea interaction over the Kuroshio extension region during boreal summer [J]. Journal of Climate, 2012, 25(5): 1619-1634. doi: 10.1175/JCLI-D-11-00109.1

    [11] 翦知湣, 陈荣华, 李保华. 冲绳海槽南部20ka来深水底栖有孔虫的古海洋学记录[J]. 中国科学(D辑), 1996, 39(5):551-560 doi: 10.3321/j.issn:1006-9267.1996.05.008

    JIAN Zhimin, CHEN Ronghua, LI Baohua. Deep-sea benthic foraminiferal record of the paleoceanography in the southern Okinawa Trough over the last 20 000 years [J]. Science China Earth Sciences, 1996, 39(5): 551-560. doi: 10.3321/j.issn:1006-9267.1996.05.008

    [12] 李铁刚, 向荣, 孙荣涛, 等. 冲绳海槽中南部18ka以来的底栖有孔虫与底层水演化[J]. 中国科学 D辑 地球科学, 2005, 48(6):805-814 doi: 10.1360/03yd0222

    LI Tiegang, XIANG Rong, SUN Rongtao, et al. Benthic foraminifera and bottom water evolution in the Middle-southern Okinawa Trough during the last 18 ka [J]. Science in China Series D:Earth Sciences, 2005, 48(6): 805-814. doi: 10.1360/03yd0222

    [13]

    Kao S J, Dai M H, Wei K Y, et al. Enhanced supply of fossil organic carbon to the Okinawa Trough since the last deglaciation [J]. Paleoceanography, 2008, 23(2): PA2207.

    [14]

    Li D W, Chang Y P, Li Q, et al. Effect of sea-level on organic carbon preservation in the Okinawa Trough over the last 91 kyr [J]. Marine Geology, 2018, 399: 148-157. doi: 10.1016/j.margeo.2018.02.013

    [15]

    Zou J J, Shi X F, Zhu A M, et al. Millennial-scale variations in sedimentary oxygenation in the western subtropical North Pacific and its links to North Atlantic climate [J]. Climate of the Past, 2020, 16(1): 387-407. doi: 10.5194/cp-16-387-2020

    [16]

    Kao S J, Horng C S, Hsu S C, et al. Enhanced deepwater circulation and shift of sedimentary organic matter oxidation pathway in the Okinawa Trough since the Holocene [J]. Geophysical Research Letters, 2005, 32(15): L15609. doi: 10.1029/2005GL023139

    [17]

    Dou Y G, Yang S Y, Li C, et al. Deepwater redox changes in the southern Okinawa Trough since the last glacial maximum [J]. Progress in Oceanography, 2015, 135: 77-90. doi: 10.1016/j.pocean.2015.04.007

    [18]

    Lim D, Kim J, Xu Z K, et al. New evidence for Kuroshio inflow and deepwater circulation in the Okinawa Trough, East China Sea: sedimentary mercury variations over the last 20 kyr [J]. Paleoceanography, 2017, 32(6): 571-579. doi: 10.1002/2017PA003116

    [19]

    Lee K E, Lee H J, Park J H, et al. Stability of the Kuroshio path with respect to glacial sea level lowering [J]. Geophysical Research Letters, 2013, 40(2): 392-396. doi: 10.1002/grl.50102

    [20]

    Chen C T A. The Kuroshio Intermediate Water is the major source of nutrients on the East China Sea continental shelf [J]. Oceanologica Acta, 1996, 19(5): 523-527.

    [21]

    Andres M, Wimbush M, Park J H, et al. Observations of Kuroshio flow variations in the East China Sea [J]. Journal of Geophysical Research:Oceans, 2008, 113(C5): C05013.

    [22]

    Hsin Y C, Wu C R, Shaw P T. Spatial and temporal variations of the Kuroshio East of Taiwan, 1982-2005: anumerical study [J]. Journal of Geophysical Research:Oceans, 2008, 113(C5): C04002.

    [23]

    Qiu B. Kuroshio and Oyashio currents[M]//Steele J H. Encyclopedia of Ocean Sciences. London: Academic Press, 2001: 1413-1425.

    [24]

    Qu T D, Lukas R. The bifurcation of the North equatorial current in the Pacific [J]. American Meteorological Society, 2003, 33(1): 5-18.

