The characteristics of sedimentary organic carbon in the mud area in the western North Yellow Sea since the Holocene
-
摘要:
北黄海西部泥质区沉积环境稳定、沉积记录连续,是重建过去周边流域变化与黄海海洋环境信息的良好载体。目前围绕北黄海西部泥质区沉积有机碳的研究工作多局限于通过表层沉积物揭示其现代分布特征,对于该泥质区长时间尺度沉积有机碳埋藏过程与机制的研究相对薄弱。通过北黄海西部泥质区W03岩芯的总有机碳指标,重建了全新世以来北黄海西部沉积有机碳的埋藏特征,探讨了气候及海洋环境变化对北黄海西部沉积有机碳埋藏的控制机制。研究表明:海平面上升的停滞期(10.3~9.8 cal.kaBP),发育硬质黏土层,有机碳以陆源输入为主(60.7%),动荡的沉积环境导致总有机碳含量相对较低,平均含量仅为0.22%;海平面上升期(9.8~7.0 cal.kaBP),海源有机碳的贡献增加(47.7%),相对稳定的沉积环境有利于该时期有机碳的埋藏;高海平面以来(7.0 cal.kaBP至今),黄海环流体系逐渐形成,陆源有机碳输入随着东亚冬季风驱动的沿岸流强度变化发生相应的改变,海源有机碳的贡献继续增加(50.0%),总有机碳的含量升高至0.58%。北黄海西部泥质区全新世以来沉积有机碳埋藏主要受控于海平面变化和海洋环流体系的运动。
Abstract:The sedimentary environment of the mud area in the western North Yellow Sea is stable, and the sedimentary record is continuous, making it an excellent proxy for reconstructing paleoenvironment of the local region and surrounding watershed. Previous researches on the sedimentary organic carbon in the mud area are limited to its modern distribution characteristics through surface sediment analysis, and works on the long-term sedimentary processes and mechanisms of organic carbon remain insufficient. Core W03 in the mud area was used to reconstruct the sedimentary environment of organic carbon since the Holocene using sedimentary total organic carbon index, and to clarify the impact of climate and oceanic environmental changes on the source and deposition of organic carbon. During the period of sea level rise stagnation (10.3~9.8 cal.kaBP), a hard clay layer was developed rich in terrestrial organic carbon (60.7%). The turbulent sedimentary environment resulted in a relatively low total organic carbon content (average of only 0.22%). During the period of sea level rising (9.8~7.0 cal.kaBP), marine-sourced organic carbon (47.7%) boomed in a relatively stable sedimentary environment, which was conducive to the burial of organic carbon. Since the high sea level period (7.0 cal.kaBP to present), the Yellow Sea circulation system has been formed gradually, and the input of terrigenous organic carbon has changed correspondingly with the change of coastal current intensity under the East Asian winter monsoon scheme. The contribution of marine organic carbon was increased continuously to 50.0%, and so did the content of total organic carbon (0.58%). Therefore, sedimentary organic carbon in the mud area since the Holocene is controlled by sea level fluctuation and the resultant ocean circulation system.
-
Keywords:
- mud area /
