南黄海盆地二叠系高-过成熟烃源岩的生物标志化合物特征及其地质意义

吴飘, 陈建文, 赵青芳, 张银国, 梁杰, 蓝天宇, 薛路, 可行

吴飘,陈建文,赵青芳,等. 南黄海盆地二叠系高-过成熟烃源岩的生物标志化合物特征及其地质意义[J]. 海洋地质与第四纪地质,2023,43(4): 150-166. DOI: 10.16562/j.cnki.0256-1492.2023041401
引用本文: 吴飘,陈建文,赵青芳,等. 南黄海盆地二叠系高-过成熟烃源岩的生物标志化合物特征及其地质意义[J]. 海洋地质与第四纪地质,2023,43(4): 150-166. DOI: 10.16562/j.cnki.0256-1492.2023041401
WU Piao,CHEN Jianwen,ZHAO Qingfang,et al. Characteristics of biomarkers and the geological significance in highly to over-mature Permian source rocks in the South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology,2023,43(4):150-166. DOI: 10.16562/j.cnki.0256-1492.2023041401
Citation: WU Piao,CHEN Jianwen,ZHAO Qingfang,et al. Characteristics of biomarkers and the geological significance in highly to over-mature Permian source rocks in the South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology,2023,43(4):150-166. DOI: 10.16562/j.cnki.0256-1492.2023041401

南黄海盆地二叠系高-过成熟烃源岩的生物标志化合物特征及其地质意义

基金项目: 国家专项海洋地质调查项目(DD20221723,DD20190818,DD20160152);国家自然科学基金青年基金项目“二连盆地下白垩统富火山组分的咸水湖相烃源岩地质地球化学特征及其有机质富集机制(42102188)”,“下扬子北部陆缘区早寒武世古海洋氧化还原状态的演化:来自黑色页岩的沉积记录(ZR2022MD054)”;崂山实验室“十四五”科技创新项目(LSKJ202203401,LSKJ202203404)
详细信息
    作者简介:

    吴飘(1990—),男,博士,从事油气地球化学研究,E-mail:wupiao0921@163.com

    通讯作者:

    陈建文(1965—),男,研究员,从事海域油气资源调查评价与研究,E-mail:jwchen2012@126.com

  • 中图分类号: P736

Characteristics of biomarkers and the geological significance in highly to over-mature Permian source rocks in the South Yellow Sea Basin

  • 摘要: 南黄海盆地二叠系烃源岩的生烃层系多、热演化程度高、沉积环境变化大,前人极少从生物标志化合物的角度探讨烃源岩的差异。本文通过对CSDP-2井二叠系16个成熟-过成熟烃源岩样品进行有机地球化学分析,剖析了四套烃源岩的饱和烃、芳香烃馏分中生物标志化合物的组成、演化规律及地质意义。结果表明,二叠系不同层系烃源岩的甾烷系列、三芳甾烷系列、烷基二苯并噻吩系列化合物和β-胡萝卜烷的相对丰度具有显著差异,据此可将其分为栖霞组下段和龙潭组-大隆组泥岩、栖霞组上段和孤峰组硅质岩、孤峰组硅质泥岩3类烃源岩。研究显示,栖霞组下段和龙潭组-大隆组泥岩烃源岩沉积于淡水氧化或微咸水贫氧环境,有机质来源于浮游生物和陆生高等植物;栖霞组上段-孤峰组烃源岩沉积于还原咸水或静水硫化环境,其中硅质岩烃源岩的有机质来源于浮游生物和硅藻,硅质泥岩烃源岩的有机质来源于浮游生物、硅藻和陆生高等植物。此外,甲基菲指数、烷基二苯并噻吩参数(4-MDBT/DBT、MDBI、4,6-/1,4-DMDBT)可作为上二叠统烃源岩的成熟度指标,但不能作为中—下二叠统烃源岩的成熟度指标。
    Abstract: The Permian source rocks in the South Yellow Sea Basin (SYSB) are characterized by multi-sets of hydrocarbon-generating strata, high thermal evolution degrees, and dramatic changes in sedimentary environment. However, at present, little is known about the biomarker differences of the source rocks. Through organic geochemical analysis with 16 mature to over-mature source rock samples in the four sets of Permian source rocks of the CSDP-2 well in the SYSB, the compositions, evolution law, and geological significance of biomarkers in the alkane and aromatic hydrocarbon fractions are clarified. Biomarker parameters show that the relative abundance of the compounds in sterane series, triarylsterane series, alkyl dibenzothiophene series, and the β-carotene varied greatly in different sets of source rocks in the Permian of SYBS. Three types of source rocks could be classified, namely, mudstones in the Lower Qixia Formation and the Longtan to Dalong Formation, chert in the Upper Qixia to Gufeng Formation, and siliceous mudstones in the Gufeng Formation. The research proved that mudstones in the Lower Qixia Formation, the Longtan Formation, and the Dalong Formation are deposited in oxic fresh or dysoxic brackish water conditions, in which the organic matter mainly derived from plankton and terrestrial higher planters. Source rocks in the Upper Qixia Formation and the Gufeng Formation are deposited in anoxic saline or euxinic sulfidic environment, in which the organic matter in chert is derived from plankton and diatom, whereas that in siliceous mudstones is derived from plankton, diatom, and terrestrial higher planters. Besides that, we proposed that the methylphenanthrene indexes and the alkyl dibenzothiophene parameters (4-MDBT/DBT, MDBI, 4,6 -/1,4-DMDBT) could be used as maturity scale for the Upper Permian source rock, but cannot be used for the Middle and Lower Permian source rocks.
  • 作为我国东部陆架海,渤、黄海因其复杂的海洋动力学特征、丰富的沉积物来源一直以来都是国内外海洋学者研究的重点区域。唐山港位于渤海湾和辽东湾之间的交界处,靠近渤海湾北部的海岸带一侧[1-2],其南部为走向近EW向的曹妃甸深槽,是渤海湾最深的水域。该区海陆相互作用频繁,发育沙质海岸和泥质海岸,第四纪沉积演化过程十分复杂,再加上近年来开展的围填海工程导致潮流系统和滩海地貌发生巨大变化[1],严重影响了唐山港及其周边海域的沉积环境。前人在渤海湾唐山港及其附近海域开展了大量的研究工作,主要集中在海侵过程[3-5]、海平面变化与海岸变迁[2, 6]、潮流通道变化[7]以及第四纪沉积演化等方面[3, 8],而对于该区沉积物沉积过程与搬运机制等学者较为关注的问题的研究则相对有限。