    [25]

    Qu T D, Kim Y Y, Yaremchuk M, et al. Can Luzon strait transport play a role in conveying the impact of ENSO to the South China Sea? [J]. Journal of Climate, 2004, 17(18): 3644-3657. doi: 10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2

    [26]

    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023

    [27]

    Nakamura H, Nishina A, Liu Z J, et al. Intermediate and deep water Formation in the Okinawa Trough [J]. Journal of Geophysical Research:Oceans, 2013, 118(12): 6881-6893. doi: 10.1002/2013JC009326

    [28]

    You Y Z, Suginohara N, Fukasawa M, et al. Roles of the Okhotsk Sea and gulf of Alaska in forming the North Pacific intermediate water [J]. Journal of Geophysical Research:Oceans, 2000, 105(C2): 3253-3280. doi: 10.1029/1999JC900304

    [29]

    Talley L D. Distribution and Formation of North Pacific intermediate water [J]. Journal of Physical Oceanography, 1993, 23(3): 517-537. doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2

    [30]

    Li L, Qu T D. Thermohaline circulation in the deep South China Sea Basin inferred from oxygen distributions [J]. Journal of Geophysical Research:Oceans, 2006, 111(C5): C05017.

    [31]

    Li G, Rashid H, Zhong L F, et al. Changes in deep water oxygenation of the South China Sea since the last glacial Period [J]. Geophysical Research Letters, 2018, 45(17): 9058-9066. doi: 10.1029/2018GL078568

    [32]

    Nishina A, Nakamura H, Park J H, et al. Deep ventilation in the Okinawa Trough induced by Kerama Gap overflow [J]. Journal of Geophysical Research:Oceans, 2016, 121(8): 6092-6102. doi: 10.1002/2016JC011822

    [33]

    Fontanier C, Jorissen F J, Licari L, et al. Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2002, 49(4): 751-785. doi: 10.1016/S0967-0637(01)00078-4

    [34]

    Jorissen F J, Fontanier C, Thomas E. Chapter seven paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics [J]. Developments in Marine Geology, 2007, 1: 263-325.

    [35]

    Zhou Y, Chen F, Wu C, et al. Palaeoproductivity linked to monsoon variability in the northern slope of the South China Sea from the last 290 kyr: evidence of benthic foraminifera from Core SH7B [J]. Geological Society, London, Special Publications, 2016, 429(1): 197-210. doi: 10.1144/SP429.10

    [36]

    Das M, Singh R K, Gupta A K, et al. Holocene strengthening of the Oxygen Minimum Zone in the northwestern Arabian Sea linked to changes in intermediate water circulation or Indian monsoon intensity? [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 125-135. doi: 10.1016/j.palaeo.2016.10.035

    [37]

    Burkett A M, Rathburn A E, Elena Pérez M, et al. Colonization of over a thousand Cibicidoides wuellerstorfi (foraminifera: Schwager, 1866) on artificial substrates in seep and adjacent off-seep locations in dysoxic, deep-sea environments [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 117: 39-50. doi: 10.1016/j.dsr.2016.08.011

    [38]

    Rathburn A E, Willingham J, Ziebis W, et al. A New biological proxy for deep-sea paleo-oxygen: pores of epifaunal benthic foraminifera [J]. Scientific Reports, 2018, 8(1): 9456. doi: 10.1038/s41598-018-27793-4

    [39]

    Kaiho K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean [J]. Geology, 1994, 22(8): 719-722. doi: 10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2

    [40]

    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    [41]

    Dean W E, Gardner J V, Piper D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin [J]. Geochimica et Cosmochimica Acta, 1997, 61(21): 4507-4518. doi: 10.1016/S0016-7037(97)00237-8

    [42]

    Piper D Z, Isaacs C M. Minor elements in Quaternary sediment from the Sea of Japan: a record of surface-water productivity and intermediate-water redox conditions [J]. Geological Society of America Bulletin, 1995, 107(1): 54-67. doi: 10.1130/0016-7606(1995)107<0054:MEIQSF>2.3.CO;2

    [43]

    Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems [J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009

    [44]

    Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation [J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001

    [45]

    Crusius J, Thomson J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments [J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2233-2242. doi: 10.1016/S0016-7037(99)00433-0

    [46]