- the Holocene /
- sedimentary organic carbon /
- the North Yellow Sea
-
晚第四纪深海沉积物通常被认为可以提供较为准确且连续的沉积记录,从而更好地重建大陆和海洋沉积环境的耦合演化[1]。南海北部陆坡沉积环境复杂,重力流和浊流广泛发育,是陆源碎屑沉积物进入深海平原的主要路径,已成为研究深水沉积的热点地区之一[2-3]。尤其是珠江口外海底峡谷的东北侧600~1600 m的水深范围,发育着多条呈NNW-SSE向分布的线状海底负地形[4]。然而目前已有的研究大多是地球物理资料,尤其是多波束及2D或3D地震剖面,大尺度上研究中晚更新世发育的深水水道[5]或海底峡谷的沉积物失稳[6],直接针对海底峡谷群沉积物的微观地球化学研究相对较少,导致其搬运方式仍然存在很大的争议[7]。
海洋沉积物一般记录着古环境、古海洋、古地貌和古气候的演化。沉积物的粒度分布是沉积物的基本特征之一,与沉积环境密切相关[8]。尤其是海底峡谷区沉积物的粒度参数及其组合特征,记录了沉积物的搬运方式、水动力条件和沉积环境的演变[9]。例如许莎莎等[10]对南海西北部陆坡ZK3岩芯沉积物的AMS14C定年、粒度及地球化学元素分析,结合萨哈-兰迪姆相浊流环境判别及C-M图识别出4个特征明显的浊积层,其中有3次是发生在末次冰期。章伟艳等[11]以南海东部3个站位的岩芯沉积物为研究对象,根据粒度参数、概率累积曲线和有孔虫的碳氧同位素组成等综合分析,识别出多次浊流沉积事件,年龄均为晚更新世中晚期,全新世未见发育。赵玉龙等[12]通过粒度参数和XRF元素扫描及电子探针测试对南海南部MD05-2895站位末次冰期的深海沉积物进行分析,共发现5处浊流沉积层且均具有向上变细的正粒序特征。周杨锐等[13]通过对南海北部A和B两个岩芯沉积物进行粒度分析,认为A岩芯沉积物出现地层倒转现象与沉积物失稳和滑塌所引起的浊流沉积有关。
南海北部陆坡区流系十分复杂,不同沉积动力之间相互影响、相互触发[14-15]。研究表明,南海北部陆坡区神狐海域海底峡谷群的沉积物经常发生失稳,甚至有的已经发生滑塌[16]。通过地震反射剖面和数值模拟的差异性,研究者在大范围和宏观上对神狐海域海底峡谷群的深水沉积作用和沉积相进行了详细的类型划分和特征描述,认为广泛发育重力流及浊流沉积[17]。通过2D/3D地震资料,Su等[18]认为南海北部陆坡沉积物主要是以重力流搬运方式为主。Chen等[19]利用高密度的地震资料建立海底峡谷群的沉积模式,不仅识别出深水沉积体系,而且还分析了沉积物供给和沉积物失稳对峡谷群的不同影响。这些研究多集中在神狐海域的含水合物层或峡谷的上游区,这些区域大多含甲烷水合物,具有典型的沉积物特征[20]、沉积速率[21]、生物指标[22]、沉积相[23]和地震反射特征[3],对峡谷区下部沉积物的研究较少,具体的沉积特征、水动力条件和制约因素仍不清楚。
本文以神狐海域海底峡谷群12号峡谷脊部下游的SH-CL38站位岩芯沉积物为研究对象,根据沉积物岩性特征、粒度参数及有孔虫的氧同位素组成并结合AMS14C年龄进行综合分析,发现该区存在两处异常沉积层,它们具有不同的沉积特征、水动力条件和影响因素,为深水沉积体系下研究沉积物的微观变化、水动力改变和环境演化研究提供依据。
1. 区域概况
南海是西太平洋最重要的边缘海之一,位于欧亚板块、太平洋板块和印度洋板块的交汇处,面积约为350×104 km2,平均水深约1350 m[24]。南海北部陆坡为被动型大陆边缘,水深为500~3500 m,属于深水沉积环境[25]。大陆架平坦开阔,陆坡地形较为复杂,底流十分活跃,发育大量峡谷水道、海底滑坡、泥底辟和海底断层等地貌[26]。
神狐海域位于南海北部陆坡中段神狐暗沙的东南海域附近,即西沙海槽与东沙群岛之间,构造上属于珠江口盆地珠Ⅱ凹陷的白云凹陷[27](图1A)。中中新世以来,受河流输入和陆坡地形的影响,白云凹陷发生侧向迁移和垂向叠加从而发育大量深水水道、海底峡谷和沉积物失稳等,呈现类型多样、相互叠置、成因复杂的深水沉积特征[28-29]。该区域发育有17条海底峡谷群(图1B),垂直于陆坡并呈NNW-SEE向线状分布,区内水深约500~1500 m,是深水沉积物搬运的重要通道和陆源碎屑物质的重要沉积场所。此外,海底峡谷也是浊流和滑塌的频发区域[30-31]。
2. 材料和方法
SH-CL38站位位于南海北部陆坡神狐海域,珠江口外海底峡谷群12号峡谷的脊部下游(图1B),于2018年7月由广州海洋地质调查局HYSH201805航次通过重力取样获得。SH-CL38站位水深为1288 m,岩芯长约800 cm。沉积物取到甲板上之后,按照0.5 m间距进行切割,将首尾密封好后立即封存在4 ℃冰箱中。我们以2 cm等间距分样,密封冷冻保存,等待分析。
2.1 粒度分析
对岩芯沉积物以10 cm为间隔进行取样,先选取67个样品进行粒度测试,后对异常沉积层进行加密,每两个样品间隔为2 cm,增加了22个样品。因此,本研究共对89个样品进行了粒度测试分析。
粒度分析的前处理步骤如下:首先取0.5~1 g样品放入离心管底部,加入15 mL浓度为15%的H2O2去除有机质杂质,充分震荡摇匀后静置24 h;待反应完全后,加入5 mL浓度为10%的HCl去除钙质生物,微晃动离心管使样品和HCl混合均匀,再静置12 h;待沉积物中的钙质充分反应后,加入MiliQ水,并反复离心直至离心管中的剩余沉积物呈中性。粒度测试在自然资源部国家海洋局第一海洋研究所完成。仪器为英国Malvern公司产Mastersizer2000激光粒度分析仪,粒径范围为0.02~2 000 μm,测试的相对误差<2%。
2.2 有孔虫的氧同位素组成