    河流物质的输入是海底沉积物的重要来源[9-10],渤海湾三面环陆,入海河流众多,有清河、海河、蓟运河、黄河、辽河以及滦河等。其中,海河、黄河以及滦河是渤海湾西部地区沿岸径流量相对较大的3条河流,是该区最主要的沉积物来源。前人通过元素地球化学、黏土矿物等方法对渤海湾西岸的沉积物源进行了示踪[11-14],但目前针对渤海湾西缘表层沉积物的来源研究仍存在争议,主要存在以下两种观点:一种观点认为渤海湾西缘唐山港附近靠近海河入海口,沉积物主要是海河来源的陆源碎屑物质[13],可能部分也受到滦河的影响[15];另一种观点则认为由于受到渤海湾环流的影响,唐山港附近海域主要是黄河-海河混合来源的陆源碎屑物质[11-12, 14]。唐山港附近海域是否有黄河和滦河来源物质的加入,黄河携带的物质在渤海湾地区的分布范围及特征等问题尚未解决。因此,渤海湾西缘唐山港附近海域沉积物来源问题亟需可靠的物源指标来进一步的分析和研究。

    沉积物粒度受物源区性质、沉积作用以及沉积动力学过程等多种因素影响,导致不同沉积环境中沉积物粒度特征明显不同,因此常被用来作为判断沉积物来源、水动力条件以及重建古气候和古环境演化的重要参数,广泛应用于海洋、河流以及湖泊沉积环境的研究中[13, 16]。黏土矿物是地表母岩经风化作用形成的产物,是海洋陆源碎屑中重要的组成成分,是示踪海洋沉积物来源以及指示沉积环境演化等内容的重要指标[17-19]。本文通过对研究区沉积物粒度、黏土矿物等指标开展测试分析,同时与周围河流输运的沉积物中粒度和黏土矿物特征进行对比,以期揭示渤海湾唐山港海域附近表层沉积物粒度和黏土矿物分布特征,初步探讨渤海湾西缘现代沉积物物质来源及其控制因素。

    唐山港位于渤海湾北部唐山市东南部沿海,包含京唐港区和曹妃甸港区。唐山港海域水深较浅,平均水深18 m,最大水深为36 m,位于研究区曹妃甸深槽处(图1)。曹妃甸深槽走向近EW向,沟槽北陡南缓,是在地质构造和水下河谷的双重作用下发育形成的[1],是全新世滦河向海输送泥沙的入海处[20],岬角地貌和特殊地形特征使得附近海域水动力增强,对深槽冲刷作用较为严重,是深槽长期维持水深的重要因素[1]。研究区地形和地貌类型较为复杂,内侧为古滦河三角洲发育的冲积-海积平原,外侧为曹妃甸-东坑坨沙质岸线[1]。深槽附近的地貌自西向东可划分为南堡海岸地貌、曹妃甸深槽和老龙沟潟湖3个体系单元[1, 21]。近年来由于大规模的围填海工程,深槽附近出现了新的侵蚀洼地和海底滑塌等地貌类型。从曹妃甸向渤海海峡有条27 m深的天然水道,深槽和水道使得唐山港具备成为渤海沿岸的大型泊位港址的天然优势。

    图  1  渤海湾唐山港海域表层沉积物取样站位及海流示意图
    a:渤海湾季节性环流系统(海流方向据文献[27-30]修改),b:渤海湾唐山港海域表层沉积物取样站位。
    Figure  1.  Surface sediment sampling stations and currents in Tangshan Harbor, Bohai Bay
    a: Seasonal current system in Bohai Bay (currents direction modified after references [27-30]), b: Surface sediment sampling stations in Tangshan Harbor, Bohai Bay.

    黄河是中国第二大河流,平均径流量为3.16×1010 m3/a,约占渤海河流输入的90%,每年向边缘海输送约1.4×108 t的沉积物[22],其中30%~40%的沉积物堆积在河口处[23],其搬运的物质覆盖渤海湾、渤海海峡南部以及莱州湾以北的渤中海域,是渤海湾最主要的沉积物来源[24]。海河的平均径流量为2.15×1010 m3/a[25],输沙量约 6.0×106 t/a[14]。虽然蓟运河的径流量和输沙量远小于海河,但对渤海湾地区沉积物也有一定的贡献。滦河平均径流量为4.6×109 m3/a,平均输沙量约为 2.0×107 t/a,沉积物相对较粗,主要是沉积在滦河河口到曹妃甸沿岸区域[26]

    渤海环流体系主要是由渤海沿岸流和外海来的黄海暖流余脉组成,具有北进南出的特征(图1a)。冬季黄海暖流余脉流自渤海海峡北部进入渤海并延伸至渤海西岸,同时由于受到沿岸的阻挡导致其分为南北两支,其中南支在进入渤海湾后沿岸转折南下,流经莱州湾后从渤海海峡逆时针方向流出渤海;北支则是沿着辽东湾西岸向北运移,与辽东湾低盐水的沿岸流形成顺时针环流[24, 27]。渤海沿岸流和黄海暖流共同构成渤海南部顺时针、北部逆时针方向的双环流体系结构[24, 27-28]。夏季的环流流型与冬季相近,也是北部顺时针、南部逆时针的双环流结构,除了黄海暖流产生的北向分支,会沿着辽东湾东岸北上。渤海潮流以半日潮流为主,流速0.5~1.0 m/s,老铁山水道附近潮流最强为1.5~2.0 m/s[27]。渤海潮余流从黄河三角洲向北-东北方向流动,受辽东湾西岸阻隔向右转向,沿着辽东湾沿岸向辽东半岛南部流动,在渤海中部和辽东湾附近形成顺时针的余环流[27],对渤海湾中部环流具有重要的贡献。

    2021年中国地质调查局烟台海岸带地质调查中心依托中国地质调查局1∶5万海洋区域地质调查项目对渤海湾曹妃甸地区进行表层沉积物系统取样(图1b)。参照《海洋区域地质调查规范(1∶50000)》(DZ/T 0255-2014),取样站位按照1 km×1 km网格间距进行设计,利用抓斗取样器采集0~2 cm表层沉积物。取回的沉积物被放置在密封的无菌袋中,并4℃避光储存。

    取0.5 g的样品于离心管中,加入30%的H2O2和10%的HCl去除沉积物中的有机质和碳酸盐。上机前加入0.5 M的六偏磷酸钠(NaPO36并经超声波完全分散,利用奥地利Anton Paar PSA1190激光粒度分析仪进行粒度分析测试,仪器的测量范围为0.04~2500 μm,同一样品进行两次平行测量,重复测量相对误差<1%[31],分析测试精度<3%。表层沉积物粒度数据由中国地质调查局烟台海岸带地质调查中心项目组提供[31],部分数据已发表。粒度参数的计算和等级划分采用Folk和Ward分类方案[32],依据粒径<4 μm、4~63 μm和>63 μm将粒度分为黏土、粉砂和砂[33]