    Tribovillard N, Riboulleau A, Lyons T, et al. Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales [J]. Chemical Geology, 2004, 213(4): 385-401. doi: 10.1016/j.chemgeo.2004.08.011

    [47] 常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1):91-99 doi: 10.3321/j.issn:0371-5736.2009.01.011

    CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies [J]. Geological Review, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011

    [48]

    Cruse A M, Lyons T W. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales [J]. Chemical Geology, 2004, 206(3-4): 319-345. doi: 10.1016/j.chemgeo.2003.12.010

    [49]

    Koeppenkastrop D, De Carlo E H. Sorption of rare-earth elements from seawater onto synthetic mineral particles: an experimental approach [J]. Chemical Geology, 1992, 95(3-4): 251-263. doi: 10.1016/0009-2541(92)90015-W

    [50]

    Koeppenkastrop D, De Carlo E H. Uptake of rare earth elements from solution by metal oxides [J]. Environmental Science & Technology, 1993, 27(9): 1796-1802.

    [51]

    Ohta A, Kawabe I. REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2 [J]. Geochimica et Cosmochimica Acta, 2001, 65(5): 695-703. doi: 10.1016/S0016-7037(00)00578-0

    [52]

    Lyons T W, Severmann S. A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5698-5722. doi: 10.1016/j.gca.2006.08.021

    [53]

    Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-X

    [54]

    Morse J W, Emeis K C. Carbon/sulphur/iron relationships in upwelling sediments [J]. Geological Society, London, Special Publications, 1992, 64(1): 247-255. doi: 10.1144/GSL.SP.1992.064.01.16

    [55]

    Ujiié H, Ujiié Y. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean [J]. Marine Micropaleontology, 1999, 37(1): 23-40. doi: 10.1016/S0377-8398(99)00010-9

    [56]

    Xu X D, Oda M. Surface-water evolution of the eastern East China Sea during the last 36, 000 years [J]. Marine Geology, 1999, 156(1-4): 285-304. doi: 10.1016/S0025-3227(98)00183-2

    [57]

    Li T G, Liu Z X, Hall M A, et al. Heinrich event imprints in the Okinawa Trough: evidence from oxygen isotope and planktonic foraminifera [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1-4): 133-146. doi: 10.1016/S0031-0182(01)00332-7

    [58]

    Jian Z M, Wang P X, Saito Y, et al. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean [J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319. doi: 10.1016/S0012-821X(00)00321-6

    [59]

    Ujiié Y, Ujiié H, Taira A, et al. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21, 000 years: evidence from planktonic foraminifera [J]. Marine Micropaleontology, 2003, 49(4): 335-364. doi: 10.1016/S0377-8398(03)00062-8

    [60]

    Xiang R, Sun Y B, Li T G, et al. Paleoenvironmental change in the Middle Okinawa Trough since the last deglaciation: evidence from the sedimentation rate and planktonic foraminiferal record [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243(3-4): 378-393. doi: 10.1016/j.palaeo.2006.08.016

    [61]

    Wang L B, Li J, Zhao J T, et al. Solar-, monsoon- and Kuroshio-influenced thermocline depth and sea surface salinity in the southern Okinawa Trough during the past 17, 300 years [J]. Geo-Marine Letters, 2016, 36(4): 281-291. doi: 10.1007/s00367-016-0448-4

    [62]

    Zheng X F, Li A C, Kao S, et al. Synchronicity of Kuroshio Current and climate system variability since the Last Glacial Maximum [J]. Earth and Planetary Science Letters, 2016, 452: 247-257. doi: 10.1016/j.jpgl.2016.07.028

    [63]

    Li T G, Xu Z K, Lim D, et al. Sr-Nd isotopic constraints on detrital sediment provenance and paleoenvironmental change in the northern Okinawa Trough during the Late Quaternary [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 74-84. doi: 10.1016/j.palaeo.2015.04.017

    [64]

    Chen H F, Chang Y P, Kao S J, et al. Mineralogical and geochemical investigations of sediment-source region changes in the Okinawa Trough during the past 100 ka (IMAGES core MD012404) [J]. Journal of Asian Earth Sciences, 2011, 40(6): 1238-1249. doi: 10.1016/j.jseaes.2010.09.015

    [65]

