Research progress and prospects on the evolution of deep water oxygenation and ventilation in the Okinawa Trough since the last Deglaciation
-
摘要: 过去二十年,末次冰消期以来冲绳海槽深层水沉积氧化性与通风演化、碳埋藏与释放等研究一直备受关注。尽管目前该研究方向已开展了大量的工作,但由于多种替代指标的复杂性和局限性,与冲绳海槽黑潮动力学相关的深水环流和沉积氧化还原研究目前仍然存在较大争议。本文系统总结了末次冰消期以来冲绳海槽深层水沉积氧化性与通风演化的研究进展,发现高有机质沉降通量和高古生产力是末次盛冰期(LGM)至冰消期期间冲绳海槽深层水缺氧的主要原因;Younger Drays(YD)和Heinrich Stadial 1(HS1)事件期间深水通风增强、含氧量增加与北太平洋中层水(NPIW)强化和侵入有关;早全新世以来黑潮加强引发的深水通风抵消了上升流驱动的生产力提高的影响,使得冲绳海槽深层水处于氧化状态。最后提出未来冲绳海槽古海洋学研究应加强对轨道-千年尺度深层水水源识别与演化示踪、不同气候状态下古生产力与沉积氧化还原耦合关系,以及深层水演化的环境与气候效应等方面的研究。Abstract: The sedimentary oxygenation and evolution of deepwater ventilation, as well as carbon burial and release in the Okinawa Trough have been highly concerned since the last glacial period over the past two decades. Although many researches have been carried out on this research regime, the coupling relationships between redox conditions and deepwater circulations, biological productivity evolutions are still controversial because of the complexity and limitations of multiple alternative proxies. This paper systematically summarizes the research progress on the oxidation and ventilation evolution of deepwater deposition in the Okinawa Trough since the last glacial period. It was found that the high paleoproductivity and organic matter flux were the main reasons for deep water hypoxia in the Okinawa Trough during the LGM to last deglaciation period. The increase in oxygen content and strengthened deepwater ventilation during the HS1 and YD periods may be related to the intrusion of stronger North Pacific Intermediate Water (NPIW). Since the early Holocene, the deepwater ventilation caused by the Kuroshio has offset the impact of the productivity increase driven by the upwelling, making the deepwater oxidized in the Okinawa Trough. We propose that future research on the paleoceanography of the Okinawa Trough should strengthen the identification and evolution tracing of deep water sources on the orbital millennium time scale, the coupling relationship between paleoproductivity and sedimentary redox under different climate states, and the environmental and climatic effects of deep water evolution.
-
北太平洋中深层环流与生物生产力之间的相互作用,其变化与深层水氧化还原变化耦合紧密[1-3],影响北太平洋大气CO2水平和海洋氧浓度[4-6]。因此,北太平洋过去深层水氧化性与通风演化研究对于了解过去海洋和大气CO2循环过程、探索气候系统演化具有重要意义[7-8]。
位于亚热带北太平洋西部的冲绳海槽是东亚大陆边缘典型弧后盆地。晚第四纪,冲绳海槽通过上部水体—西部边界流黑潮的水汽热量传输[9]、中深层水体与开阔太平洋内部水体交换[10],在亚热带海区与亚北极北太平洋之间,建立了气候-海洋动力学之间的遥相关关系,深刻影响着北太平洋中-高纬度气候变化。过去二十年,冲绳海槽晚第四纪深层水通风、表层生物生产力、沉积氧化性演化以及相关的碳埋藏与释放研究一直备受关注[11-15](图1a)。然而,末次冰消期以来,冲绳海槽千年时间尺度上深层水沉积氧化性与通风变化的过程与机制仍存在较大争议[8,16-18]。究其原因是黑潮、生物生产力、深层水通风等多种因素的复杂影响,深层水氧化性多大程度受到南向扩张的NPIW的影响,或生物生产力在氧化性演化中起多大作用目前仍不清楚[15-19]。
图 1 东海环流体系与研究北太平洋中层水影响范围a. 东海水文环流体系(深层水环流据[27,32])和以往研究岩芯,b. 北太平洋700 m水深处溶解氧含量的空间分布,c. 溶解氧含量的经向测深断面。溶解氧数据来源于World Ocean Atlas 2018 (https://odv.awi.de/en/data/ocean/world-ocean-atlas-2018/),由ODV软件生成(http://odv.awi.de/). NPIW:北太平洋中层水;PDW:太平洋深层水;SCSIW:南海中层水。Figure 1. The circulation system in the East China Sea and the influence range of the North Pacific Intermediate watera: Hydrological Circulation System in the East China Sea (Deep water circulation data[27,32]) and previous research cores; b: spatial distribution of dissolved oxygen content at a depth of 700 meters in the North Pacific Ocean; c: meridional sounding section for dissolved oxygen content. Dissolved oxygen data is sourced from World Ocean Atlas 2018 (https://odv.awi.de/en/data/ocean/world-ocean-atlas-2018/), generated by ODV software (http://odv.awi.de/). NPIW: North Pacific Intermediate Water; PDW: Pacific Deep Water; SCSIW: South China Sea Intermediate Water.本文在系统梳理以往研究成果的基础上,结合获得的数据资料,总结了冲绳海槽末次冰消期以来深层水通风与沉积氧化性的进展,对深层水通风演化的过程与机制进行探讨,以期为晚第四纪亚热带北太平洋深层水流通与气候演变研究提供思路。