    黏土矿物分析测试采用X射线衍射方法(X-ray Diffraction, XRD)在中国海洋大学海洋地球科学学院黏土矿物分析实验室完成。取适量样品于离心管中,加入少量10%的过氧化氢溶液以除去沉积物中的有机质,然后加纯水离心清洗三次,后再加入50%的醋酸以除去沉积物中的碳酸盐,再用水将样品洗至中性。取上层浊液于离心管中加入2滴饱和NaCl溶液,利用Stoke沉降原理提取出粒度小于2 μm的悬浮液,制成涂片自然风干后用乙二醇蒸汽饱和制成乙二醇饱和片[34],将其置于德国布鲁克AXS公司生产的Bruker D8 ADVANCE型X射线衍射仪中进行测试分析,仪器分析参数为Cu 靶、管电压 40 kv、管电流 80 mA、扫描范围3°~30°(2θ)、扫描步进长度(2θ)0.02°,仪器峰位精度≤0.01°2θ。依据Biscaye[18]方法选取乙二醇饱和片图谱上的蒙脱石(17 Å, (1 Å=10–10 m))、伊利石(10 Å)、绿泥石(7 Å)和高岭石(7 Å)4种黏度矿物的3个特征衍射峰的峰面积为基础数据进行计算,按照1∶4∶2的权重因子换算获得蒙脱石、伊利石、绿泥石和高岭石的相对含量。随后以25°(2θ)左右3.5 Å 附近的衍射峰高比值换算获得高岭石(3.57 Å)和绿泥石(3.53 Å)的相对含量。经均一化处理4种黏土矿物的总含量为100%。为保证实验结果的准确性,实验过程中每批样品设置10 %平行样,平行样合格率为100%。

    分析结果表明,渤海湾唐山港附近海域表层沉积物主要是由粉砂质砂(zS)、砂质粉砂(sZ)、粉砂(Z)以及少量的砂(S)和黏土等组成(图2[31]。黏土粒级组分相对含量为0.52%~51.11%,平均含量为21.45%;粉砂粒级组分含量为0.87%~79.05%,平均含量为50.38%;砂质粒级组分含量为0~98.61%,平均含量为28.17%。根据粒度组成特征,以砂含量65%和25%等值线作为划分的标准,将研究区可以划分为3个区域,研究区东北部以砂和粉砂质砂为主,沉积物颗粒偏粗;唐山港海域曹妃甸深槽处以砂质粉砂和粉砂质砂为主;南部和唐山港附近区域沉积物粒度相对偏细,主要以粉砂为主(图3b-d)。

    图  2  渤海湾唐山港海域表层沉积物三角分类图
    S-砂,C-黏土,M-泥,Z-粉砂,sC-砂质黏土,sM-砂质泥,sZ-砂质粉砂,cS-黏土质砂,mS-泥质砂,zS-粉砂质砂。
    Figure  2.  Ternary classification of surface sediments in Tangshan Harbor, Bohai Bay
    S-sand, C-clay, M-mud, Z-silt, sC-sandy clay, sM-sandy mud, sZ-sandy silt, cS-clayey sand, mS-muddy sand, zS-silty sand.
    图  3  渤海湾唐山港海域水深和表层沉积物粒度分布图
    a:水深,b:黏土,c:粉砂,d:砂。
    Figure  3.  Bathymetric map and the distribution patterns of grain size of surface sediments in Tangshan Harbor, Bohai Bay
    a: Water depth, b: clay, c: silt, d: sand.

    渤海湾唐山港附近海域表层沉积物平均粒径(Mz)为1.4~7.71 Φ,平均值为5.72 Φ,整体沉积物粒度中等偏粗。研究区东北部由沿岸向海(由北向南)沉积物粒度整体呈现出逐渐变细的趋势(图4a)。粒度分选系数变化δ值为0.67~2.91,平均值为2.0,绝大部分沉积物属于分选较差—差。研究区东北部和中部曹妃甸深槽区δ值为2~3,分选系数较高;南部和唐山港附近海域分选系数较低,δ值一般小于2(图4b)。表层沉积物粒度偏态Sk为–0.22~0.72,平均值为0.33,绝大多数属于正偏。研究区东北部和中部曹妃甸深槽处为偏度高值区,Sk为0.6~0.72;南部和唐山港附近海域附近Sk值均小于0.2,为负偏态(图4c)。粒度峰态Ku变化范围为0.66~2.36,平均值为0.98,除了研究区东部局部区域出现很尖锐峰态外,整体变化不大,为中等峰态(图4d)。

    图  4  渤海湾唐山港海域表层沉积物粒度参数分布图
    a:平均粒径,b:分选系数,c:偏态,d:峰态。
    Figure  4.  Distribution patterns of grain size parameters of surface sediments in Tangshan Harbor, Bohai Bay
    a: Mean grain size, b: sorting coefficient, c: skewness, d: kurtosis.

    利用粒度端元模型(End-member modelling analysis,EMMA)计算研究区表层沉积物粒度端元值,复相关系数(R2)代表粒度实测数据被端元拟合的程度[35]。为较好地获取拟合粒度数据的最小端元数,假设端元数是2~10的情况下,对各粒级复相关系数和所有粒级复相关系数平均值进行计算。结果显示端元数为2、3时,平均复相关系数分别为0.85和0.90(图5a),但26~125 μm拟合程度较差,不能满足粒级拟合的需要。当端元数为4时,大部分粒级拟合程度大于0.8,平均复相关系数为0.95(图5a),说明4个端元满足拟合的需要。根据端元分析方法选取端元应遵循尽量少的原则[36],选取4个端元(EM1—EM4)对该区粒度数据进行拟合。

    图  5  渤海湾唐山港海域表层沉积物粒度端元分析结果
    a:粒度端元数-复相关系数平均值,b:4个端元(EM1-EM4)粒度频率分布曲线。
    Figure  5.  End-member analysis of surface sediments in Tangshan Harbor, Bohai Bay
    a: End member-mean coefficient of determination, b: frequency curves of four end-members (EM1-EM4).