    Wang J Z, Li A C, Xu K H, et al. Clay mineral and grain size studies of sediment provenances and paleoenvironment evolution in the Middle Okinawa Trough since 17 ka [J]. Marine Geology, 2015, 366: 49-61. doi: 10.1016/j.margeo.2015.04.007

    [66]

    Zheng X F, Li A C, Wan S M, et al. Formation of the modern current system in the East China Sea since the early Holocene and its relationship with sea level and the monsoon system [J]. Chinese Journal of Oceanology and Limnology, 2015, 33(4): 1062-1071. doi: 10.1007/s00343-015-4089-7

    [67]

    Keigwin L D. Glacial-age hydrography of the far northwest Pacific Ocean [J]. Paleoceanography, 1998, 13(4): 323-339. doi: 10.1029/98PA00874

    [68]

    Kubota Y, Kimoto K, Itaki T, et al. Variations in intermediate and deep ocean circulation in the subtropical northwestern Pacific from 26 ka to present based on a new calibration for Mg/Ca in benthic foraminifera [J]. Climate of the Past, 2014, 10(2): 1265-1303.

    [69]

    Dou Y G, Yang S Y, Liu Z X, et al. Sr–Nd isotopic constraints on terrigenous sediment provenances and Kuroshio Current variability in the Okinawa Trough during the Late Quaternary [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366: 38-47. doi: 10.1016/j.palaeo.2012.09.003

    [70]

    Liu J, Zhu R X, Li T G, et al. Sediment−magnetic signature of the mid-Holocene paleoenvironmental change in the central Okinawa Trough [J]. Marine Geology, 2007, 239(1-2): 19-31. doi: 10.1016/j.margeo.2006.12.011

    [71]

    Ujiié Y, Asahi H, Sagawa T, et al. Evolution of the North Pacific Subtropical Gyre during the past 190 kyr through the interaction of the Kuroshio Current with the surface and intermediate waters [J]. Paleoceanography, 2016, 31(11): 1498-1513. doi: 10.1002/2015PA002914

    [72]

    Chang Y P, Chen M T, Yokoyama Y, et al. Monsoon hydrography and productivity changes in the East China Sea during the past 100, 000 years: Okinawa Trough evidence (MD012404) [J]. Paleoceanography, 2009, 24(3): PA3208.

    [73]

    Kubota Y, Kimoto K, Tada R, et al. Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea [J]. Paleoceanography, 2010, 25(4): PA4205.

    [74]

    Sun Y B, Oppo D W, Xiang R, et al. Last deglaciation in the Okinawa Trough: subtropical northwest Pacific link to Northern Hemisphere and tropical climate [J]. Paleoceanography, 2005, 20(4): PA4005.

    [75]

    Yu H, Liu Z X, Berné S, et al. Variations in temperature and salinity of the surface water above the Middle Okinawa Trough during the past 37kyr [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281(1-2): 154-164. doi: 10.1016/j.palaeo.2009.08.002

    [76]

    Jaccard S L, Haug G H, Sigman D M, et al. Glacial/interglacial changes in Subarctic North Pacific stratification [J]. Science, 2005, 308(5724): 1003-1006. doi: 10.1126/science.1108696

    [77]

    Jaccard S L, Galbraith E D, Sigman D M, et al. A pervasive link between Antarctic ice core and subarctic Pacific sediment records over the past 800 kyrs [J]. Quaternary Science Reviews, 2010, 29(1-2): 206-212. doi: 10.1016/j.quascirev.2009.10.007

    [78]

    Kohfeld K E, Chase Z. Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean [J]. Quaternary Science Reviews, 2011, 30(23-24): 3350-3363. doi: 10.1016/j.quascirev.2011.08.007

    [79]

    Keigwin L D, Jones G A, Froelich P N. A 15, 000 year paleoenvironmental record from Meiji Seamount, far northwestern Pacific [J]. Earth and Planetary Science Letters, 1992, 111(2-4): 425-440. doi: 10.1016/0012-821X(92)90194-Z

    [80]

    Burgay F, Spolaor A, Gabrieli J, et al. Atmospheric iron supply and marine productivity in the glacial North Pacific Ocean [J]. Climate of the Past, 2021, 17(1): 491-505. doi: 10.5194/cp-17-491-2021

    [81]