为获得分辨率较高的氧同位素数据,我们对沉积物共进行两次取样。第一次取样是以20 cm为间隔,挑选38个沉积物样品,第二次取样以1 m为间隔,挑选8个加密样品,共计46个沉积物样品。测试时,首先按照微体古生物分析方法对有孔虫进行挑选和处理:用超纯水浸泡24 h使沉积物充分分散后,将沉积物放在240目(孔径为63 μm)标准铜筛上,用去离子水冲洗并震荡以完全除去泥质沉积物,分离出粒径超过63 μm的粗组分。然后将粗组分在常温下晾干,在显微镜下挑选20~30枚壳体完整、无黑点、无泥质充填的浮游有孔虫(G.ruber)用于氧同位素测试。上机前,先将挑选好的有孔虫移至玻璃小管中,在显微镜下将壳体压为2~3瓣,同时抛弃大块填充物。这些碎的壳体首先用浓度为10%的双氧水浸泡30 min;移出废液,再加入浓度为99.9%的无水乙醇,用40 kHz的超声波清洗1 min;最后用去离子水冲洗至中性。将清洗后的样品用60 ℃的烘箱干燥 5 h,再转移到Gasbench质谱联用装置中测定碳氧同位素比值。该测试是在青岛海洋科学与技术试点国家实验室完成,测试仪器为Thermo Fisher公司的Delta V稳定同位素比质谱仪。仪器分析精度为0.05‰,样品池温度为72 ℃,反应时间为1 h,标准参照中国国家碳酸钙标准(GBW04405)和国际标准 (NBS19)。
2.3 AMS14C定年
本研究共挑选12个沉积物样品进行AMS14C测年。在浸泡、过筛、冲洗烘干后,在显微镜下挑选完整、未污染的单种浮游有孔虫(G.ruber),每个样品至少10 mg。样品制备方法与有孔虫氧同位素组成测试的前处理方法相同。然后送往青岛海洋科学与技术试点国家实验室测试。测试仪器为National Electrostatics Corporation (NEC, Middleton, Wisconsin, USA)加速器质谱仪,测试条件为0.5MV Pelletron。
3. 结果
3.1 岩性和粒度参数特征
SH-CL38站位的岩芯沉积物主要由粉砂和黏土组成(图2)。其中粉砂组分的平均含量为74%;545 cm层位的含量为83%;455 cm层位的含量为67%。黏土组分的平均含量为24%,455 cm层位的含量为33%;545 cm层位的含量为15%。砂组分含量较少,平均含量仅为2%。
SH-CL38站位岩芯沉积物在垂向上岩性和粒度参数呈不均一变化(图2)。根据粒度参数的变化将该岩芯划分为3个层段:第Ⅰ层段(0~285 cm)砂组分平均含量为2.71%,平均粒径为6.62~7.18Φ,分选系数为1.29~1.63,分选较差,偏度为−0.47~1.03,峰度为1.77~2.17。第Ⅱ层段(285~615 cm)沉积物的砂含量减少,颗粒表现为粗-细-粗的变化过程。粒度参数波动频率较大,平均粒径为6.53~7.68Φ,分选系数为1.18~1.49,分选较差,偏度为−1.00~1.16,峰度为1.61~2.12。第Ⅲ层段(615~800 cm)不含砂组分,粉砂的平均含量为73%,黏土的平均含量为27%,各粒度参数变化较小,平均粒径为7.18~7.53Φ,分选系数为1.21~1.32,偏度为0.99~1.04,峰度为1.63~1.76。
3.2 有孔虫的氧同位素组成
SH-CL38站位有孔虫的氧同位素组成为−2.66‰~0.27‰(图2)。岩芯第Ⅱ层段(285~615 cm)的氧同位素组成变化较大,在331 cm处为最低值(−2.66‰),619 cm处为最高值(0.27‰)。
3.3 AMS14C定年
根据AMS14C定年结果(表1)、浮游有孔虫的氧同位素组成(图2)并参照LR04站位氧同位素组成[35]构建SH-CL38站位的年代框架。首先岩芯0~102 cm划分为氧同位素1期,有孔虫的δ18O值变化为−0.20‰~−2.53‰,代表着MIS1温暖的沉积环境。130~132 cm层段的年龄为26348 cal.aBP,155~157 cm层段的年龄为37368 cal.aBP,平均沉积速率为2.27 cm/ka,因次将137 cm层位作为氧同位素2期和3期的界线。不过该岩芯MIS2层段的沉积物记录较少,MIS3又未见底,因此,SH-CL38站位岩芯沉积物记录的是50 kaBP以来的全新世沉积和晚更新世沉积。
表 1 SH-CL38站位的AMS14C定年结果Table 1. AMS14C dating results of SH-CL38 station深度/cm 测试材料 测年结果/aBP 2σ范围/cal.aBP 校正年龄/cal.aBP 0~2 G.ruber 2070±25 1617~1802 1710 48~50 G.ruber 6555±40 7013~7239 7126 100~102 G.ruber 12745±45 14159~14784 14472 130~132 G.ruber 22470±120 26028~26668 26348 155~157 G.ruber 33500±190 36608~38127 37368 255~257 G.ruber >43500 >43500 >43500 365~367 G.ruber 42410±390 >43500 >43500 405~407 G.ruber 34280±230 37733~38946 38340 462~464 G.ruber >43500 >43500 >43500 521~523 G.ruber >43500 >43500 >43500 645~647 G.ruber >43500 >43500 >43500 798~800 G.ruber >43500 >43500 >43500 值得注意的是,出现255~257和365~567 cm层位年龄数据均超过43500 cal.aBP、而405~407 cm层位的年龄变年轻仅为38340 cal.aBP的现象。462~464 cm以下的地层年龄均大于43500 cal.aBP,超过AMS14C的准确定年范围(表1),其余年龄利用Calib 6.01软件中的Marine09数据库将14C年龄校正为日历年龄。