    端元粒度频率分布曲线显示4个端元中EM1、EM2和EM4都具有一个明显的主峰,分布形态接近正态分布,EM1到EM4 粒径增大,分选变好(图5b)。端元EM1粒径众数值为10 μm,为细粉砂;EM2粒径众数值为20 μm,为中粉砂;EM3粒径众数值为200 μm,为中砂,在细颗粒组分6~7 μm处可见次峰,为细砂。端元EM4粒径众数值为300 μm,为粗砂(图5b)。

    在沉积物粒度4端元相对含量平面等值线图上,EM1含量为0~97.77%,平均含量为22.28%,在研究区均有分布,高值区主要是在研究区西部靠近海河区域,并有从近岸向外海方向递减的趋势(图6a)。EM2含量为0~100%,平均含量为19.60%,在渤海湾全区均有分布,主要集中在唐山港附近海域,并有从近岸向外海方向递减的趋势(图6b)。EM3含量为0~74.07%,平均含量为28.77%,主要分布在研究区东北部、北部以及中部曹妃甸深槽区域(图6c)。EM4含量为0~72.58%,平均含量为29.34%,主要分布在中部曹妃甸深槽区域(图6d)。

    图  6  渤海湾唐山港海域表层沉积物4个端元相对含量平面分布
    Figure  6.  Distribution of relative contents of four end-members of surface sediments in Tangshan Harbor, Bohai Bay

    渤海湾唐山港附近海域表层沉积物中黏土矿物主要是由大量的伊利石(66%~86%,平均含量72%)、少量的蒙脱石(2%~18%,平均含量12%)、绿泥石(4%~11%,平均含量8%)以及高岭石(5%~15%,平均含量8%)组成。唐山港附近伊利石含量相对较高(75%以上),蒙脱石含量12%左右,而高岭石、绿泥石含量相对较低,为6%左右(图7)。研究区东北部为蒙脱石相对高值区,伊利石、高岭石以及绿泥石低值区;曹妃甸深槽处则出现蒙脱石、高岭石以及绿泥石相对高值区、伊利石低值区;南区域总体呈现出蒙脱石和高岭石相对高值区、伊利石和绿泥石相对低值区,局部存在蒙脱石和高岭石相对低值区、伊利石和绿泥石的局部高值区;唐山港海域附近则整体表现为蒙脱石和伊利石相对高值区、高岭石和绿泥石的相对低值区(图7)。

    图  7  渤海湾唐山港海域表层沉积物黏土矿物相对含量分布图
    Figure  7.  Distribution of the relative content of clay minerals in surface sediments in Tangshan Harbor, Bohai Bay

    渤海沉积物来源主要是河流作用携带的陆源碎屑物质、外海物质、大气沉降物质以及周围基岩侵蚀风化形成的物质[10, 24]。其中,渤海湾周围河流入海物质贡献量较大,占渤海沉积物的90%左右,以黄河、海河和滦河等为主。了解沉积物潜在物源区和迁移过程是进行物源判别的前提[19, 37]。尽管中国大陆的风尘颗粒在太平洋深海碎屑物质通量中贡献较大[38-39],但在大陆边缘海沉积物中风尘物质含量较低,大量河流来源的碎屑物质将风尘物质信息掩盖[40],可忽略不计。

    由于受到流域气候条件的影响,不同来源沉积物中粒度和黏土矿物相对含量具有明显的差别(表1)。滦河平均年输沙量20.1 Mt,流经中酸性的岩浆岩、古中新生代的砂页岩和灰岩等沉积岩以及前古生代变质岩的蚀变源区[41],沉积物粒度相对较粗,主要是中细砂等粗粒级为主,细粒级的物质相对较少。黏土矿物呈现出伊利石含量相对较低而高岭石+绿泥石、蒙脱石含量相对较高的特征;海河沉积物粒度较细,主要是以黏土质粉砂为主[42]。沉积物中黏土矿物含量特征则与滦河相反,呈现出伊利石含量相对较高、而蒙脱石和高岭石+绿泥石含量较低的特征;黄河流经黄土高原,携带大量的泥沙入海,每年大概2/3的泥沙沉积物堆积在黄河三角洲地区,其余的则被带到三角洲滨海区外[41]。其沉积物颗粒主要是由黏土质粉砂和少量的黏土组成,粒度相对较细[42],黏土矿物含量则介于海河与滦河之间,且更接近于海河[42]表1)。

    表  1  渤海湾唐山港附近海域及周围河流表层沉积物中黏土矿物相对含量
    Table  1.  Relative content of clay minerals in surface sediments of the Tangshan Harbor and surrounding rivers in the Bohai Bay
    样品位置 样品数量/个 蒙脱石/% 伊利石/% 高岭石/% 绿泥石/% 伊利石结晶度 数据来源
    唐山港海域 161 12 72 8 8 0.43 本文
    HH-1 23.0 58.0 12.0 7.0 引自文献[43]
    HH-2 23.2 59.0 8.5 9.3 引自文献[44]
    HH-3 13.0 67.0 8.0 12.0 引自文献[45]
    HH-4 16.0 62.0 10.0 12.0 引自文献[46]
    HH-5 15.2 62.5 9.7 12.5 引自文献[47]
    HH-6 10.0 60.0 12.0 18.0 引自文献[48]
    HH-7 12.0 62.0 10.0 16.0 引自文献[49]
    HH-8 21.0 61.0 9.0 9.0 引自文献[42]
    HH-9 16 29 (11~44) 54 (39~69) 7 (5~9) 10 (9~14) 0.33 引自文献[50]
    LR-1 22 48 16 14 0.45 引自文献[19]
    LR-2 15 54 16 16 0.43
    LR-3 24 46 16 14 0.47
    LR-4 27 50 12 12 0.48
    LR-5 26 47 14 13 0.43
    HR-1 7 63 14 19 0.36 引自文献[19]
    HR-2 9 64 14 14 0.35
    注:HH1-9: 黄河表层沉积物中黏土矿物;LR1-5: 滦河表层沉积物中黏土矿物;HR1-2: 海河表层沉积物中黏土矿物。
    下载: 导出CSV 
    | 显示表格

    为确定渤海湾物源区,利用粒度组分、蒙脱石-(伊利石+绿泥石)-高岭石三角图和高岭石/绿泥石-伊利石/蒙脱石的比值进行判别(图8a-b),并与周围潜在的河流沉积物中黏土矿物相对含量进行对比分析,发现唐山港海域表层沉积物黏土矿物主要落在黄河和海河之间的区域,指示细颗粒沉积物主要来源于黄河-海河混合的陆源碎屑物质。这与粒度端元组分EM1在研究区均有分布,并由近岸向外海方向递减的趋势相一致(图6a),代表悬浮搬运的现代陆源细颗粒物质,因此认为细颗粒沉积物来源主要是黄河-海河混合的陆源碎屑物质,与前人的研究较为一致[11-12, 14]。此外,粒度分布特征显示研究区东北部和唐山港南部曹妃甸深槽处对应的沉积物类型主要是粉砂质砂和砂质粉砂,粒度相对偏粗(图4a),而海河径流输入泥沙中值粒径为5~20 μm,颗粒很细,黄河来源的物质主要是黏土质粉砂,粒度也相对较细[42],如果只依靠来自海河和黄河携带的泥沙供应无法形成粉砂质砂等较粗的沉积物类型,因而对于研究区东北部和中部曹妃甸深槽区粗颗粒沉积物来源问题,还需要结合粒度特征对沉积物做进一步的物源分析。李从先等研究认为唐山港曹妃甸海区位于古滦河三角洲的发育区[20],全新世晚期以来由于海平面下降,滦河改道向北迁移,泥沙供应不足才导致三角洲停止发育,使得该区处于废弃的三角洲沉积环境[1]。因此,我们认为曹妃甸深槽区还可能有部分古滦河物质的加入[15]