    Knudson K P, Ravelo A C, Aiello I W, et al. Causes and timing of recurring subarctic Pacific hypoxia [J]. Science Advances, 2021, 7(23): eabg2906. doi: 10.1126/sciadv.abg2906

    [82]

    Lee T N, Johns W E, Liu C T, et al. Mean transport and seasonal cycle of the Kuroshio east of Taiwan with comparison to the Florida Current [J]. Journal of Geophysical Research:Oceans, 2001, 106(C10): 22143-22158. doi: 10.1029/2000JC000535

    [83]

    Matsuzaki K M, Itaki T, Kimoto K. Vertical distribution of polycystine radiolarians in the northern East China Sea [J]. Marine Micropaleontology, 2016, 125: 66-84. doi: 10.1016/j.marmicro.2016.03.004

    [84]

    Li D W, Zheng L W, Jaccard S L, et al. Millennial-scale ocean dynamics controlled export productivity in the subtropical North Pacific [J]. Geology, 2017, 45(7): 651-654. doi: 10.1130/G38981.1

    [85]

    Shao H B, Yang S Y, Cai F, et al. Sources and burial of organic carbon in the Middle Okinawa Trough during Late Quaternary paleoenvironmental change [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 118: 46-56. doi: 10.1016/j.dsr.2016.10.005

    [86]

    Wahyudi, Minagawa M. Response of benthic foraminifera to organic carbon accumulation rates in the Okinawa trough [J]. Journal of Oceanography, 1997, 53(5): 411-420.

    [87] 吴永华, 程振波, 石学法. 冲绳海槽北部CSH1岩芯地层与碳酸盐沉积特征[J]. 海洋科学进展, 2004, 22(2):163-169 doi: 10.3969/j.issn.1671-6647.2004.02.006

    WU Yonghua, CHENG Zhenbo, SHI Xuefa. Stratigraphic and carbonate sediment characteristics of core CSH1 from the northern Okinawa Trough [J]. Advances in Marine Science, 2004, 22(2): 163-169. doi: 10.3969/j.issn.1671-6647.2004.02.006

    [88]

    Hu B Q, Zhang H D, Ouyang S Q, et al. Evolution of ocean productivity in the sub-tropical West Pacific Ocean across the last deglaciation [J]. Paleoceanography and Paleoclimatology, 2021, 36(8): e2021PA004250.

    [89]

    Zou J J, Chang Y P, Zhu A M, et al. Sedimentary mercury and antimony revealed orbital-scale dynamics of the Kuroshio Current [J]. Quaternary Science Reviews, 2021, 265: 107051. doi: 10.1016/j.quascirev.2021.107051

    [90]

    Chang Y P, Wang W L, Yokoyama Y, et al. Millennial-scale planktic foraminifer faunal variability in the East China Sea during the past 40000 years (IMAGES MD012404 from the Okinawa Trough) [J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19(4): 389-401. doi: 10.3319/TAO.2008.19.4.389(IMAGES)

    [91] 王玥铭, 窦衍光, 徐景平, 等. 16 ka以来冲绳海槽中南部有机质来源及其对上升流演变的指示[J]. 第四纪研究, 2018, 38(3):769-781 doi: 10.11928/j.issn.1001-7410.2018.03.21

    WANG Yueming, DOU Yanguang, XU Jingping, et al. Organic matter source in the Middle southern Okinawa Trough and its indication to upwelling evolution since 16 ka [J]. Quaternary Sciences, 2018, 38(3): 769-781. doi: 10.11928/j.issn.1001-7410.2018.03.21

    [92]

    Zhao J T, Li J, Cai F, et al. Sea surface temperature variation during the last deglaciation in the southern Okinawa Trough: modulation of high latitude teleconnections and the Kuroshio Current [J]. Progress in Oceanography, 2015, 138: 238-248. doi: 10.1016/j.pocean.2015.06.008

    [93]

    Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years [J]. Nature, 2005, 437(7055): 125-128. doi: 10.1038/nature03975

    [94]

    Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations [J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591

    [95]

    Qu T D, Lindstrom E J. Northward intrusion of Antarctic intermediate water in the western Pacific [J]. Journal of Physical Oceanography, 2004, 34(9): 2104-2118. doi: 10.1175/1520-0485(2004)034<2104:NIOAIW>2.0.CO;2

    [96]

