The characteristics of sedimentary organic carbon in the mud area in the western North Yellow Sea since the Holocene
-
摘要:
北黄海西部泥质区沉积环境稳定、沉积记录连续,是重建过去周边流域变化与黄海海洋环境信息的良好载体。目前围绕北黄海西部泥质区沉积有机碳的研究工作多局限于通过表层沉积物揭示其现代分布特征,对于该泥质区长时间尺度沉积有机碳埋藏过程与机制的研究相对薄弱。通过北黄海西部泥质区W03岩芯的总有机碳指标,重建了全新世以来北黄海西部沉积有机碳的埋藏特征,探讨了气候及海洋环境变化对北黄海西部沉积有机碳埋藏的控制机制。研究表明:海平面上升的停滞期(10.3~9.8 cal.kaBP),发育硬质黏土层,有机碳以陆源输入为主(60.7%),动荡的沉积环境导致总有机碳含量相对较低,平均含量仅为0.22%;海平面上升期(9.8~7.0 cal.kaBP),海源有机碳的贡献增加(47.7%),相对稳定的沉积环境有利于该时期有机碳的埋藏;高海平面以来(7.0 cal.kaBP至今),黄海环流体系逐渐形成,陆源有机碳输入随着东亚冬季风驱动的沿岸流强度变化发生相应的改变,海源有机碳的贡献继续增加(50.0%),总有机碳的含量升高至0.58%。北黄海西部泥质区全新世以来沉积有机碳埋藏主要受控于海平面变化和海洋环流体系的运动。
Abstract:The sedimentary environment of the mud area in the western North Yellow Sea is stable, and the sedimentary record is continuous, making it an excellent proxy for reconstructing paleoenvironment of the local region and surrounding watershed. Previous researches on the sedimentary organic carbon in the mud area are limited to its modern distribution characteristics through surface sediment analysis, and works on the long-term sedimentary processes and mechanisms of organic carbon remain insufficient. Core W03 in the mud area was used to reconstruct the sedimentary environment of organic carbon since the Holocene using sedimentary total organic carbon index, and to clarify the impact of climate and oceanic environmental changes on the source and deposition of organic carbon. During the period of sea level rise stagnation (10.3~9.8 cal.kaBP), a hard clay layer was developed rich in terrestrial organic carbon (60.7%). The turbulent sedimentary environment resulted in a relatively low total organic carbon content (average of only 0.22%). During the period of sea level rising (9.8~7.0 cal.kaBP), marine-sourced organic carbon (47.7%) boomed in a relatively stable sedimentary environment, which was conducive to the burial of organic carbon. Since the high sea level period (7.0 cal.kaBP to present), the Yellow Sea circulation system has been formed gradually, and the input of terrigenous organic carbon has changed correspondingly with the change of coastal current intensity under the East Asian winter monsoon scheme. The contribution of marine organic carbon was increased continuously to 50.0%, and so did the content of total organic carbon (0.58%). Therefore, sedimentary organic carbon in the mud area since the Holocene is controlled by sea level fluctuation and the resultant ocean circulation system.
-
Keywords:
- mud area /
- the Holocene /
- sedimentary organic carbon /
- the North Yellow Sea
-
-
图 7 全新世以来W03岩芯总有机碳指标与气候、海洋记录对比
a:TOC含量, b:δ13C,c:陆源有机碳贡献比,d:海源有机碳贡献比,e:沉积速率,f:平均粒径,g:PC-6岩芯重建的东亚冬季风记录[46],h:B-Y14岩芯的SST记录[18],i:海平面变化[10-11]。
Figure 7. Comparison of the total organic carbon index of Core W03 with climatic and oceanic records since the Holocene
a: Total organic carbon content, b: δ13C, c: The contribution of terrestrial organic carbon, d: The contribution of marine organic carbon, e: Linear sedimentary rate, f: Mean grain size, g: East Asian winter monsoon intensity reconstructed from the PC-6 Core record[46], h: Sea surface temperature records from B-Y14 Core[18], i: Sea level change[10-11].
表 1 总有机碳指标在不同阶段的平均值
Table 1 Average value of total organic carbon index in different stages
年代 TOC/
%TN/
%δ13C/
‰陆源贡献比/
%海源贡献比/
%3.3 cal. kaBP至今 0.56 0.07 −23.0 49.3 50.7 7.0~3.3 cal. kaBP 0.57 0.07 −23.1 51.5 48.5 9.8~7.0 cal. kaBP 0.49 0.06 −23.1 52.3 47.7 10.3~9.8 cal. kaBP 0.22 0.04 −23.6 60.7 39.3 -
[1] Mackenzie F T, Lerman A, Ver L M B. Role of the continental margin in the global carbon balance during the past three centuries [J]. Geology, 1998, 26(5): 423-426.