1. 冲绳海槽水文与环流体系
冲绳海槽水文和环流体系相当复杂(图1)。表层水、次表层水体通过黑潮与热带海区相联系。黑潮是北太平洋最大的西部边界流,发源于北赤道洋流。黑潮分为黑潮表层水(0~100 m)、黑潮次表层水(100~400 m)和黑潮中层水(>400 m)。黑潮次表层水盐度最大,营养成分随深度逐渐增加,黑潮中层水是东海大陆架营养物质的主要来源[20]。黑潮将大量温暖的咸水从低纬度海域带到中高纬度地区,其强度可以显著影响西北太平洋地区的表层水特征、生物地球化学循环和气候[21-22]。黑潮主轴从台湾东北部宜兰海脊进入冲绳海槽,并沿着东海大陆架的外缘向东北流动,通过Tokara海峡流入西北太平洋。黑潮分支继续北上,形成对马暖流和黄海暖流,分别进入日本海和黄海[23-24]。黑潮的北向运输受到东亚季风的影响,夏季输运量多于冬季。年际尺度上受到厄尔尼诺和拉尼娜的影响,厄尔尼诺年份黑潮运输量较少,拉尼娜年份的运输量大[25]。但在现代海洋中,季节变化大于年际时间尺度上的变化。长江冲淡水是长江水与海水的混合,密度小于海水。营养丰富的长江冲淡水会影响东海甚至冲绳海槽的季节性水文条件。受东亚季风的季节变化控制,长江冲淡水在夏季沿浙闽沿岸流向北移动,而冬季向南和东北扩散[26]。
冲绳海槽中深层水主要来源于NPIW和南海中层水(SCSIW)[27]。冰期时,北太平洋中高纬度边缘海(鄂霍次克海、阿拉斯加湾)海冰盐析作用产生高密度陆架水下沉,并与开阔大洋水团混合形成NPIW[28-29]。现今NPIW的分布在水深300~800 m,以低盐(33.8‰)、低密度(26.4~27.2 σθ)为显著特征[29]。SCSIW(400~1500 m)是由南海深层水在南海南部上升形成的,含氧浓度低[30-31]。NPIW和SCSIW通过台湾东北部海峡和宫古海峡(Kerama Gap, 1100 m)两个通道进入冲绳海槽,成为冲绳海槽中深层水的主要水源[27]。同时由于宫古海峡内部强烈的湍流混合,能够为深层水上涌提供所需浮力,引起强烈的上升流,约有30%~40%的NPIW可以上升至冲绳海槽表层[32]。
2. 末次冰消期以来冲绳海槽深层水氧化性与通风演化
2.1 古氧化还原演化示踪指标
多种替代指标被用于评估过去深层水氧化还原的变异性。底栖有孔虫栖息在沉积物-水界面附近的海底,特定底栖有孔虫物种分布受海水表层生产力、海底有机质通量以及底层水溶解氧含量的控制[33-36]。因此,底栖有孔虫属种组合变化、堆积速率(BFAR)和碳、氧同位素是追溯有机质通量变化和沉积氧化性演变的理想替代指标[36-38]。如底栖有孔虫内生种Uvigerina和Bulimina属常用来指示高有机质通量和低氧浓度的沉积环境,Cibicidoides hyalina和Globocassidulina subglobosa为底层水高溶解氧含量的典型指示种[39]。
过渡金属元素在沉积物中自生富集情况或在孔隙水中含量变化是指示沉积物氧化-还原条件变化的代用指标[40]。根据元素含量和相关比值的变化,可以反演沉积时上覆水体(底层水)的氧化还原状况以及有机质输入量的变化[41-42]。氧化还原敏感元素(如Mo、U、Cd、Re和V等)在氧化条件下更易溶解,在缺氧还原沉积环境下自生富集[43-45]。以往研究发现,当U和V发生富集而Mo不富集时,可能指示缺氧环境;而当它们同时显著富集时则指示硫化环境[40,43,46-47]。
氧化环境下富集的元素包括Mn和Ce。Mn在含氧的水体中多以自生氧化物MnO2形式沉积下来[48]。然而,Mn含量与氧化还原之间并没有一定的相关性,本身并不适合作为氧化还原条件的直接鉴别指标,它的主要作用是输送能反映氧化还原条件的一些微量元素进入沉积物[40]。还原环境下,水中不溶的Ce4+被还原为可溶的Ce3+,而在氧化环境下则相反。海水及沉积物中的MnO2的一个最大特点就是优先富集Ce,使得海水中的REEs有明显的Ce负异常[49-51]。
此外,黄铁矿矿化度(DOP)是目前判别古海洋氧化还原环境最有效的指标之一[52]。沉积岩中黄铁矿矿化程度(DOP)等与沉积环境的氧化还原条件密切相关,可以很好地指示沉积时的氧化还原状态[43,53]。DOP=Fepyrite/(Fepyrite+Fereactive),其中,Fereactive原指沉积成岩过程中可以参加化学反应的那部分铁[54],实际应用中表示实验分析中运用浓盐酸溶解的铁,Fepyrite表示黄铁矿中的铁,该值可根据对应原子数比用黄铁矿中的硫(S)来代替。
2.2 末次冰消期以来深层水氧化性与通风研究进展
研究发现,末次冰期时黑潮可能已经转移到琉球群岛东部,或仍流经冲绳海槽[55-60]。因此,冰期时与冲绳海槽黑潮动力学相关的深水环流和氧化还原状况研究目前仍然存在争议[19,61-62]。关于LGM期间冲绳海槽深层水氧化性与通风问题有两种观点:一是由于海平面下降和/或琉球-台湾陆桥的出现,LGM时黑潮流入冲绳海槽减缓/缺失,深层水形成且垂直通风可能已经停止,导致底层水缺氧[11-12,16]。之后黑潮在大约14~7 ka重新进入海槽或加强[58-60,63],全新世期间深层水通风强烈。另一种观点反对LGM期间冲绳海槽黑潮的缺失[19,62,64-66],认为LGM至末次冰消期深层水通风比目前强得多,并以含氧底层水入侵为特征[17,67-68]。
冲绳海槽过去沉积氧化性的不确定性,可能源于黑潮强度和路径变化的较大争议,致使对影响冲绳海槽深水流通的复杂因素的理解不明确[62,69-70]。各种复杂的水文或地质过程对冲绳海槽的深层水氧化性和流通产生影响。最近基于冲绳海槽表层水和温跃层水的Mg/Ca温度以及浮游有孔虫指标研究,认为北太平洋副热带环流的水文条件受到黑潮和NPIW之间相互作用的影响[71]。除了黑潮,长江等大河的陆源输入量(与东亚夏季风和海平面振荡以及地形相关)调节了冲绳海槽表层生产力状况,并对底层水氧化性产生影响[72-75]。
3. 深层水氧化性与通风演化的过程与机制
研究发现,冲绳海槽深水氧化还原条件与黑潮引发的水体垂向混合、深层水与太平洋水体交换、以及初级生产力变化等过程密切相关[15-16,71]((表1)。上述因素中的一种或多种的变化都会导致冲绳海槽轨道-千年尺度上沉积氧化性与通风状况的剧烈变化。
表 1 冲绳海槽深层水沉积氧化性与通风演化相关研究Table 1. Relative study on sedimentary oxygenation and ventilation evolution of deep water in the Okinawa Trough区域 钻孔 经纬度 指标 氧化性变化特征 影响因素 参考文献 海槽北部 U1429 31.37°N、128.59°E U 间冰期缺氧,冰期氧化 冰期NPIW侵入含氧量增加 [8] CSH1 31.23°N、128.72°E 氧化还原敏感
元素(Mo、U)YD, H1冷期和8.5 ka以来氧化性增强;B/A等暖期氧化性降低 冷期与NPIW有关、8.5 ka后氧化性增强与黑潮有关 [15] 海槽中部 MD01-2404 26.65°N、125.81°E TS, DOP, Mn, Preact, OCmarine 全新世