    图  8  渤海湾唐山港附近海域及周围河流表层沉积物黏土矿物组合三角图和比值散点图
    a:黏土组合蒙脱石-(伊利石+绿泥石)-高岭石三角图,b:伊利石/蒙脱石-高岭石/绿泥石比值散点图;HH-黄河;LR-滦河;HR-海河。
    Figure  8.  Triangle and scatter diagram of the clay minerals of surface sediments in Tangshan Harbor and surrounding rivers
    a: Triangle diagram of clay minerals assemblages smectite-(illite+chlorite)-kaolinite, b: Scatter plot of illite/smectite-kaolinite/chlorite ratios; HH-Yellow River; LR-Luan River; HR-Hai River.

    沉积物粒度数据保存大量与沉积物输运和沉降有关的信息,可以揭示研究区水动力特征以及沉积物输运过程。粒度端元EM1对应沉积物类型主要是细粉砂,一般对应弱的潮流场,在唐山港西部出现高值区,且含量自沿岸向渤海湾逐渐递减(图6a),与该区的潮流走向[27]大致相当,代表了形成现代泥质沉积区的动力组分;粒度端元EM2在研究区北部存在高值区,且向中部曹妃甸深槽处呈现出逐渐减少的趋势(图6b),对应沉积物类型主要是砂质粉砂、中粉砂,可能代表水动力条件中等;粒度端元EM3主要分布在研究区东北部和中部曹妃甸深槽(图6c);端元EM4高值区有中部曹妃甸深槽和北部部分区域,分别对应的沉积物类型为粉砂质砂和砂,代表该区域水动力环境较强(图6d)。

    除了受沉积物物源的影响外,渤海湾唐山港海域表层沉积物的粒度和黏土矿物分布特征还大致与渤海湾的环流体系和潮流场密切相关[10, 14, 24],显示出潮流场对黄河、滦河以及海河物质的搬运和扩散影响[27, 51]。夏季波浪作用相对较弱,黄河、海河以及滦河入海沉积物绝大部分沉积在河口处,少部分通过环流向远端扩散迁移沉积。冬季风浪较强,沉积在河口三角洲处的沉积物在海流和波浪作用下,发生侵蚀再悬浮作用向远端扩散迁移。根据渤海湾潮余流数值动力学模型[52],潮余流沿渤海湾北岸的滦河口附近流向唐山港东北部,然后一分为二,分为洋流A和洋流B两条路线。洋流A通过港口时流速减慢,使得悬浮颗粒物质沉积。进入研究区域后,洋流B转向东南,呈逆时针方向环流,随后悬浮的细颗粒沉积物在港口东南部沉积。洋流A从研究区域流出在天津塘沽北部永定新河河口附近分为两股,一条分支洋流C,携带着海河河口沉积物沿着海岸向北进入渤海湾西北部海域,沿岸河流中的悬浮细颗粒物质由于流速降低,沉积在港口西部。另一股洋流D沿西部海岸向南移动到南部海岸,然后沿南部海岸向东移动,其中一部分可能向北进入研究区。黄河中的泥沙入海后其沉积物在渤海环流的作用下向东北、东南和西北3个方向扩散[53],其中向东北方向迁移的环流和洋流D共同作用将黄河细颗粒沉积物迁移至研究区。洋流C和洋流D在港口附近与洋流A汇合,使得研究区细颗粒组分主要是海河-黄河混合的沉积物质。此外,少量的滦河三角洲(包括古滦河三角洲)入海泥砂和粗颗粒物质在渤海湾反时针环流和波浪的共同作用下由滦河口北部沿岸向研究区东北部和中部曹妃甸深槽搬运沉积(图9),形成曹妃甸的离岸沙坝。渤海湾唐山港海域受到环流和潮流体系的影响,接受来自周围的黄河-海河物质以及部分的滦河物质的供应。

    图  9  渤海湾唐山港附近沉积物迁移模式图
    Figure  9.  Sediment transport pattern in Tangshan Harbor area, Bohai Bay

    (1) 唐山港海域表层沉积物有5种类型,主要以粉砂质砂和砂质粉砂为主。各组分中以粉砂含量最高,平均值为50.38%,其次是砂,平均含量为28.17%,黏土含量最低,平均含量为21.45%。

    (2) 根据粒度参数特征,研究区大致可以分为3个区:东北部以粉砂质砂为主,分选较差,正偏态;中部曹妃甸深槽区以砂质粉砂为主,分选差,正偏态;南部和西北部以粉砂为主,分选中等—较差。

    (3) 粒度端元模型显示,唐山港海域表层沉积物粒度可分离EM1—EM4四个端元,其众数值分别为10、20、200和300 μm,平均含量分别为22.28%、19.60%、28.77%和29.34%。EM1和EM2反映了沉积动力环境弱,EM3和EM4则反映沉积动力环境强,可能会对沉积物冲刷改造。

    (4) 利用蒙脱石-(伊利石+绿泥石)-高岭石矿物组合和高岭石/绿泥石-伊利石/蒙脱石比值识别出沉积物细颗粒组分来源主要是黄河-海河混合的陆源碎屑物质。曹妃甸深槽区可能有部分古滦河三角洲粗颗粒物质的加入。

    (5) 渤海环流和潮余流控制着本区细颗粒沉积物主要向南部和唐山港附近迁移沉积,粗颗粒物质向东北部和中部曹妃甸区搬运沉积。

    致谢:衷心感谢编辑和审稿专家在论文修改过程中的指导和帮助,感谢渤海曹妃甸海域1∶5万海洋区域地质调查的全体出海人员采集的表层沉积物样品。

  • 图  1   南黄海盆地构造单元划分及CSDP-2井二叠系地层柱状图 [37]

    Figure  1.   Division of structural units in the South Yellow Sea Basin and the Permian stratigraphic histogram of the CSDP-2 well [37]

    图  2   南黄海盆地CSDP-2井二叠系烃源岩有机质丰度、类型和成熟度评价图

    Figure  2.   Evaluation of organic matter abundance, type, and maturity for the Permian source rocks in Well CSDP-2, South Yellow Sea Basin