4. 讨论
4.1 SH-CL38站位的沉积特征
沉积物的粒度参数记录了物质搬运、沉积、再悬浮以及再沉积的水动力特点,能够反演沉积环境中的水动力条件和搬运方式[36-37]。其中粒度参数的偏度和峰度能敏感地反映粒度粗细端元的变化,对区分不同搬运动力和沉积环境有重要意义[38]。
SH-CL38站位岩芯沉积物的平均粒径为6.53~7.68Φ,与神狐海域GMGS01区的4个站位平均粒径分布范围(6.2~7.9Φ)相似[28]。SH-CL38站位岩芯第Ⅰ层段(0~285 cm)砂组分的平均含量为2.71%,平均粒径为6.62~7.18Φ,分选较差,有孔虫的δ18O值为−2.53‰~−0.04‰,表明该层段属于水动力较强的半深海沉积环境。虽然255~257 cm层段的年龄大于43500 cal.aBP,但该层段的粒度参数和岩性组成并没有明显变化。但在285 cm层位以后,沉积物的粒度明显变细,分选系数和峰度值也变小,有孔虫的δ18O值出现降低并波动变化(图2),表明岩芯在285 cm层位沉积环境发生了变化。岩芯第Ⅱ层段(285~615 cm)存在两段明显不同的粒度参数特征,据此分为285~505和505~615 cm两个层段进行研究。其中285~505 cm层段的沉积物颗粒较细,仅在361~371、383~399和407~425 cm等层位出现少量砂组分,粒度参数波动频率大并出现峰值(图2)。其中395 cm的平均粒径为7.17Φ,459 cm的平均粒径为7.68Φ,平均粒径的变化呈现粒度向上变细的正粒序特征;沉积物的偏度在该层段的395和425 cm处出现负值;分选系数(1.27—1.49—1.18)和峰度(1.65—2.12—1.61)也呈现先增大后减小的韵律变化,并均于395 cm层位达最大值。505~615 cm层段的平均粒径为7.05~6.53Φ,该层段平均粒径变小,即颗粒较285~505 cm层段变粗;分选系数为1.32~1.48,分选变差;偏度变化较小;峰度为1.81~1.96。浮游有孔虫的δ18O值在505~615 cm层段为−0.95‰~0.24‰,而在上部285~505 cm层段可达到−2.66‰~−0.80‰,出现一定的负异常现象,这比南海其他站位氧同位素变化幅度更大[39-40]。岩芯第Ⅲ层段(615~800 cm)的沉积物全部由粉砂和黏土组成,平均粒径为7.18~7.53Φ,偏度、峰度变化均较小(图2),有孔虫的δ18O值为−1.08‰~0.27‰,指示了水动力较弱的深海沉积环境。
浊流和海底滑塌都是海洋中常见的重力流活动,常表现为沉积物粒度的突然变化,因此,沉积物的粒度参数被认为是识别浊流和海底滑塌最可靠的标志[15]。李军等[41]对冲绳海槽A23孔的研究认为,沉积物粒度参数和粒度组成的突然变化代表了浊流沉积,通常具有粒径变粗、分选变差、偏度出现负值及砂含量增加等特征,这与SH-CL38站位岩芯第Ⅱ层段异常沉积层的粒度参数变化相似。然而,岩芯第II层段的粒度分布并没有呈现出浊流沉积典型的鲍马序列特征。章伟艳等[11]指出并不是所有的浊流沉积层都能记录完整的鲍马序列。Shanmugam[42]对世界各海区长达6000多米的岩芯进行了观察和描述,认为浊流沉积的判别标志为颗粒向上变细的正粒序及沉积物底部发育冲刷构造。SH-CL38站位岩芯第Ⅱ层段发育两段粒度参数明显不同的层段,其中385~395和459~555 cm层段沉积物的平均粒径指示了向上变细的正粒序,285~505 cm层段的偏度出现两次负值,分选系数和峰度呈现一定的韵律变化。浮游有孔虫的δ18O值呈一定的负偏(图2),加之,SH-CL38站位沉积物AMS14C年龄在岩芯第II层段还出现新老倒转现象,这些证据均表明岩芯第II层段受到了事件沉积的影响,发育非正常沉积层。zhao等[12]发现南海南部MD05-2895站位末次冰期的浊流沉积层也出现类似的粒度特征。
4.2 异常沉积层的判别及成因机制
海底峡谷沉积物的搬运方式和沉积过程一直是深水沉积体系研究的关键[43]。南海北部陆坡神狐海域海底峡谷群的地质构造及水动力条件复杂,是研究深水沉积的理想地区[44]。研究表明,神狐海域峡谷群的11-17号海底峡谷沉积物搬运的主要动力是由构造作用控制的重力流沉积,如滑动、滑塌、碎屑流及浊流等[40]。
4.2.1 异常沉积层的判别
除岩性和粒度参数外,粒度的概率累积曲线可以反映沉积环境水动力的搬运方式。当粒度频率曲线为正态分布时,概率累积曲线应为一条直线。具有不同粒级组分时,概率累积曲线则表现为不同斜率相互叠加的直线段,斜率越大说明分选性越好,代表着推移、跃移和悬浮三种不同的搬运方式[45-46]。SH-CL38站位的粒度频率曲线多以单峰的正态分布为主,第Ⅰ层段多数峰宽且平缓,第Ⅱ层段有粒度分布较为集中的高峰,也出现宽缓的单峰,第Ⅲ层段分选较好,为粒度分布较为集中且众数小于10 μm的单峰。可见岩芯第Ⅰ层段和第Ⅲ层段的沉积环境较为稳定,第II层段沉积环境较为复杂。下文将重点讨论岩芯第II层段(285~615 m)异常沉积层的沉积环境。由于第II层段存在两段明显不同的粒度参数特征,因此将第II层段分为两部分进行分析。
(1)285~505 cm层段
岩芯285~505 cm层段的粒度频率曲线为粒度集中分布的单峰(图3),众数小于10 μm。概率累积曲线表现为斜率较缓的一段式和两段式分布,分选较差,表明沉积物是以悬浮组分为主。其中395 cm层位的概率累积曲线为悬浮组分大于85%的一段式;369、409和425 cm层位的概率累积曲线表明沉积物的悬浮组分大于90%,分选较差,悬浮总体对应的粒度区间较宽,主要粒径为4~9Φ。
(2)505~615 cm层段