含氧量升高黑潮引起深水通风 [13-14,16] E017 26.57°N、126.02°E 底栖有孔虫 冰期-冰消期深层水流通较差 冰期隔绝状态,与太平洋水体交换减弱 [12] MD01-2403 25.07°N、123.28°E TS 全新世含氧量升高 黑潮引发深水环流增强 [16] KX12-3 — Hg 全新世含氧量升高 黑潮增强使深水部通风增强 [18] 海槽南部 255 25.2°N、123.12°E 底栖有孔虫 冰消期底层水体氧含量低 生产力和沉积物中有机质含量高低 [11] 1202B 24.48°N、122.30°E δCe LGM和冰消期氧化环境,
全新世缺氧环境LGM通风增强,全新世通风减弱,黑潮引发水体分层 [17] 3.1 古氧化还原环境与生产力耦合关系
在大多数情况下,输出生产力提高被认为是中深层水贫氧的重要原因,因为耗氧量极高。研究发现,至少在过去1 Ma内,整个北太平洋在每个冰消期都出现生产力的峰值[76-79],生产力呈现冰期低、间冰期高的变化模式[80-81]。输出生产力的变化可能由陆源营养物质供应量或者黑潮引发的上升流驱动。前者主要由长江等河流流量及与东亚季风季节性降水变化相关径流的调节[82-83],后者主要源于黑潮中层水上升流造成的物质侵蚀,携带营养物质输送到海水温跃层和混合层[72,84-86]。
末次冰消期以来冲绳海槽古生产力变化如图2所示。底栖有孔虫及TOC等指标显示,LGM至末次冰消期,由于海平面较低,径流带来的陆源营养物质直接注入海槽区,冲绳海槽具有较高的表层海水古生产力和有机质沉降通量,底层水含氧量较低;末次冰消期以来,随着海平面上升,海槽区陆源营养物质减少,全新世表层生产力下降[11-13,87]。相似的研究也发现,冲绳海槽全新世输出生产力下降主要由环流变化导致对透光带的营养供应减少所致,加之与海平面快速上升相关的黑潮增强,限制了陆架的营养供应[88]。然而,沉积物中活性磷浓度证据表明,冲绳海槽输出生产力在末次冰期较低,而在全新世较高,其变化受北太平洋中层水渗透深度的影响[14]。在千年时间尺度上,输出生产力也在Younger Drays(YD)、Heinrich Stadial 1(HS1)等冷事件期间降低,而Bølling-Allerød(B/A)等暖事件期间增加[84]。由此可见,不同指标体现的末次冰消期以来冲绳海槽古生产力演变的不一致性,可能导致其对深水氧化性的影响存在一定争议。
LGM至末次冰消期期间,冲绳海槽深层水缺氧可能与该阶段高生产力有关(图3),该阶段较高的表层海水古生产力和有机质沉降通量是深层水耗氧的主要原因[11-12]。而在全新世中晚期,虽然黑潮加强可引发上升流,但有机碳埋藏效率显示较低值,低输出生产力不可能是深层水氧化还原状况的制约因素,深层水的氧气消耗受深层水体交换和黑潮入侵引起的深水通风等过程控制[84]。
3.2 黑潮和NPIW对深层水通风与氧化性的制约
北太平洋中层水体与冲绳海槽深层水的交换,是调节冲绳海槽深水氧化还原条件的重要因素。现代物理海洋观测表明,冲绳海槽深层水主要由NPIW和SCSIW组成[27]。然而,盐度指标证实南极中层水(AAIW)并没有越过15°N[95],冲绳海槽底层水体的性质可能主要受NPIW的影响。NPIW具有在冰期增强、间冰期减弱的特征[96-98](图4)。在末次冰消期,NPIW在HS1和YD等冷期加强,而在B/A暖期明显减弱[99],在HS1期间NPIW向深水渗透增强[99-104]。冰期(冷期)增强的NPIW产生了强大的下游效应,将营养物质从高纬海洋带到太平洋的低纬海区,并对赤道太平洋东部中低纬度地区的通风和氧化性产生了重大影响[105-108]。LGM至末次冰消期,海槽中部底层水通风比目前强,底层水含氧量高[17]。与其一致的自生U记录也发现,冰期NPIW入侵使得冲绳海槽北部深水含氧量提高[8]。然而,有研究认为LGM至末次冰消期阶段,冲绳海槽仅在HS1和YD等冷期时深层水通风增强并致使含氧量增加[15],且深层水通风状况整体较冰后期弱,反映冰期西北太平洋中层水流通没有对底层水团性质产生影响[11-13,18]。
除深部水体与太平洋水体流通外,黑潮也是控制冲绳海槽深水通风的关键因素[15-16]。黑潮加强时不仅可以引发上升流,还可能引发冲绳海槽深水环流增强,并伴随着沉积物-水界面氧气增加[18,109]。由于LGM时黑潮减弱或移出冲绳海槽,黑潮对冲绳海槽沉积氧化性的影响非常有限,末次冰消期时逐渐增加[15,110]。全新世早期以来,黑潮增强引发的深水通风可以抵消上升流驱动的生产力增加量[111-112],使得全新世冲绳海槽深层水处于氧化状态。沉积物DOP和总硫等证据表明,早全新世冲绳海槽沉积氧化性发生转变的时间与黑潮加强时间基本一致[16,109],加强的黑潮促进了底层水和表层水之间的垂直混合和交换,深水通风加强导致深层水氧含量逐渐增加[16,18]。全新世沉积物汞含量异常高值证实,海底热液侧向输运与黑潮强化引发的冲绳海槽深层水环流增强有关[18]。
4. 总结与展望
过去二十年,末次冰消期以来冲绳海槽深层水沉积氧化性与通风演化、碳埋藏与释放研究一直备受关注。冲绳海槽深水氧化还原条件与黑潮引发的水体垂向混合、深层水与太平洋水体交换以及输出生产力变化等过程密切相关。上述因素中的一种或多种的变化都会导致冲绳海槽千年尺度上沉积氧化性的剧烈变化。东亚夏季风季节性降水变化与长江等河流径流的调节,或者黑潮引发的上升流,都可以使海水表层生产力发生变化,进一步影响冲绳海槽深水氧化性。
尽管目前对冲绳海槽深层水沉积氧化性与通风演化开展了大量的研究,然而氧化还原条件变化与深层水通风、生物生产力演变的耦合关系仍存在较大争议,亚热带北太平洋在调节区域大气CO2收支中发挥多大作用目前仍不清楚,有许多重要问题还未解决,简述如下。
(1)轨道-千年时间尺度冲绳海槽深层水水源定性识别及其对沉积氧化性演化影响。以往开展的工作主要从沉积氧化性、有机质通量等角度反演深层水通风状况,目前还没有建立合适指标追踪NPIW在冲绳海槽深层水中水源信号,评估NPIW演化对冲绳海槽沉积氧化性演化影响。自生Fe-Mn氧化物Nd同位素是具有广泛应用前景的替代指标。
(2)不同气候态冲绳海槽古生产力演化与沉积氧化性的耦合关系。生产力受多种环境因素影响,并且对环境变化的响应存在差异。如陆坡离岸近海区,陆源有机碳输入和横向搬运、上升流等因素影响大,这些环境因素可能会导致重建的古生产力演化与深水区相反。需采用古生物和地球化学方法,重建不同环境因素影响下冲绳海槽古生产力演化,综合考虑陆源输入量与沉积速率变化、黑潮演化、深层水通风等过程,是解读古生产力演化与沉积氧化性耦合关系的合理方案。
(3)冲绳海槽深层水演化的环境与气候效应。NPIW在HS1和YD等冷期加强、B/A等暖期减弱的特征在亚北极北太平洋众多钻孔已证实,在调节过去海洋和大气CO2循环过程发挥重要作用。NPIW的“下游效应”,尤其是冰期(冷期)对亚热带北太平洋深水通风和氧化性、碳埋藏与释放等生物地球化学循环过程产生多大影响,以及这些过程在调节区域大气CO2收支中发挥多大作用需进行重点评估。
-
图 1 东海环流体系与研究北太平洋中层水影响范围
a. 东海水文环流体系(深层水环流据[27,32])和以往研究岩芯,b. 北太平洋700 m水深处溶解氧含量的空间分布,c. 溶解氧含量的经向测深断面。溶解氧数据来源于World Ocean Atlas 2018 (https://odv.awi.de/en/data/ocean/world-ocean-atlas-2018/),由ODV软件生成(http://odv.awi.de/). NPIW:北太平洋中层水;PDW:太平洋深层水;SCSIW:南海中层水。
Figure 1. The circulation system in the East China Sea and the influence range of the North Pacific Intermediate water