    图  3   南黄海盆地CSDP-2井二叠系烃源岩饱和烃馏分总离子流图(TIC)、甾萜烷(m/z=191, 217)质量色谱图

    Figure  3.   The total ion chromatograms (TIC) and mass chromatograms of steranes (m/z=217) and terpanes (m/z=191) of the saturated fractions in the Permian source rocks of Well CSDP-2, South Yellow Sea Basin

    图  4   南黄海盆地CSDP-2井二叠系烃源岩的Pr/nC17-Ph/nC18交汇图

    Figure  4.   Crossplot of Pr/nC17 and Ph/nC18 for the Permian source rocks in Well CSDP-2, South Yellow Sea Basin

    图  5   南黄海盆地CSDP-2井二叠系烃源岩芳烃组分的总离子流图(TIC),三芳甾烷(m/z=231)和甲基三芳甾烷(m/z=245)质量色谱图

    Figure  5.   Total ion chromatogram (TIC), and the mass chromatograms of triaromatic sterane (m/z=231) and methyl triaromatic sterane (m/z=245) of the aromatic fractions in the Permian source rocks of Well CSDP-2, South Yellow Sea Basin

    图  6   南黄海盆地CSDP-2井二叠系烃源岩的样品深度与镜质体反射率Ro、甲基菲参数、烷基二苯并噻吩参数的相关关系

    Figure  6.   The correlation relationships of the sample depth to the vitrinite reflectance Ro, parameters of alkyl phenanthrene, and parameters of alkyl dibenzothiophene for the Permian source rocks of Well CSDP-2, South Yellow Sea Basin

    图  7   南黄海盆地CSDP-2井二叠系烃源岩的二苯并噻吩/菲(DBT/P)与甲基菲、烷基二苯并噻吩参数的相关关系

    Figure  7.   Correlations of DBT/P vs parameters of methyl phenanthrene and alkyl dibenzothiophene for the Permian source rocks in Well CSDP-2, South Yellow Sea Basin

    图  8   南黄海盆地CSDP-2井二叠系烃源岩的甾烷及β-胡萝卜烷相关参数散点图

    A:C28/C29甾烷与C27/C29甾烷;B:C28/C29甾烷与4-甲基甾烷/C29甾烷;C:C28/C29甾烷与β-胡萝卜烷/nCmax;D:C27-C28-C29甾烷相对含量三角图,底图据文献[67];E:C21-22孕甾烷/C29甾烷与C27重排甾烷/C27甾烷;F:C28/C29甾烷与甾/藿。

    Figure  8.   Scatter plots among relative parameters of sterane and β-carotane in the Permian source rocks of Well CSDP-2, South Yellow Sea Basin

    A: C28/C29ST vs C27/C29ST; B: C28/C29ST vs 4MS/C29ST; C: C28/C29ST vs β-carotene/nCmax; D: C27ST-C28ST-C29ST relative content triangle; template is from reference [67]; E: C21-22/C29ST vs Dia.C27/C27ST; F: S/H vs 4MS/C29ST.

    图  9   南黄海盆地CSDP-2井二叠系烃源岩的二苯并噻吩系列化合物相关参数散点图

    A:二苯并噻吩系列/(二苯并噻吩系列+芴系列)和二苯并呋喃系列/(二苯并呋喃系列+芴系列),图版据文献[70];B:姥鲛烷/植烷(Pr/Ph)和二苯并噻吩/菲,图版据文献[55]。

    Figure  9.   Scatter plots among relative parameters of the dibenzothiophene series compounds in the Permian source rocks of Well CSDP-2, South Yellow Sea Basin

    A: DBTs/(DBTs+Fs) vs. DBFs/(DBFs+Fs); template is from reference[70]; B: Pr/Ph vs. DBT/P; template is from reference [55].

    表  1   南黄海盆地CSDP-2井二叠系烃源岩的基本地球化学数据

    Table  1   Bulk geochemical data of the Permian source rocks in Well CSDP-2, South Yellow Sea Basin

    样品号深度/m层位岩性TOC
    /%
    S1/(mg/g)S2
    /(mg/g)
    Tmax/℃HI/(mg/g)Ro/%干酪根δ13C/‰干酪根类型指数TI干酪根类型
    DL-1920.6大隆组泥岩0.190.020.0245310.70−23.609.2III
    LT-21285.48龙潭组泥岩1.21/0.23482231.47−23.08−30.8III
    LT-31488.58龙潭组泥岩1.390.050.34480331.61−24.791.42III
    LT-41507.48龙潭组泥岩0.940.030.28487231.74−23.2432.4III
    LT-51574.18龙潭组泥岩1.480.070.32484241.47−26.3949.3II2
    LT-61607.08龙潭组泥岩1.130.010.0346241.80−25.57−25.1III
    LT-71628.3龙潭组碳质泥岩6.580.120.70546312.02−26.4712.1II2
    GF-81636.3孤峰组硅质泥岩12.20.161.02514.710.22.1−27.60II1
    GF-91637.0孤峰组硅质岩140.102.08529.716 −27.54II1
    GF-101637.8孤峰组硅质泥岩11.20.172.28553322.10−26.6431.64II2
    GF-111638.9孤峰组硅质岩11.40.151.8053517.6−27.56II1
    GF-121641.2孤峰组硅质泥岩9.080.191.97529.624.4 −26.84II2
    GF-131643.7孤峰组硅质岩0.010.08434.1401.41−28.37II1
    GF-141645.7孤峰组硅质岩16.30.201.83533.812.9 −27.0459II2
    QX-151668栖霞组钙硅质泥岩1.380.120.32491.236.81.53  
    QX-161673.48栖霞组泥岩14.20.183.54497442.07−25.9754.7III
    下载: 导出CSV

    表  2   南黄海盆地CSDP-2井二叠系烃源岩饱和烃组分的生物标志化合物参数

    Table  2   The biomarker parameters of the saturated fractions in the Permian source rocks of Well CSDP-2, South Yellow Sea Basin