岩芯505~615 cm层段的粒度频率曲线呈宽缓的单峰分布(图4),众数大于10 μm,颗粒较285~505 cm层段变粗。概率累积曲线呈以悬浮组分为主的两段式分布,悬浮组分大于90%,主要粒径为3~9Φ,呈现受重力流影响快速堆积的特征。
粒度C-M图是研究沉积环境的理想指标之一,其中C值是概率累积曲线上1%对应的粒径,M值是50%处对应的粒径[47]。浊流及重力流是携带物质发生的快速搬运沉积,沉积物几乎都是以悬浮的搬运方式为主,因此浊流沉积的样品点一般在粒度C-M图上落在悬浮区,与C=M基线平行并呈线性排列,不同于牵引流沉积的三段式[48-49]。在粒度C-M图上,285~505 cm层段的粒度M值为8~25,C值为200~400,C与M成比例增加,表现为近平行于C=M基线的递变悬浮方式(图5),为浊流沉积的典型特征,其他3个层段的样品点均分散分布并主要位于深海静水远洋悬浮区域。结合岩芯粒度参数变化及该站位位于峡谷脊部下游的深水环境,判断岩芯285~505 cm层段发育浊流沉积,505~615 cm层段推测可能受重力流影响较大,但该层段的总体砂含量均较少,可能是由于浊流或重力流的幅度较小,仅影响了小范围的沉积物。后续研究中我们会对异常层段的沉积物和正常层段沉积物的物源信息进行对比,以期解决这个问题。
4.2.2 异常沉积层的成因探讨
南海北部陆坡神狐海域海底峡谷的沉积物除受海平面变化、河流输入等影响较大外,风尘、海底底流及重力流活动也有重大贡献[7]。研究站位位于峡谷脊部下游的深水环境,其中风尘输入对沉积物的影响较稳定,而沉积物被底流持续改造一般会表现出牵引流的沉积特征,分选较好,且具有向上突变的接触关系[50]。因此,风尘和底流不足以引起SH-CL38站位岩芯第II层段粒度参数及有孔虫δ18O值的异常变化。
(1)深水沉积作用
深海沉积作用类型多样,沉积过程复杂[51]。南海北部峡谷内的深水沉积主要为重力流、等深流和内波作用[52]。重力流一般具有间断性和爆发性,常伴随大量碎屑物质的快速堆积。等深流作用主要通过黑潮南海分支和中层环流水对沉积物进行侵蚀搬运,而内波作用则是对底部沉积物进行持续改造[40]。海洋沉积中,海底峡谷内重力流和浊流频发,浊流是最常见的重力流活动之一,多发育在陆架斜坡和深海盆地[53]。王一凡等[15]认为珠江的河流会穿过南海北部陆架输送大量陆源物质搬运至海底峡谷,常引起边坡失稳甚至造成沉积物滑塌,使峡谷内成为浊流易发区。SH-CL38站位岩芯沉积物的颗粒较细,以黏土质粉砂为主,而岩芯第II层段505~615 cm与发育浊流沉积的285~505 cm层段粒度参数明显不同,颗粒明显变粗,分选变差,以悬浮组分为主,推测可能是受重力流的影响发生了沉积物失稳。该站位岩芯沉积物在海底峡谷内不仅受南海中层与深层环流水的共同作用,还被重力流或浊流等深水沉积作用在很大程度上进行分选改造,影响着沉积物的再搬运和再沉积过程。
(2)海平面的变化
末次冰期以来,全球海平面的变化十分活跃(图6),发生了多次海平面快速变化的事件,海平面最低可达到−130 m左右,直到全新世才逐渐趋于稳定[54]。SH-CL38站位位于神狐海域海底峡谷群12号峡谷脊部的下游,岩芯第II层段异常沉积层(285~615 m)属于末次冰期,全新世发育正常沉积。异常沉积层具有两段明显不同的粒度参数变化,本研究通过岩性、粒度参数及有孔虫的δ18O值变化的综合分析,认为285~505 cm层段发育浊流沉积,而505~615 cm层段推测是受重力流影响发生的沉积物失稳,为沉积物再搬运和再沉积的产物。因此,我们推断该站位的异常沉积层与海平面变化密切相关。海平面在末次冰期持续降低,大量陆源物质被搬运到南海北部陆坡沉积,同时海底峡谷较陡的地形也为浊流沉积提供了有利条件。海平面变化时期,沉积事件之间常相互影响,相互作用,海底峡谷内频繁发生重力流或浊流活动,浊流搬运进一步引起沉积物失稳[55-56]。地球物理资料表明在海底峡谷下游沉积物经常发生失稳造成滑塌,从而引发浊流[45]。不过,海平面波动可能并不是直接因素,引发浊流通常是一些阵发性事件,如坍塌、海啸、火山及地震等[57]。因此,结合SH-CL38站位末次冰期的沉积特征和对异常沉积层影响因素的综合研究,我们认为该站位发育的异常沉积受深水沉积作用和海平面变化的影响较大,其中285~505 cm层段发育浊流沉积,而505~615 cm层段可能是浊流或重力流引发的沉积物失稳。
5. 结论
(1)SH-CL38站位发育约50 ka以来的沉积,沉积物为黏土质粉砂,颗粒较细。根据岩性组成、粒度参数和有孔虫氧同位素组成变化将该岩芯划分为3个层段,其中第Ⅰ层段(0~285 cm)为水动力较强的半深海沉积环境;第Ⅱ层段(285~615 cm)具有两段明显不同的粒度参数特征,浮游有孔虫δ18O值出现负偏,AMS14C年龄也出现新老倒转现象,表明该层段沉积环境复杂,发育异常沉积层;第Ⅲ层段(615~800 cm)为水动力较弱的深海沉积环境。
(2)该站位岩芯第Ⅱ层段(285~615 cm)的异常沉积层根据粒度参数和有孔虫δ18O值的变化分为285~505和505~615 cm两个层段,结合概率累积曲线和粒度C-M图进一步分析其沉积环境,认为285~505 cm层段发育浊流沉积,而505~615 cm层段推测可能是重力流引发的沉积物失稳。
(3)通过对海底峡谷脊部下游SH-CL38站位的微观地球化学分析,认为在海底峡谷的复杂深水环境中,该站位岩芯第Ⅱ层段发育的异常沉积层不仅受到深水沉积作用的分选改造,而且还与末次冰期海平面的变化密切相关。
-
图 7 全新世以来W03岩芯总有机碳指标与气候、海洋记录对比
a:TOC含量, b:δ13C,c:陆源有机碳贡献比,d:海源有机碳贡献比,e:沉积速率,f:平均粒径,g:PC-6岩芯重建的东亚冬季风记录[46],h:B-Y14岩芯的SST记录[18],i:海平面变化[10-11]。