a: Hydrological Circulation System in the East China Sea (Deep water circulation data[27,32]) and previous research cores; b: spatial distribution of dissolved oxygen content at a depth of 700 meters in the North Pacific Ocean; c: meridional sounding section for dissolved oxygen content. Dissolved oxygen data is sourced from World Ocean Atlas 2018 (https://odv.awi.de/en/data/ocean/world-ocean-atlas-2018/), generated by ODV software (http://odv.awi.de/). NPIW: North Pacific Intermediate Water; PDW: Pacific Deep Water; SCSIW: South China Sea Intermediate Water.
图 2 末次冰消期以来冲绳海槽古生产力演化(Preact/Al[14]、CaCO3[15]、Ba/Al(未发表数据)、Opal/Al[14]、OCmarFlux[88]、TOC/Al(未发表数据)、OCmarine/Al[14]、OCmarine/Preact[14])
Figure 2. Paleoproductivity evolution in the Okinawa Trough since the Last Deglaciation (Preact/Al[14]、CaCO3[15]、Ba/Al(unpublished data)、Opal/Al[14]、OCmarFlux[88]、TOC/Al(unpublished data)、OCmarine/Al[14]、OCmarine/Preact[14])
图 3 末次冰消期以来冲绳海槽古生产力演化与其控制因素对比(Preact/Al[14]、OCmarFlux[88]、HgEF[89]、P.obliguiloculataMAR[90]、海洋浮游生物贡献[91]、UK’37-SST[92]、海平面变化[93]、东亚季风[94] )
Figure 3. Comparison of paleoproductivity evolution and the control factors in the Okinawa Trough Since the Last Deglaciation (Preact/Al[14]、OCmarFlux[88]、HgEF[89]、P.obliguiloculataMAR[90]、Contribution of marine plankton[91]、UK’37-SST[92]、sea level[93]、the East Asian monsoon[94])
图 4 末次冰消期以来冲绳海槽沉积氧化性[13-16]与黑潮演变[90]、深层水通风[12,86,68]、古生产力变化[14-15]的耦合关系
Figure 4. The coupling relationships between the sedimentary oxygenation of the Okinawa Trough [13-16] and the evolution of the Kuroshio Current[90], deep water ventilation [12,86,68], and changes in paleoproductivity [14-15]since the last deglaciation period
表 1 冲绳海槽深层水沉积氧化性与通风演化相关研究
Table 1 Relative study on sedimentary oxygenation and ventilation evolution of deep water in the Okinawa Trough
区域 钻孔 经纬度 指标 氧化性变化特征 影响因素 参考文献 海槽北部 U1429 31.37°N、128.59°E U 间冰期缺氧,冰期氧化 冰期NPIW侵入含氧量增加 [8] CSH1 31.23°N、128.72°E 氧化还原敏感
元素(Mo、U)YD, H1冷期和8.5 ka以来氧化性增强;B/A等暖期氧化性降低 冷期与NPIW有关、8.5 ka后氧化性增强与黑潮有关 [15] 海槽中部 MD01-2404 26.65°N、125.81°E TS, DOP, Mn, Preact, OCmarine 全新世
含氧量升高黑潮引起深水通风 [13-14,16] E017 26.57°N、126.02°E 底栖有孔虫 冰期-冰消期深层水流通较差 冰期隔绝状态,与太平洋水体交换减弱 [12] MD01-2403 25.07°N、123.28°E TS 全新世含氧量升高 黑潮引发深水环流增强 [16] KX12-3 — Hg 全新世含氧量升高 黑潮增强使深水部通风增强 [18] 海槽南部 255 25.2°N、123.12°E 底栖有孔虫 冰消期底层水体氧含量低 生产力和沉积物中有机质含量高低 [11] 1202B 24.48°N、122.30°E δCe LGM和冰消期氧化环境,
全新世缺氧环境LGM通风增强,全新世通风减弱,黑潮引发水体分层 [17] -
[1] Hoogakker B A A, Elderfield H, Schmiedl G, et al. Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin [J]. Nature Geoscience, 2015, 8(1): 40-43. doi: 10.1038/ngeo2317
[2] Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation [J]. Nature Geoscience, 2012, 5(2): 151-156. doi: 10.1038/ngeo1352
[3] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide [J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000
[4] Jaccard S L, Galbraith E D, Martínez-García A, et al. Covariation of deep southern Ocean oxygenation and atmospheric CO2 through the last ice age [J]. Nature, 2016, 530(7589): 207-210. doi: 10.1038/nature16514
[5] Du J H, Haley B A, Mix A C, et al. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations [J]. Nature Geoscience, 2018, 11(10): 749-755. doi: 10.1038/s41561-018-0205-6
[6] Detlef H, Sosdian S M, Belt S T, et al. Late Quaternary sea-ice and sedimentary redox conditions in the eastern Bering Sea – Implications for ventilation of the mid-depth North Pacific and an Atlantic-Pacific seesaw mechanism [J]. Quaternary Science Reviews, 2020, 248: 106549. doi: 10.1016/j.quascirev.2020.106549
[7] Nameroff T J, Calvert S E, Murray J W. Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals [J]. Paleoceanography, 2004, 19(1): PA1010.