[2] Berner R A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over phanerozoic time [J]. Global and Planetary Change, 1989, 1(1-2): 97-122. doi: 10.1016/0921-8181(89)90018-0
[3] Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis: authors' closing comments [J]. Marine Chemistry, 1995, 49(2-3): 137-139. doi: 10.1016/0304-4203(95)00013-H
[4] De Haas H, van Weering T C E, de Stigter H. Organic carbon in shelf seas: sinks or sources, processes and products [J]. Continental Shelf Research, 2002, 22(5): 691-717. doi: 10.1016/S0278-4343(01)00093-0
[5] 张明宇, 常鑫, 胡利民, 等. 东海内陆架有机碳的源—汇过程及其沉积记录[J]. 沉积学报, 2021, 39(3):593-609 ZHANG Mingyu, CHANG Xin, HU Limin, et al. Source-to-sink process of organic carbon on the inner shelf of the East China Sea and its sedimentary records [J]. Acta Sedimentologica Sinica, 2021, 39(3): 593-609.
[6] 石学法, 胡利民, 乔淑卿, 等. 中国东部陆架海沉积有机碳研究进展: 来源、输运与埋藏[J]. 海洋科学进展, 2016, 34(3):313-327 SHI Xuefa, HU Limin, QIAO Shuqing, et al. Progress in research of sedimentary organic carbon in the East China Sea: sources, dispersal and sequestration [J]. Advances in Marine Science, 2016, 34(3): 313-327.
[7] 赵美训, 丁杨, 于蒙. 中国边缘海沉积有机质来源及其碳汇意义[J]. 中国海洋大学学报, 2017, 47(9):70-76 ZHAO Meixun, DING Yang, YU Meng. Sources of sedimentary organic matter in China marginal sea surface sediments and implications of carbon sink [J]. Periodical of Ocean University of China, 2017, 47(9): 70-76.
[8] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989: 1-289 QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the Yellow Sea[M]. Beijing: China Ocean Press, 1989: 1-289.
[9] Xing L, Tao S Q, Zhang H L, et al. Distributions and origins of lipid biomarkers in surface sediments from the southern Yellow Sea [J]. Applied Geochemistry, 2011, 26(8): 1584-1593. doi: 10.1016/j.apgeochem.2011.06.024
[10] Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea [J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009
[11] Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea [J]. Marine Geology, 2007, 236(3-4): 165-187. doi: 10.1016/j.margeo.2006.10.031
[12] Liu J P, Milliman J D, Gao S. The Shandong mud wedge and post-glacial sediment accumulation in the Yellow Sea [J]. Geo-Marine Letters, 2001, 21(4): 212-218. doi: 10.1007/s00367-001-0083-5
[13] Liu J, Saito Y, Kong X H, et al. Geochemical characteristics of sediment as indicators of post-glacial environmental changes off the Shandong Peninsula in the Yellow Sea [J]. Continental Shelf Research, 2009, 29(7): 846-855. doi: 10.1016/j.csr.2009.01.002
[14] Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology, 2007, 240(1-4): 169-176. doi: 10.1016/j.margeo.2007.02.008
[15] Li Y, Li A C, Huang P. Sedimentary evolution since the late Last Deglaciation in the western North Yellow Sea [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(1): 152-162. doi: 10.1007/s00343-012-1040-z
[16] 李铁刚, 江波, 孙荣涛, 等. 末次冰消期以来东黄海暖流系统的演化[J]. 第四纪研究, 2007, 27(6):945-954 doi: 10.3321/j.issn:1001-7410.2007.06.009 LI Tiegang, JIANG Bo, SUN Rongtao, et al. Evolution pattern of warm current system of the East China Sea and the Yellow Sea since the last deglaciation [J]. Quaternary Sciences, 2007, 27(6): 945-954. doi: 10.3321/j.issn:1001-7410.2007.06.009
[17] Li T G, Nan Q Y, Jiang B, et al. Formation and evolution of the modern warm current system in the East China Sea and the Yellow Sea since the last deglaciation [J]. Chinese Journal of Oceanology and Limnology, 2009, 27(2): 237-249. doi: 10.1007/s00343-009-9149-4
[18] Nan Q Y, Li T G, Chen J X, et al. Holocene paleoenvironment changes in the northern Yellow Sea: evidence from alkenone-derived sea surface temperature [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 83-93. doi: 10.1016/j.palaeo.2017.01.031
[19] 鲁晓红, 陈颖军, 黄国培, 等. 黄渤海表层沉积物中正构烷烃和甾醇的分布及来源研究[J]. 生态环境学报, 2011, 20(6):1117-1122 doi: 10.3969/j.issn.1674-5906.2011.06.022 LU Xiaohong, CHEN Yingjun, HUANG Guopei, et al. Distribution and sources of lipid biomarkers in surface sediments of the Yellow Sea and Bohai Sea [J]. Ecology and Environmental Sciences, 2011, 20(6): 1117-1122. doi: 10.3969/j.issn.1674-5906.2011.06.022
[20] 王星辰, 邢磊, 张海龙, 等. 北黄海-渤海表层沉积物中浮游植物生物标志物的分布特征及指示意义[J]. 中国海洋大学学报, 2014, 44(5):69-73,78 WANG Xingchen, XING Lei, ZHANG Hailong, et al. Distribution of phytoplankton biomarkers in surface sediments from the North Yellow Sea and the Bohai Sea and its implication [J]. Periodical of Ocean University of China, 2014, 44(5): 69-73,78.