Figure 7. Comparison of the total organic carbon index of Core W03 with climatic and oceanic records since the Holocene
a: Total organic carbon content, b: δ13C, c: The contribution of terrestrial organic carbon, d: The contribution of marine organic carbon, e: Linear sedimentary rate, f: Mean grain size, g: East Asian winter monsoon intensity reconstructed from the PC-6 Core record[46], h: Sea surface temperature records from B-Y14 Core[18], i: Sea level change[10-11].
表 1 总有机碳指标在不同阶段的平均值
Table 1 Average value of total organic carbon index in different stages
年代 TOC/
%TN/
%δ13C/
‰陆源贡献比/
%海源贡献比/
%3.3 cal. kaBP至今 0.56 0.07 −23.0 49.3 50.7 7.0~3.3 cal. kaBP 0.57 0.07 −23.1 51.5 48.5 9.8~7.0 cal. kaBP 0.49 0.06 −23.1 52.3 47.7 10.3~9.8 cal. kaBP 0.22 0.04 −23.6 60.7 39.3 -
[1] Mackenzie F T, Lerman A, Ver L M B. Role of the continental margin in the global carbon balance during the past three centuries [J]. Geology, 1998, 26(5): 423-426.
[2] Berner R A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over phanerozoic time [J]. Global and Planetary Change, 1989, 1(1-2): 97-122. doi: 10.1016/0921-8181(89)90018-0
[3] Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis: authors' closing comments [J]. Marine Chemistry, 1995, 49(2-3): 137-139. doi: 10.1016/0304-4203(95)00013-H
[4] De Haas H, van Weering T C E, de Stigter H. Organic carbon in shelf seas: sinks or sources, processes and products [J]. Continental Shelf Research, 2002, 22(5): 691-717. doi: 10.1016/S0278-4343(01)00093-0
[5] 张明宇, 常鑫, 胡利民, 等. 东海内陆架有机碳的源—汇过程及其沉积记录[J]. 沉积学报, 2021, 39(3):593-609 ZHANG Mingyu, CHANG Xin, HU Limin, et al. Source-to-sink process of organic carbon on the inner shelf of the East China Sea and its sedimentary records [J]. Acta Sedimentologica Sinica, 2021, 39(3): 593-609.
[6] 石学法, 胡利民, 乔淑卿, 等. 中国东部陆架海沉积有机碳研究进展: 来源、输运与埋藏[J]. 海洋科学进展, 2016, 34(3):313-327 SHI Xuefa, HU Limin, QIAO Shuqing, et al. Progress in research of sedimentary organic carbon in the East China Sea: sources, dispersal and sequestration [J]. Advances in Marine Science, 2016, 34(3): 313-327.
[7] 赵美训, 丁杨, 于蒙. 中国边缘海沉积有机质来源及其碳汇意义[J]. 中国海洋大学学报, 2017, 47(9):70-76 ZHAO Meixun, DING Yang, YU Meng. Sources of sedimentary organic matter in China marginal sea surface sediments and implications of carbon sink [J]. Periodical of Ocean University of China, 2017, 47(9): 70-76.
[8] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989: 1-289 QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the Yellow Sea[M]. Beijing: China Ocean Press, 1989: 1-289.