[8] Zhao D B, Wan S M, Lu Z Y, et al. Delayed collapse of the North Pacific intermediate water after the glacial termination [J]. Geophysical Research Letters, 2021, 48(13): e2021GL092911.
[9] Hu D X, Wu L X, Cai W J, et al. Pacific western boundary currents and their roles in climate [J]. Nature, 2015, 522(7556): 299-308. doi: 10.1038/nature14504
[10] Wang L, Li T M, Zhou T J. Intraseasonal SST variability and air-sea interaction over the Kuroshio extension region during boreal summer [J]. Journal of Climate, 2012, 25(5): 1619-1634. doi: 10.1175/JCLI-D-11-00109.1
[11] 翦知湣, 陈荣华, 李保华. 冲绳海槽南部20ka来深水底栖有孔虫的古海洋学记录[J]. 中国科学(D辑), 1996, 39(5):551-560 doi: 10.3321/j.issn:1006-9267.1996.05.008 JIAN Zhimin, CHEN Ronghua, LI Baohua. Deep-sea benthic foraminiferal record of the paleoceanography in the southern Okinawa Trough over the last 20 000 years [J]. Science China Earth Sciences, 1996, 39(5): 551-560. doi: 10.3321/j.issn:1006-9267.1996.05.008
[12] 李铁刚, 向荣, 孙荣涛, 等. 冲绳海槽中南部18ka以来的底栖有孔虫与底层水演化[J]. 中国科学 D辑 地球科学, 2005, 48(6):805-814 doi: 10.1360/03yd0222 LI Tiegang, XIANG Rong, SUN Rongtao, et al. Benthic foraminifera and bottom water evolution in the Middle-southern Okinawa Trough during the last 18 ka [J]. Science in China Series D:Earth Sciences, 2005, 48(6): 805-814. doi: 10.1360/03yd0222
[13] Kao S J, Dai M H, Wei K Y, et al. Enhanced supply of fossil organic carbon to the Okinawa Trough since the last deglaciation [J]. Paleoceanography, 2008, 23(2): PA2207.
[14] Li D W, Chang Y P, Li Q, et al. Effect of sea-level on organic carbon preservation in the Okinawa Trough over the last 91 kyr [J]. Marine Geology, 2018, 399: 148-157. doi: 10.1016/j.margeo.2018.02.013
[15] Zou J J, Shi X F, Zhu A M, et al. Millennial-scale variations in sedimentary oxygenation in the western subtropical North Pacific and its links to North Atlantic climate [J]. Climate of the Past, 2020, 16(1): 387-407. doi: 10.5194/cp-16-387-2020
[16] Kao S J, Horng C S, Hsu S C, et al. Enhanced deepwater circulation and shift of sedimentary organic matter oxidation pathway in the Okinawa Trough since the Holocene [J]. Geophysical Research Letters, 2005, 32(15): L15609. doi: 10.1029/2005GL023139
[17] Dou Y G, Yang S Y, Li C, et al. Deepwater redox changes in the southern Okinawa Trough since the last glacial maximum [J]. Progress in Oceanography, 2015, 135: 77-90. doi: 10.1016/j.pocean.2015.04.007
[18] Lim D, Kim J, Xu Z K, et al. New evidence for Kuroshio inflow and deepwater circulation in the Okinawa Trough, East China Sea: sedimentary mercury variations over the last 20 kyr [J]. Paleoceanography, 2017, 32(6): 571-579. doi: 10.1002/2017PA003116
[19] Lee K E, Lee H J, Park J H, et al. Stability of the Kuroshio path with respect to glacial sea level lowering [J]. Geophysical Research Letters, 2013, 40(2): 392-396. doi: 10.1002/grl.50102
[20] Chen C T A. The Kuroshio Intermediate Water is the major source of nutrients on the East China Sea continental shelf [J]. Oceanologica Acta, 1996, 19(5): 523-527.
[21] Andres M, Wimbush M, Park J H, et al. Observations of Kuroshio flow variations in the East China Sea [J]. Journal of Geophysical Research:Oceans, 2008, 113(C5): C05013.
[22] Hsin Y C, Wu C R, Shaw P T. Spatial and temporal variations of the Kuroshio East of Taiwan, 1982-2005: anumerical study [J]. Journal of Geophysical Research:Oceans, 2008, 113(C5): C04002.
[23] Qiu B. Kuroshio and Oyashio currents[M]//Steele J H. Encyclopedia of Ocean Sciences. London: Academic Press, 2001: 1413-1425.
[24] Qu T D, Lukas R. The bifurcation of the North equatorial current in the Pacific [J]. American Meteorological Society, 2003, 33(1): 5-18.
[25] Qu T D, Kim Y Y, Yaremchuk M, et al. Can Luzon strait transport play a role in conveying the impact of ENSO to the South China Sea? [J]. Journal of Climate, 2004, 17(18): 3644-3657. doi: 10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2
[26] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023
[27] Nakamura H, Nishina A, Liu Z J, et al. Intermediate and deep water Formation in the Okinawa Trough [J]. Journal of Geophysical Research:Oceans, 2013, 118(12): 6881-6893. doi: 10.1002/2013JC009326
[28] You Y Z, Suginohara N, Fukasawa M, et al. Roles of the Okhotsk Sea and gulf of Alaska in forming the North Pacific intermediate water [J]. Journal of Geophysical Research:Oceans, 2000, 105(C2): 3253-3280. doi: 10.1029/1999JC900304
[29] Talley L D. Distribution and Formation of North Pacific intermediate water [J]. Journal of Physical Oceanography, 1993, 23(3): 517-537. doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2
[30] Li L, Qu T D. Thermohaline circulation in the deep South China Sea Basin inferred from oxygen distributions [J]. Journal of Geophysical Research:Oceans, 2006, 111(C5): C05017.