    样品号ABCDEFGHIJKLMNOPQRSTU
    DL-10.391.460.88nC221.061.150.680.150.640.970.410.510.550.491.190.730.410.270.570.240.05
    LT-20.500.630.89nC251.141.120.230.180.670.970.410.530.710.491.090.710.560.260.750.180.03
    LT-30.180.480.53nC211.031.010.630.260.591.110.450.450.240.491.040.800.270.220.390.280.09
    LT-40.350.380.44nC201.011.100.710.140.601.040.450.410.430.511.210.800.390.250.520.380.03
    LT-50.260.500.59nC231.111.170.320.190.591.030.410.520.310.470.950.690.280.230.500.310.02
    LT-60.220.810.74nC271.151.120.120.220.610.920.400.520.510.520.920.720.380.220.510.210.03
    LT-70.230.370.57nC191.091.180.530.220.561.000.410.520.240.550.830.620.220.220.440.310.05
    GF-80.400.240.35nC251.021.270.250.180.630.870.420.530.130.510.560.750.070.130.480.130.37
    GF-90.520.240.39nC181.021.210.590.180.760.710.420.520.320.510.520.920.090.130.960.080.55
    GF-100.210.380.43nC191.041.250.770.100.501.340.380.590.150.530.830.580.170.240.290.350.17
    GF-110.400.170.28nC181.031.300.780.160.760.650.420.500.310.490.540.960.090.131.000.090.50
    GF-120.650.210.25nC180.951.170.570.160.500.960.440.510.040.600.700.630.030.170.340.300.22
    GF-130.530.440.72nC251.041.120.550.220.820.520.430.520.490.440.531.010.090.021.630.041.62
    GF-140.410.250.41nC181.041.260.590.210.790.540.430.520.460.500.520.980.090.021.490.061.07
    QX-150.400.400.43nC291.021.410.370.180.730.710.410.500.400.520.610.980.130.031.010.070.47
    QX-160.300.450.60nC191.081.200.820.230.690.990.400.420.610.481.260.730.470.270.590.260.03
    注:A: Pr/Ph,B: Pr/nC17,C: Ph/nC18,D: 主峰碳,E: OEP,F: CPI,G: nC21-/nC22+,H: 伽马蜡烷/αβC30藿烷,I: ETR=(C28TT+C29TT)/(C28TT+C29TT+Ts),J: Ts/Tm,K: C29ββ/(αα+ββ),L: C29αα20S/(20S+20R),M: C23TT/C30H,N: C24Tet/C26TT,O: C27/C29ST; P: C28/C29ST,Q: C21-22ST/C29ST,R: Dia.C27/C27ST,S: S/H,T: 4MS/C29ST,U: β-胡萝卜烷/nCmax
    下载: 导出CSV

    表  3   南黄海盆地CSDP-2井二叠系烃源岩的生物标志化合物特征

    Table  3   The biomarkers characteristics of the Permian source rocks in Well CSDP-2, South Yellow Sea Basin

    层位大隆组龙潭组孤峰组栖霞组
    硅质泥岩硅质岩上段下段
    ααC27-C29STL形L形V形反L形反L形L形
    C27/C29ST>0.83>0.830.6~0.83<0.6<0.6>0.83
    4MS/C29ST≥0.1≥0.1≥0.1<0.1<0.1≥0.1
    C21-22/C29ST≥0.2≥0.2<0.2<0.2<0.2≥0.2
    Dia.C27/C27ST≥0.22≥0.220.1~0.22<0.1<0.1≥0.22
    C28/C29ST<0.8<0.8<0.8>0.9>0.9<0.8
    S/H<1<1<1≥1≥1<1
    β-胡萝卜烷/nCmax<0.1<0.10.1~0.5≥0.5≥0.5<0.1
    DBT/P0.130.03~0.460.11~1.20.48~0.840.060.03
    DBTs/(DBTs+Fs)0.330.09~0.760.63~0.900.86~0.940.430.2
    三芳甾烷系列缺失缺失微量微量微量缺失
    下载: 导出CSV

    表  4   南黄海盆地CSDP-2井二叠系烃源岩芳香烃组分的相关参数

    Table  4   Parameters of aromatic fractions of the Permian source rocks in Well CSDP-2, South Yellow Sea Basin

    样品号ABCDEFGHIJKL
    DL-10.520.280.530.720.560.330.831.430.330.350.130
    LT-20.700.381.431.441.550.522.586.290.130.100.030
    LT-30.700.381.261.541.380.421.523.990.150.120.040
    LT-40.720.411.411.461.610.492.065.520.130.090.040
    LT-50.700.391.251.551.410.411.245.210.090.120.030
    LT-60.690.390.821.810.920.411.105.200.190.200.040
    LT-70.700.381.141.621.230.482.046.790.760.140.460
    GF-80.680.371.341.501.470.532.995.740.630.140.110.35%
    GF-90.660.361.081.651.180.502.525.240.910.210.590.03%
    GF-100.720.401.421.451.590.492.137.280.900.221.200
    GF-110.690.381.331.501.480.502.636.310.930.170.700.03%
    GF-120.680.381.111.641.230.472.064.890.880.210.634.1%
    GF-130.670.370.981.711.090.502.365.580.860.270.480.4%
    GF-140.720.411.411.461.580.512.665.770.940.170.840.07%
    QX-150.720.411.471.421.680.482.285.140.430.130.060.14%
    QX-160.750.411.651.311.810.512.557.260.200.090.030
    注:A: F1=(2-MP+3-MP)/(2-MP+3-MP+1-MP+9-MP), B: F2=2-MP/(2-MP+3-MP+1-MP+9-MP), C: MPI-1=1.5*(2-MP+3-MP)/(P+1-MP+9-MP), D: Rc=0.4+0.6*MPI-1或Rc=2.3-0.6*MPI-1, E: MPI-2=3*2-MP/(P+1-MP+9-MP), F: MDBI=4-MDBT/(DBT+4-MDBT+2-MDBT+3-MDBT+1-MDBT), G: MDR=4-MDBT/DBT, H: 4,6-/1,4-DMDBT, I: DBTs/(DBTs+Fs), J: DBFs/(DBFs+Fs), K: DBT/P, L: TARs/P。
    下载: 导出CSV
  • [1] 左兆喜, 曹剑, 胡文瑄, 等. 高演化有机质的芳烃成熟度表征: 基于焦沥青反射率和拉曼参数的优选[J]. 中国科学:地球科学, 2022, 65(12):2335-2357 doi: 10.1007/s11430-022-9955-7

    ZUO Zhaoxi, CAO Jian, HU Wenxuan, et al. Characterizing the maturity of highly evolved organic matter based on aromatic hydrocarbons and optimization with pyrobitumen reflectance and Raman spectral parameters [J]. Science China Earth Sciences, 2022, 65(12): 2335-2357. doi: 10.1007/s11430-022-9955-7

    [2] 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(二): 南方四套区域性海相烃源岩的地球化学特征[J]. 海相油气地质, 2009, 14(1):1-15 doi: 10.3969/j.issn.1672-9854.2009.01.001

    LIANG Digang, GUO Tonglou, CHEN Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China (Part 2): Geochemical Characteristics of Four Suits of Regional Marine Source Rocks, South China [J]. Marine Origin Petroleum Geology, 2009, 14(1): 1-15. doi: 10.3969/j.issn.1672-9854.2009.01.001