    Horikawa K, Asahara Y, Yamamoto K, et al. Intermediate water Formation in the Bering Sea during glacial periods: evidence from neodymium isotope ratios [J]. Geology, 2010, 38(5): 435-438. doi: 10.1130/G30225.1

    [97]

    Kender S, Ravelo A C, Worne S, et al. Closure of the Bering Strait caused Mid-Pleistocene Transition cooling [J]. Nature Communications, 2018, 9(1): 5386. doi: 10.1038/s41467-018-07828-0

    [98]

    Knudson K P, Ravelo A C. North Pacific Intermediate Water circulation enhanced by the closure of the Bering Strait [J]. Paleoceanography, 2015, 30(10): 1287-1304. doi: 10.1002/2015PA002840

    [99]

    Sagawa T, Ikehara K. Intermediate water ventilation change in the subarctic northwest Pacific during the last deglaciation [J]. Geophysical Research Letters, 2008, 35(24): L24702. doi: 10.1029/2008GL035133

    [100]

    Max L, Lembke-Jene L, Riethdorf J R, et al. Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation [J]. Climate of the Past, 2014, 10(2): 591-605. doi: 10.5194/cp-10-591-2014

    [101]

    Okazaki Y, Timmermann A, Menviel L, et al. Deepwater Formation in the North Pacific during the last glacial termination [J]. Science, 2010, 329(5988): 200-204. doi: 10.1126/science.1190612

    [102]

    Chikamoto M O, Menviel L, Abe-Ouchi A, et al. Variability in North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2012, 61-64: 114-126. doi: 10.1016/j.dsr2.2011.12.002

    [103]

    Gong X, Lembke-Jene L, Lohmann G, et al. Enhanced North Pacific deep-ocean stratification by stronger intermediate water Formation during Heinrich Stadial 1 [J]. Nature Communications, 2019, 10(1): 656. doi: 10.1038/s41467-019-08606-2

    [104]

    Ohkushi K, Hara N, Ikehara M, et al. Intensification of North Pacific intermediate water ventilation during the Younger Dryas [J]. Geo-Marine Letters, 2016, 36(5): 353-360. doi: 10.1007/s00367-016-0450-x

    [105]

    Gray W R, Rae J W B, Wills R C J, et al. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean [J]. Nature Geoscience, 2018, 11(5): 340-344. doi: 10.1038/s41561-018-0108-6

    [106]

    Max L, Rippert N, Lembke-Jene L, et al. Evidence for enhanced convection of North Pacific Intermediate Water to the low-latitude Pacific under glacial conditions [J]. Paleoceanography, 2017, 32(1): 41-55. doi: 10.1002/2016PA002994

    [107]

    Rippert N, Max L, Mackensen A, et al. Alternating influence of northern versus southern-sourced water masses on the Equatorial Pacific subthermocline during the past 240 ka [J]. Paleoceanography, 2017, 32(11): 1256-1274. doi: 10.1002/2017PA003133

    [108]

    Worne S, Kender S, Swann G E A, et al. Coupled climate and subarctic Pacific nutrient upwelling over the last 850, 000 years [J]. Earth and Planetary Science Letters, 2019, 522: 87-97. doi: 10.1016/j.jpgl.2019.06.028

    [109]

    Kao S J, Wu C R, Hsin Y C, et al. Effects of sea level change on the upstream Kuroshio Current through the Okinawa Trough [J]. Geophysical Research Letters, 2006, 33(16): L16604. doi: 10.1029/2006GL026822

    [110]

    Shi X, Wu Y, Zou J, et al. Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1 (~88 ka) [J]. Climate of the Past, 2014, 10(5): 1735-1750. doi: 10.5194/cp-10-1735-2014

    [111]

    Lembke-Jene L, Tiedemann R, Nürnberg D, et al. Deglacial variability in Okhotsk Sea Intermediate Water ventilation and biogeochemistry: implications for North Pacific nutrient supply and productivity [J]. Quaternary Science Reviews, 2017, 160: 116-137. doi: 10.1016/j.quascirev.2017.01.016

    [112]

    Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during Late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific [J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044

图(4)  /  表(1)
计量
  • 文章访问数:  847
  • HTML全文浏览量:  179
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-05-31
  • 网络出版日期:  2023-07-17
  • 刊出日期:  2023-06-27

目录

/

返回文章
返回