[31] Li G, Rashid H, Zhong L F, et al. Changes in deep water oxygenation of the South China Sea since the last glacial Period [J]. Geophysical Research Letters, 2018, 45(17): 9058-9066. doi: 10.1029/2018GL078568
[32] Nishina A, Nakamura H, Park J H, et al. Deep ventilation in the Okinawa Trough induced by Kerama Gap overflow [J]. Journal of Geophysical Research:Oceans, 2016, 121(8): 6092-6102. doi: 10.1002/2016JC011822
[33] Fontanier C, Jorissen F J, Licari L, et al. Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2002, 49(4): 751-785. doi: 10.1016/S0967-0637(01)00078-4
[34] Jorissen F J, Fontanier C, Thomas E. Chapter seven paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics [J]. Developments in Marine Geology, 2007, 1: 263-325.
[35] Zhou Y, Chen F, Wu C, et al. Palaeoproductivity linked to monsoon variability in the northern slope of the South China Sea from the last 290 kyr: evidence of benthic foraminifera from Core SH7B [J]. Geological Society, London, Special Publications, 2016, 429(1): 197-210. doi: 10.1144/SP429.10
[36] Das M, Singh R K, Gupta A K, et al. Holocene strengthening of the Oxygen Minimum Zone in the northwestern Arabian Sea linked to changes in intermediate water circulation or Indian monsoon intensity? [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 125-135. doi: 10.1016/j.palaeo.2016.10.035
[37] Burkett A M, Rathburn A E, Elena Pérez M, et al. Colonization of over a thousand Cibicidoides wuellerstorfi (foraminifera: Schwager, 1866) on artificial substrates in seep and adjacent off-seep locations in dysoxic, deep-sea environments [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 117: 39-50. doi: 10.1016/j.dsr.2016.08.011
[38] Rathburn A E, Willingham J, Ziebis W, et al. A New biological proxy for deep-sea paleo-oxygen: pores of epifaunal benthic foraminifera [J]. Scientific Reports, 2018, 8(1): 9456. doi: 10.1038/s41598-018-27793-4
[39] Kaiho K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean [J]. Geology, 1994, 22(8): 719-722. doi: 10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2
[40] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012
[41] Dean W E, Gardner J V, Piper D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin [J]. Geochimica et Cosmochimica Acta, 1997, 61(21): 4507-4518. doi: 10.1016/S0016-7037(97)00237-8
[42] Piper D Z, Isaacs C M. Minor elements in Quaternary sediment from the Sea of Japan: a record of surface-water productivity and intermediate-water redox conditions [J]. Geological Society of America Bulletin, 1995, 107(1): 54-67. doi: 10.1130/0016-7606(1995)107<0054:MEIQSF>2.3.CO;2
[43] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems [J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009
[44] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation [J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001
[45] Crusius J, Thomson J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments [J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2233-2242. doi: 10.1016/S0016-7037(99)00433-0
[46] Tribovillard N, Riboulleau A, Lyons T, et al. Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales [J]. Chemical Geology, 2004, 213(4): 385-401. doi: 10.1016/j.chemgeo.2004.08.011
[47] 常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1):91-99 doi: 10.3321/j.issn:0371-5736.2009.01.011 CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies [J]. Geological Review, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011
[48] Cruse A M, Lyons T W. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales [J]. Chemical Geology, 2004, 206(3-4): 319-345. doi: 10.1016/j.chemgeo.2003.12.010
[49] Koeppenkastrop D, De Carlo E H. Sorption of rare-earth elements from seawater onto synthetic mineral particles: an experimental approach [J]. Chemical Geology, 1992, 95(3-4): 251-263. doi: 10.1016/0009-2541(92)90015-W
[50] Koeppenkastrop D, De Carlo E H. Uptake of rare earth elements from solution by metal oxides [J]. Environmental Science & Technology, 1993, 27(9): 1796-1802.
[51] Ohta A, Kawabe I. REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2 [J]. Geochimica et Cosmochimica Acta, 2001, 65(5): 695-703. doi: 10.1016/S0016-7037(00)00578-0
[52] Lyons T W, Severmann S. A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5698-5722. doi: 10.1016/j.gca.2006.08.021
[53] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-X
[54] Morse J W, Emeis K C. Carbon/sulphur/iron relationships in upwelling sediments [J]. Geological Society, London, Special Publications, 1992, 64(1): 247-255. doi: 10.1144/GSL.SP.1992.064.01.16
[55] Ujiié H, Ujiié Y. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean [J]. Marine Micropaleontology, 1999, 37(1): 23-40. doi: 10.1016/S0377-8398(99)00010-9
[56] Xu X D, Oda M. Surface-water evolution of the eastern East China Sea during the last 36, 000 years [J]. Marine Geology, 1999, 156(1-4): 285-304. doi: 10.1016/S0025-3227(98)00183-2
[57] Li T G, Liu Z X, Hall M A, et al. Heinrich event imprints in the Okinawa Trough: evidence from oxygen isotope and planktonic foraminifera [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1-4): 133-146. doi: 10.1016/S0031-0182(01)00332-7
[58] Jian Z M, Wang P X, Saito Y, et al. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean [J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319. doi: 10.1016/S0012-821X(00)00321-6
[59] Ujiié Y, Ujiié H, Taira A, et al. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21, 000 years: evidence from planktonic foraminifera [J]. Marine Micropaleontology, 2003, 49(4): 335-364. doi: 10.1016/S0377-8398(03)00062-8
[60] Xiang R, Sun Y B, Li T G, et al. Paleoenvironmental change in the Middle Okinawa Trough since the last deglaciation: evidence from the sedimentation rate and planktonic foraminiferal record [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243(3-4): 378-393. doi: 10.1016/j.palaeo.2006.08.016
[61] Wang L B, Li J, Zhao J T, et al. Solar-, monsoon- and Kuroshio-influenced thermocline depth and sea surface salinity in the southern Okinawa Trough during the past 17, 300 years [J]. Geo-Marine Letters, 2016, 36(4): 281-291. doi: 10.1007/s00367-016-0448-4
[62] Zheng X F, Li A C, Kao S, et al. Synchronicity of Kuroshio Current and climate system variability since the Last Glacial Maximum [J]. Earth and Planetary Science Letters, 2016, 452: 247-257. doi: 10.1016/j.jpgl.2016.07.028
[63] Li T G, Xu Z K, Lim D, et al. Sr-Nd isotopic constraints on detrital sediment provenance and paleoenvironmental change in the northern Okinawa Trough during the Late Quaternary [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 74-84. doi: 10.1016/j.palaeo.2015.04.017
[64] Chen H F, Chang Y P, Kao S J, et al. Mineralogical and geochemical investigations of sediment-source region changes in the Okinawa Trough during the past 100 ka (IMAGES core MD012404) [J]. Journal of Asian Earth Sciences, 2011, 40(6): 1238-1249. doi: 10.1016/j.jseaes.2010.09.015
[65] Wang J Z, Li A C, Xu K H, et al. Clay mineral and grain size studies of sediment provenances and paleoenvironment evolution in the Middle Okinawa Trough since 17 ka [J]. Marine Geology, 2015, 366: 49-61. doi: 10.1016/j.margeo.2015.04.007
[66] Zheng X F, Li A C, Wan S M, et al. Formation of the modern current system in the East China Sea since the early Holocene and its relationship with sea level and the monsoon system [J]. Chinese Journal of Oceanology and Limnology, 2015, 33(4): 1062-1071. doi: 10.1007/s00343-015-4089-7
[67] Keigwin L D. Glacial-age hydrography of the far northwest Pacific Ocean [J]. Paleoceanography, 1998, 13(4): 323-339. doi: 10.1029/98PA00874
[68] Kubota Y, Kimoto K, Itaki T, et al. Variations in intermediate and deep ocean circulation in the subtropical northwestern Pacific from 26 ka to present based on a new calibration for Mg/Ca in benthic foraminifera [J]. Climate of the Past, 2014, 10(2): 1265-1303.