[21] Xing L, Hou D, Wang X C, et al. Assessment of the sources of sedimentary organic matter in the Bohai Sea and the northern Yellow Sea using biomarker proxies [J]. Estuarine, Coastal and Shelf Science, 2016, 176: 67-75. doi: 10.1016/j.ecss.2016.04.009
[22] 操云云, 邢磊, 王星辰, 等. 渤海-北黄海表层沉积物中正构烷烃的组合特征及其指示意义的探讨[J]. 中国海洋大学学报, 2018, 48(3):104-113 CAO Yunyun, XING Lei, WANG Xingchen, et al. Study on the indication of n-alkanes in surface sediments from the Bohai Sea and the North Yellow Sea [J]. Periodical of Ocean University of China, 2018, 48(3): 104-113.
[23] Dang T X, Cao Y Y, Xing L. The stable carbon isotopic compositions of n-alkanes in sediments of the Bohai and North Yellow Seas: implications for sources of sedimentary organic matter [J]. Journal of Ocean University of China, 2021, 20(2): 340-348. doi: 10.1007/s11802-021-4637-z
[24] 郭世鑫. 近百年来北黄海浮游植物生产力和种群结构变化的生物标志物记录及影响因素[D]. 中国海洋大学硕士学位论文, 2015 GUO Shixin. Biomarker records of phytoplankton productivity and community structure changes of the North Yellow Sea and its influencing factors over the last 100 years[D]. Master Dissertation of Ocean University of China, 2015.
[25] Liu J G, Li A C, Chen M H. Environmental evolution and impact of the Yellow River sediments on deposition in the Bohai Sea during the last deglaciation [J]. Journal of Asian Earth Sciences, 2010, 38(1-2): 26-33. doi: 10.1016/j.jseaes.2009.12.013
[26] Heaton T J, Köhler P, Butzin M, et al. Marine20—the marine radiocarbon age calibration curve (0-55, 000 cal BP) [J]. Radiocarbon, 2020, 62(4): 779-820. doi: 10.1017/RDC.2020.68
[27] Wentworth C K. A scale of grade and class terms for clastic sediments [J]. The Journal of Geology, 1922, 30(5): 377-392. doi: 10.1086/622910
[28] Shepard F P. Nomenclature based on sand-silt-clay ratios [J]. Journal of Sedimentary Research, 1954, 24(3): 151-158.
[29] McManus J. Grain size determination and interpretation[M]. Techniques in Sedimentology, Oxford: Blackwell, 1988: 63-85.
[30] 李学刚, 宋金明. 海洋沉积物中碳的来源、迁移和转化[J]. 海洋科学集刊, 2004, 46(1):106-117 LI Xuegang, SONG Jinming. Sources, removal and transformation of carbon in marine sediments [J]. Studia Marina Sinica, 2004, 46(1): 106-117.
[31] Eckelmann W R, Broecker W S, Whitlock D W, et al. Implications of carbon isotopic composition of total organic carbon of some recent sediments and ancient oils [J]. AAPG Bulletin, 1962, 46(5): 699-704.