[9] Xing L, Tao S Q, Zhang H L, et al. Distributions and origins of lipid biomarkers in surface sediments from the southern Yellow Sea [J]. Applied Geochemistry, 2011, 26(8): 1584-1593. doi: 10.1016/j.apgeochem.2011.06.024
[10] Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea [J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009
[11] Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea [J]. Marine Geology, 2007, 236(3-4): 165-187. doi: 10.1016/j.margeo.2006.10.031
[12] Liu J P, Milliman J D, Gao S. The Shandong mud wedge and post-glacial sediment accumulation in the Yellow Sea [J]. Geo-Marine Letters, 2001, 21(4): 212-218. doi: 10.1007/s00367-001-0083-5
[13] Liu J, Saito Y, Kong X H, et al. Geochemical characteristics of sediment as indicators of post-glacial environmental changes off the Shandong Peninsula in the Yellow Sea [J]. Continental Shelf Research, 2009, 29(7): 846-855. doi: 10.1016/j.csr.2009.01.002
[14] Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology, 2007, 240(1-4): 169-176. doi: 10.1016/j.margeo.2007.02.008
[15] Li Y, Li A C, Huang P. Sedimentary evolution since the late Last Deglaciation in the western North Yellow Sea [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(1): 152-162. doi: 10.1007/s00343-012-1040-z
[16] 李铁刚, 江波, 孙荣涛, 等. 末次冰消期以来东黄海暖流系统的演化[J]. 第四纪研究, 2007, 27(6):945-954 doi: 10.3321/j.issn:1001-7410.2007.06.009 LI Tiegang, JIANG Bo, SUN Rongtao, et al. Evolution pattern of warm current system of the East China Sea and the Yellow Sea since the last deglaciation [J]. Quaternary Sciences, 2007, 27(6): 945-954. doi: 10.3321/j.issn:1001-7410.2007.06.009
[17] Li T G, Nan Q Y, Jiang B, et al. Formation and evolution of the modern warm current system in the East China Sea and the Yellow Sea since the last deglaciation [J]. Chinese Journal of Oceanology and Limnology, 2009, 27(2): 237-249. doi: 10.1007/s00343-009-9149-4
[18] Nan Q Y, Li T G, Chen J X, et al. Holocene paleoenvironment changes in the northern Yellow Sea: evidence from alkenone-derived sea surface temperature [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 83-93. doi: 10.1016/j.palaeo.2017.01.031
[19] 鲁晓红, 陈颖军, 黄国培, 等. 黄渤海表层沉积物中正构烷烃和甾醇的分布及来源研究[J]. 生态环境学报, 2011, 20(6):1117-1122 doi: 10.3969/j.issn.1674-5906.2011.06.022 LU Xiaohong, CHEN Yingjun, HUANG Guopei, et al. Distribution and sources of lipid biomarkers in surface sediments of the Yellow Sea and Bohai Sea [J]. Ecology and Environmental Sciences, 2011, 20(6): 1117-1122. doi: 10.3969/j.issn.1674-5906.2011.06.022
[20] 王星辰, 邢磊, 张海龙, 等. 北黄海-渤海表层沉积物中浮游植物生物标志物的分布特征及指示意义[J]. 中国海洋大学学报, 2014, 44(5):69-73,78 WANG Xingchen, XING Lei, ZHANG Hailong, et al. Distribution of phytoplankton biomarkers in surface sediments from the North Yellow Sea and the Bohai Sea and its implication [J]. Periodical of Ocean University of China, 2014, 44(5): 69-73,78.
[21] Xing L, Hou D, Wang X C, et al. Assessment of the sources of sedimentary organic matter in the Bohai Sea and the northern Yellow Sea using biomarker proxies [J]. Estuarine, Coastal and Shelf Science, 2016, 176: 67-75. doi: 10.1016/j.ecss.2016.04.009
[22] 操云云, 邢磊, 王星辰, 等. 渤海-北黄海表层沉积物中正构烷烃的组合特征及其指示意义的探讨[J]. 中国海洋大学学报, 2018, 48(3):104-113 CAO Yunyun, XING Lei, WANG Xingchen, et al. Study on the indication of n-alkanes in surface sediments from the Bohai Sea and the North Yellow Sea [J]. Periodical of Ocean University of China, 2018, 48(3): 104-113.
[23] Dang T X, Cao Y Y, Xing L. The stable carbon isotopic compositions of n-alkanes in sediments of the Bohai and North Yellow Seas: implications for sources of sedimentary organic matter [J]. Journal of Ocean University of China, 2021, 20(2): 340-348. doi: 10.1007/s11802-021-4637-z
[24] 郭世鑫. 近百年来北黄海浮游植物生产力和种群结构变化的生物标志物记录及影响因素[D]. 中国海洋大学硕士学位论文, 2015 GUO Shixin. Biomarker records of phytoplankton productivity and community structure changes of the North Yellow Sea and its influencing factors over the last 100 years[D]. Master Dissertation of Ocean University of China, 2015.
[25] Liu J G, Li A C, Chen M H. Environmental evolution and impact of the Yellow River sediments on deposition in the Bohai Sea during the last deglaciation [J]. Journal of Asian Earth Sciences, 2010, 38(1-2): 26-33. doi: 10.1016/j.jseaes.2009.12.013
[26] Heaton T J, Köhler P, Butzin M, et al. Marine20—the marine radiocarbon age calibration curve (0-55, 000 cal BP) [J]. Radiocarbon, 2020, 62(4): 779-820. doi: 10.1017/RDC.2020.68
[27] Wentworth C K. A scale of grade and class terms for clastic sediments [J]. The Journal of Geology, 1922, 30(5): 377-392. doi: 10.1086/622910
[28] Shepard F P. Nomenclature based on sand-silt-clay ratios [J]. Journal of Sedimentary Research, 1954, 24(3): 151-158.
[29] McManus J. Grain size determination and interpretation[M]. Techniques in Sedimentology, Oxford: Blackwell, 1988: 63-85.