[69] Dou Y G, Yang S Y, Liu Z X, et al. Sr–Nd isotopic constraints on terrigenous sediment provenances and Kuroshio Current variability in the Okinawa Trough during the Late Quaternary [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366: 38-47. doi: 10.1016/j.palaeo.2012.09.003
[70] Liu J, Zhu R X, Li T G, et al. Sediment−magnetic signature of the mid-Holocene paleoenvironmental change in the central Okinawa Trough [J]. Marine Geology, 2007, 239(1-2): 19-31. doi: 10.1016/j.margeo.2006.12.011
[71] Ujiié Y, Asahi H, Sagawa T, et al. Evolution of the North Pacific Subtropical Gyre during the past 190 kyr through the interaction of the Kuroshio Current with the surface and intermediate waters [J]. Paleoceanography, 2016, 31(11): 1498-1513. doi: 10.1002/2015PA002914
[72] Chang Y P, Chen M T, Yokoyama Y, et al. Monsoon hydrography and productivity changes in the East China Sea during the past 100, 000 years: Okinawa Trough evidence (MD012404) [J]. Paleoceanography, 2009, 24(3): PA3208.
[73] Kubota Y, Kimoto K, Tada R, et al. Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea [J]. Paleoceanography, 2010, 25(4): PA4205.
[74] Sun Y B, Oppo D W, Xiang R, et al. Last deglaciation in the Okinawa Trough: subtropical northwest Pacific link to Northern Hemisphere and tropical climate [J]. Paleoceanography, 2005, 20(4): PA4005.
[75] Yu H, Liu Z X, Berné S, et al. Variations in temperature and salinity of the surface water above the Middle Okinawa Trough during the past 37kyr [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281(1-2): 154-164. doi: 10.1016/j.palaeo.2009.08.002
[76] Jaccard S L, Haug G H, Sigman D M, et al. Glacial/interglacial changes in Subarctic North Pacific stratification [J]. Science, 2005, 308(5724): 1003-1006. doi: 10.1126/science.1108696
[77] Jaccard S L, Galbraith E D, Sigman D M, et al. A pervasive link between Antarctic ice core and subarctic Pacific sediment records over the past 800 kyrs [J]. Quaternary Science Reviews, 2010, 29(1-2): 206-212. doi: 10.1016/j.quascirev.2009.10.007
[78] Kohfeld K E, Chase Z. Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean [J]. Quaternary Science Reviews, 2011, 30(23-24): 3350-3363. doi: 10.1016/j.quascirev.2011.08.007
[79] Keigwin L D, Jones G A, Froelich P N. A 15, 000 year paleoenvironmental record from Meiji Seamount, far northwestern Pacific [J]. Earth and Planetary Science Letters, 1992, 111(2-4): 425-440. doi: 10.1016/0012-821X(92)90194-Z
[80] Burgay F, Spolaor A, Gabrieli J, et al. Atmospheric iron supply and marine productivity in the glacial North Pacific Ocean [J]. Climate of the Past, 2021, 17(1): 491-505. doi: 10.5194/cp-17-491-2021
[81] Knudson K P, Ravelo A C, Aiello I W, et al. Causes and timing of recurring subarctic Pacific hypoxia [J]. Science Advances, 2021, 7(23): eabg2906. doi: 10.1126/sciadv.abg2906
[82] Lee T N, Johns W E, Liu C T, et al. Mean transport and seasonal cycle of the Kuroshio east of Taiwan with comparison to the Florida Current [J]. Journal of Geophysical Research:Oceans, 2001, 106(C10): 22143-22158. doi: 10.1029/2000JC000535
[83] Matsuzaki K M, Itaki T, Kimoto K. Vertical distribution of polycystine radiolarians in the northern East China Sea [J]. Marine Micropaleontology, 2016, 125: 66-84. doi: 10.1016/j.marmicro.2016.03.004
[84] Li D W, Zheng L W, Jaccard S L, et al. Millennial-scale ocean dynamics controlled export productivity in the subtropical North Pacific [J]. Geology, 2017, 45(7): 651-654. doi: 10.1130/G38981.1
[85] Shao H B, Yang S Y, Cai F, et al. Sources and burial of organic carbon in the Middle Okinawa Trough during Late Quaternary paleoenvironmental change [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 118: 46-56. doi: 10.1016/j.dsr.2016.10.005
[86] Wahyudi, Minagawa M. Response of benthic foraminifera to organic carbon accumulation rates in the Okinawa trough [J]. Journal of Oceanography, 1997, 53(5): 411-420.