[32] Pancost R D, Boot C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments [J]. Marine Chemistry, 2004, 92(1-4): 239-261. doi: 10.1016/j.marchem.2004.06.029
[33] Wu J P, Calvert S E, Wong C S. Carbon and nitrogen isotope ratios in sedimenting particulate organic matter at an upwelling site off Vancouver island [J]. Estuarine, Coastal and Shelf Science, 1999, 48(2): 193-203. doi: 10.1006/ecss.1998.0409
[34] Guo Z G, Li J Y, Feng J L, et al. Compound-specific carbon isotope compositions of individual long-chain n-alkanes in severe Asian dust episodes in the North China coast in 2002 [J]. Chinese Science Bulletin, 2006, 51(17): 2133-2140. doi: 10.1007/s11434-006-2071-7
[35] Tao S Q, Eglinton T I, Montluçon D B, et al. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: regional significance and global relevance [J]. Earth and Planetary Science Letters, 2015, 414: 77-86. doi: 10.1016/j.jpgl.2015.01.004
[36] Yu M, Eglinton T I, Haghipour N, et al. Impacts of natural and human-induced hydrological variability on particulate organic carbon dynamics in the Yellow River [J]. Environmental Science & Technology, 2019, 53(3): 1119-1129.
[37] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes [J]. Organic Geochemistry, 1997, 27(5-6): 213-250. doi: 10.1016/S0146-6380(97)00049-1
[38] 李艳. 北黄海末次冰消期以来沉积特征及物源环境指示[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2011 LI Yan. Sedimentary characteristics and implication to provenance and sedimentary environment since the last deglaciation in the North Yellow Sea[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2011.
[39] 陈晓辉. 北黄海陆架晚第四纪地层结构与物源环境演变研究[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2014 CHEN Xiaohui. Sedimentary stratigraphic structure and provenance environmental evolution in the North Yellow Sea during the late Quaternary[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2014.
[40] Wu P, Xiao X T, Tao S Q, et al. Biomarker evidence for changes in terrestrial organic matter input into the Yellow Sea mud area during the Holocene [J]. Science China Earth Sciences, 2016, 59(6): 1216-1224. doi: 10.1007/s11430-016-5283-y
[41] 皮仲, 李铁刚, 类彦立. 中全新世以来南黄海中部沉积过程: 基于岩心粒度和有机质指标[J]. 海洋学报, 2019, 41(11):75-88 PI Zhong, LI Tiegang, LEI Yanli. Sedimentary processes of central South Yellow Sea since the mid-Holocene based on grain size and organic matter indexes [J]. Haiyang Xuebao, 2019, 41(11): 75-88.
[42] Wang L B, Yang Z S, Zhang R P, et al. Sea surface temperature records of core ZY2 from the central mud area in the South Yellow Sea during last 6200 years and related effect of the Yellow Sea Warm Current [J]. Chinese Science Bulletin, 2011, 56(15): 1588-1595. doi: 10.1007/s11434-011-4442-y
[43] Xing L, Zhao M X, Zhang H L, et al. Biomarker evidence for paleoenvironmental changes in the southern Yellow Sea over the last 8200 years [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(1): 1-11. doi: 10.1007/s00343-012-1045-7
[44] Zhao X C, Tao S Q, Zhang R P, et al. Biomarker records of phytoplankton productivity and community structure changes in the Central Yellow Sea mud area during the mid-late Holocene [J]. Journal of Ocean University of China, 2013, 12(4): 639-646. doi: 10.1007/s11802-013-2271-0
[45] 李铁刚, 常凤鸣, 于心科. Younger Dryas事件与北黄海泥炭层的形成[J]. 地学前缘, 2010, 17(1):322-329 LI Tiegang, CHANG Fengming, YU Xinke. Younger Dryas event and formation of peat layers in the Northern Yellow Sea [J]. Earth Science Frontiers, 2010, 17(1): 322-329.
[46] 肖尚斌, 李安春, 陈木宏, 等. 近8 ka东亚冬季风变化的东海内陆架泥质沉积记录[J]. 地球科学:中国地质大学学报, 2005, 30(5):573-581 XIAO Shangbin, LI Anchun, CHEN Muhong, et al. Recent 8 ka mud records of the East Asian Winter monsoon from the inner shelf of the East China Sea [J]. Earth Science:Journal of China University of Geosciences, 2005, 30(5): 573-581.
[47] 闫天浩. 北黄海中部泥质区W03岩芯全新世以来沉积演化及对海平面变化的响应[D]. 中国海洋大学硕士学位论文, 2022 YAN Tianhao. Sedimentary evolution of W03 core in the central mud area of the North Yellow Sea since Holocene and its response to sea level change[D]. Master Dissertation of Ocean University of China, 2022.