[30] 李学刚, 宋金明. 海洋沉积物中碳的来源、迁移和转化[J]. 海洋科学集刊, 2004, 46(1):106-117 LI Xuegang, SONG Jinming. Sources, removal and transformation of carbon in marine sediments [J]. Studia Marina Sinica, 2004, 46(1): 106-117.
[31] Eckelmann W R, Broecker W S, Whitlock D W, et al. Implications of carbon isotopic composition of total organic carbon of some recent sediments and ancient oils [J]. AAPG Bulletin, 1962, 46(5): 699-704.
[32] Pancost R D, Boot C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments [J]. Marine Chemistry, 2004, 92(1-4): 239-261. doi: 10.1016/j.marchem.2004.06.029
[33] Wu J P, Calvert S E, Wong C S. Carbon and nitrogen isotope ratios in sedimenting particulate organic matter at an upwelling site off Vancouver island [J]. Estuarine, Coastal and Shelf Science, 1999, 48(2): 193-203. doi: 10.1006/ecss.1998.0409
[34] Guo Z G, Li J Y, Feng J L, et al. Compound-specific carbon isotope compositions of individual long-chain n-alkanes in severe Asian dust episodes in the North China coast in 2002 [J]. Chinese Science Bulletin, 2006, 51(17): 2133-2140. doi: 10.1007/s11434-006-2071-7
[35] Tao S Q, Eglinton T I, Montluçon D B, et al. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: regional significance and global relevance [J]. Earth and Planetary Science Letters, 2015, 414: 77-86. doi: 10.1016/j.jpgl.2015.01.004
[36] Yu M, Eglinton T I, Haghipour N, et al. Impacts of natural and human-induced hydrological variability on particulate organic carbon dynamics in the Yellow River [J]. Environmental Science & Technology, 2019, 53(3): 1119-1129.
[37] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes [J]. Organic Geochemistry, 1997, 27(5-6): 213-250. doi: 10.1016/S0146-6380(97)00049-1
[38] 李艳. 北黄海末次冰消期以来沉积特征及物源环境指示[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2011 LI Yan. Sedimentary characteristics and implication to provenance and sedimentary environment since the last deglaciation in the North Yellow Sea[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2011.
[39] 陈晓辉. 北黄海陆架晚第四纪地层结构与物源环境演变研究[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2014 CHEN Xiaohui. Sedimentary stratigraphic structure and provenance environmental evolution in the North Yellow Sea during the late Quaternary[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2014.
[40] Wu P, Xiao X T, Tao S Q, et al. Biomarker evidence for changes in terrestrial organic matter input into the Yellow Sea mud area during the Holocene [J]. Science China Earth Sciences, 2016, 59(6): 1216-1224. doi: 10.1007/s11430-016-5283-y
[41] 皮仲, 李铁刚, 类彦立. 中全新世以来南黄海中部沉积过程: 基于岩心粒度和有机质指标[J]. 海洋学报, 2019, 41(11):75-88 PI Zhong, LI Tiegang, LEI Yanli. Sedimentary processes of central South Yellow Sea since the mid-Holocene based on grain size and organic matter indexes [J]. Haiyang Xuebao, 2019, 41(11): 75-88.
[42] Wang L B, Yang Z S, Zhang R P, et al. Sea surface temperature records of core ZY2 from the central mud area in the South Yellow Sea during last 6200 years and related effect of the Yellow Sea Warm Current [J]. Chinese Science Bulletin, 2011, 56(15): 1588-1595. doi: 10.1007/s11434-011-4442-y
[43] Xing L, Zhao M X, Zhang H L, et al. Biomarker evidence for paleoenvironmental changes in the southern Yellow Sea over the last 8200 years [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(1): 1-11. doi: 10.1007/s00343-012-1045-7
[44] Zhao X C, Tao S Q, Zhang R P, et al. Biomarker records of phytoplankton productivity and community structure changes in the Central Yellow Sea mud area during the mid-late Holocene [J]. Journal of Ocean University of China, 2013, 12(4): 639-646. doi: 10.1007/s11802-013-2271-0
[45] 李铁刚, 常凤鸣, 于心科. Younger Dryas事件与北黄海泥炭层的形成[J]. 地学前缘, 2010, 17(1):322-329 LI Tiegang, CHANG Fengming, YU Xinke. Younger Dryas event and formation of peat layers in the Northern Yellow Sea [J]. Earth Science Frontiers, 2010, 17(1): 322-329.
[46] 肖尚斌, 李安春, 陈木宏, 等. 近8 ka东亚冬季风变化的东海内陆架泥质沉积记录[J]. 地球科学:中国地质大学学报, 2005, 30(5):573-581 XIAO Shangbin, LI Anchun, CHEN Muhong, et al. Recent 8 ka mud records of the East Asian Winter monsoon from the inner shelf of the East China Sea [J]. Earth Science:Journal of China University of Geosciences, 2005, 30(5): 573-581.
[47] 闫天浩. 北黄海中部泥质区W03岩芯全新世以来沉积演化及对海平面变化的响应[D]. 中国海洋大学硕士学位论文, 2022 YAN Tianhao. Sedimentary evolution of W03 core in the central mud area of the North Yellow Sea since Holocene and its response to sea level change[D]. Master Dissertation of Ocean University of China, 2022.
-
期刊类型引用(1)
1. 王玉莲,王宁,李浩,姜帆,陈丽洁,常宝坤. 威海市东部滨海新城北部海域沉积物分布特征及沉积环境分析. 山东国土资源. 2024(09): 37-42 . 百度学术
其他类型引用(0)