[87] 吴永华, 程振波, 石学法. 冲绳海槽北部CSH1岩芯地层与碳酸盐沉积特征[J]. 海洋科学进展, 2004, 22(2):163-169 doi: 10.3969/j.issn.1671-6647.2004.02.006 WU Yonghua, CHENG Zhenbo, SHI Xuefa. Stratigraphic and carbonate sediment characteristics of core CSH1 from the northern Okinawa Trough [J]. Advances in Marine Science, 2004, 22(2): 163-169. doi: 10.3969/j.issn.1671-6647.2004.02.006
[88] Hu B Q, Zhang H D, Ouyang S Q, et al. Evolution of ocean productivity in the sub-tropical West Pacific Ocean across the last deglaciation [J]. Paleoceanography and Paleoclimatology, 2021, 36(8): e2021PA004250.
[89] Zou J J, Chang Y P, Zhu A M, et al. Sedimentary mercury and antimony revealed orbital-scale dynamics of the Kuroshio Current [J]. Quaternary Science Reviews, 2021, 265: 107051. doi: 10.1016/j.quascirev.2021.107051
[90] Chang Y P, Wang W L, Yokoyama Y, et al. Millennial-scale planktic foraminifer faunal variability in the East China Sea during the past 40000 years (IMAGES MD012404 from the Okinawa Trough) [J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19(4): 389-401. doi: 10.3319/TAO.2008.19.4.389(IMAGES)
[91] 王玥铭, 窦衍光, 徐景平, 等. 16 ka以来冲绳海槽中南部有机质来源及其对上升流演变的指示[J]. 第四纪研究, 2018, 38(3):769-781 doi: 10.11928/j.issn.1001-7410.2018.03.21 WANG Yueming, DOU Yanguang, XU Jingping, et al. Organic matter source in the Middle southern Okinawa Trough and its indication to upwelling evolution since 16 ka [J]. Quaternary Sciences, 2018, 38(3): 769-781. doi: 10.11928/j.issn.1001-7410.2018.03.21
[92] Zhao J T, Li J, Cai F, et al. Sea surface temperature variation during the last deglaciation in the southern Okinawa Trough: modulation of high latitude teleconnections and the Kuroshio Current [J]. Progress in Oceanography, 2015, 138: 238-248. doi: 10.1016/j.pocean.2015.06.008
[93] Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years [J]. Nature, 2005, 437(7055): 125-128. doi: 10.1038/nature03975
[94] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations [J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591
[95] Qu T D, Lindstrom E J. Northward intrusion of Antarctic intermediate water in the western Pacific [J]. Journal of Physical Oceanography, 2004, 34(9): 2104-2118. doi: 10.1175/1520-0485(2004)034<2104:NIOAIW>2.0.CO;2
[96] Horikawa K, Asahara Y, Yamamoto K, et al. Intermediate water Formation in the Bering Sea during glacial periods: evidence from neodymium isotope ratios [J]. Geology, 2010, 38(5): 435-438. doi: 10.1130/G30225.1
[97] Kender S, Ravelo A C, Worne S, et al. Closure of the Bering Strait caused Mid-Pleistocene Transition cooling [J]. Nature Communications, 2018, 9(1): 5386. doi: 10.1038/s41467-018-07828-0
[98] Knudson K P, Ravelo A C. North Pacific Intermediate Water circulation enhanced by the closure of the Bering Strait [J]. Paleoceanography, 2015, 30(10): 1287-1304. doi: 10.1002/2015PA002840
[99] Sagawa T, Ikehara K. Intermediate water ventilation change in the subarctic northwest Pacific during the last deglaciation [J]. Geophysical Research Letters, 2008, 35(24): L24702. doi: 10.1029/2008GL035133
[100] Max L, Lembke-Jene L, Riethdorf J R, et al. Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation [J]. Climate of the Past, 2014, 10(2): 591-605. doi: 10.5194/cp-10-591-2014
[101] Okazaki Y, Timmermann A, Menviel L, et al. Deepwater Formation in the North Pacific during the last glacial termination [J]. Science, 2010, 329(5988): 200-204. doi: 10.1126/science.1190612
[102] Chikamoto M O, Menviel L, Abe-Ouchi A, et al. Variability in North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2012, 61-64: 114-126. doi: 10.1016/j.dsr2.2011.12.002
[103] Gong X, Lembke-Jene L, Lohmann G, et al. Enhanced North Pacific deep-ocean stratification by stronger intermediate water Formation during Heinrich Stadial 1 [J]. Nature Communications, 2019, 10(1): 656. doi: 10.1038/s41467-019-08606-2
[104] Ohkushi K, Hara N, Ikehara M, et al. Intensification of North Pacific intermediate water ventilation during the Younger Dryas [J]. Geo-Marine Letters, 2016, 36(5): 353-360. doi: 10.1007/s00367-016-0450-x
[105] Gray W R, Rae J W B, Wills R C J, et al. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean [J]. Nature Geoscience, 2018, 11(5): 340-344. doi: 10.1038/s41561-018-0108-6
[106] Max L, Rippert N, Lembke-Jene L, et al. Evidence for enhanced convection of North Pacific Intermediate Water to the low-latitude Pacific under glacial conditions [J]. Paleoceanography, 2017, 32(1): 41-55. doi: 10.1002/2016PA002994
[107] Rippert N, Max L, Mackensen A, et al. Alternating influence of northern versus southern-sourced water masses on the Equatorial Pacific subthermocline during the past 240 ka [J]. Paleoceanography, 2017, 32(11): 1256-1274. doi: 10.1002/2017PA003133
[108] Worne S, Kender S, Swann G E A, et al. Coupled climate and subarctic Pacific nutrient upwelling over the last 850, 000 years [J]. Earth and Planetary Science Letters, 2019, 522: 87-97. doi: 10.1016/j.jpgl.2019.06.028
[109] Kao S J, Wu C R, Hsin Y C, et al. Effects of sea level change on the upstream Kuroshio Current through the Okinawa Trough [J]. Geophysical Research Letters, 2006, 33(16): L16604. doi: 10.1029/2006GL026822
[110] Shi X, Wu Y, Zou J, et al. Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1 (~88 ka) [J]. Climate of the Past, 2014, 10(5): 1735-1750. doi: 10.5194/cp-10-1735-2014
[111] Lembke-Jene L, Tiedemann R, Nürnberg D, et al. Deglacial variability in Okhotsk Sea Intermediate Water ventilation and biogeochemistry: implications for North Pacific nutrient supply and productivity [J]. Quaternary Science Reviews, 2017, 160: 116-137. doi: 10.1016/j.quascirev.2017.01.016
[112] Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during Late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific [J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044
-
期刊类型引用(0)
其他类型引用(2)