    [3] 梁狄刚, 陈建平. 中国南方高、过成熟区海相油源对比问题[J]. 石油勘探与开发, 2005, 32(2):8-14 doi: 10.3321/j.issn:1000-0747.2005.02.002

    LIANG Digang, CHEN Jianping. Oil-source correlat ions for high and over matured marine source rocks in South China [J]. Petroleum Exploration and Development, 2005, 32(2): 8-14. doi: 10.3321/j.issn:1000-0747.2005.02.002

    [4] 包建平, 倪春华, 朱翠山, 等. 高演化地质样品中三芳甾类标志物及其地球化学意义[J]. 沉积学报, 2020, 38(04):898-911 doi: 10.14027/j.issn.1000-0550.2019.069

    BAO Jianping, NI Chunhua, ZHU Cuishan, et al. Triaromatic Steroids and Their Geochemical Significance in Highly Mature Geological Samples in the North Guizhou Depression [J]. Acta Sedimentologica Sinica, 2020, 38(04): 898-911. doi: 10.14027/j.issn.1000-0550.2019.069

    [5]

    Alexander R, Larcher A V, Kagi R I, et al. The use of plant derived biomarkers for correlation of oils with source rocks in the cooper/eromanga basin system, Australia [J]. The APPEA Journal, 1988, 28(1): 310-324. doi: 10.1071/AJ87024

    [6] 朱扬明, 顾圣啸, 李颖, 等. 四川盆地龙潭组高热演化烃源岩有机质生源及沉积环境探讨[J]. 地球化学, 2012, 41(1):35-44 doi: 10.3969/j.issn.0379-1726.2012.01.004

    ZHU Yangming, GU Shengxiao, LI Ying, et al. Biological organic source and depositional environment of over-mature source rocks of Longtan Formation in Sichuan basin [J]. Geochimica, 2012, 41(1): 35-44. doi: 10.3969/j.issn.0379-1726.2012.01.004

    [7] 朱扬明, 张洪波, 傅家谟, 等. 塔里木不同成因原油芳烃组成和分布特征[J]. 石油学报, 1998, 19(3):33-37 doi: 10.3321/j.issn:0253-2697.1998.03.007

    ZHU Yangming, ZHANG Hongbo, FU Jiamo, et al. Distribution and Composition of Aromatic Hydrocarbon in Various Oils From Tarim Basin [J]. Acta Petrolei Sinica, 1998, 19(3): 33-37. doi: 10.3321/j.issn:0253-2697.1998.03.007

    [8] 宋长玉, 金洪蕊, 刘璇, 等. 烃源岩中甲基菲的分布及对成熟度参数的影响[J]. 石油实验地质, 2007, 29(02):183-187 doi: 10.3969/j.issn.1001-6112.2007.02.014

    SONG Changyu, JIN Hongrui, LIU Xuan, et al. Distribution of Methyl Phenanthrene in Sediments and its impacting on maturity parameters [J]. Petroleum Geology & Experiment, 2007, 29(02): 183-187. doi: 10.3969/j.issn.1001-6112.2007.02.014

    [9] 李颖, 朱扬明, 郝芳, 等. 四川盆地北部上三叠统须家河组高成熟煤系烃源岩芳烃热演化与应用[J]. 中国科学:地球科学, 2015, 58(11):1960-1969 doi: 10.1007/s11430-015-5084-8

    LI Ying, ZHU Yangming, HAO Fang, et al. Thermal evolution and applications of aromatic hydrocarbons in highly mature coal-bearing source rocks of the Upper Triassic Xujiahe Formation in the northern Sichuan Basin [J]. Science China:Earth Sciences, 2015, 58(11): 1960-1969. doi: 10.1007/s11430-015-5084-8

    [10]

    Alexander R, Kagi R I, Rowland S J, et al. The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some ancient sediments and petroleums [J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 385-395. doi: 10.1016/0016-7037(85)90031-6

    [11]

    Radke M, Welte D H, Willsch H. Geochemical study on a well in the western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter [J]. Geochimica et Cosmochimica Acta, 1982, 46(1): 1-10. doi: 10.1016/0016-7037(82)90285-X

    [12] 李美俊, 王铁冠. 原油中烷基萘的形成机理及其成熟度参数应用[J]. 石油实验地质, 2005, 27(6):606-611,623 doi: 10.3969/j.issn.1001-6112.2005.06.011

    LI Meijun, WANG Tieguan. The generating mechanism of methylated naphthalene series in crude oils and the application of their maturity parameter [J]. Petroleum Geology & Experiment, 2005, 27(6): 606-611,623. doi: 10.3969/j.issn.1001-6112.2005.06.011

    [13] 王保忠, 王传尚, 汪啸风, 等. 海相高过成熟页岩芳烃特征及页岩气意义[J]. 地球科学, 2019, 44(11):3705-3716

    WANG Baozhong, WANG Chuanshang, WANG Xiaofeng, et al. Characteristics of Aromatic Compounds in High-over Matured Marine Shale and Its Significance to Shale Gas [J]. Earth Science, 2019, 44(11): 3705-3716.

    [14] 王崇敬, 张鹤, 李世宇, 等. 基于分子标志物的有机质成熟度评价参数选择及其适用范围分析[J]. 地质科技情报, 2018, 37(4):202-211 doi: 10.19509/j.cnki.dzkq.2018.0427

    WANG Chongjing, ZHANG He, LI Shiyu, et al. Maturity parameters selection and applicable range analysis of organic matter based on molecular markers [J]. Geological Science and Technology Information, 2018, 37(4): 202-211. doi: 10.19509/j.cnki.dzkq.2018.0427

    [15] 陈治军, 张亚雄, 王永昌, 等. 多芳烃参数定量评价烃源岩成熟度的方法: 以银额盆地中生界烃源岩为例[J]. 石油实验地质, 2022, 44(1):139-149 doi: 10.11781/sysydz202201139

    CHEN Zhijun, ZHANG Yaxiong, WANG Yongchang, et al. Quantitative assessment of source rock maturity with multiple aromatic parameters: a case study of Mesozoic source rocks in Yingen-Ejinaqi Basin [J]. Petroleum Geology & Experiment, 2022, 44(1): 139-149. doi: 10.11781/sysydz202201139

    [16] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23 doi: 10.16562/j.cnki.0256-1492.2018.03.001

    CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23. doi: 10.16562/j.cnki.0256-1492.2018.03.001

    [17] 杜叶龙, 李双应, 孔为伦, 等. 安徽泾县—南陵地区二叠纪沉积相与沉积环境分析[J]. 地层学杂志, 2010, 34(4):431-444 doi: 10.19839/j.cnki.dcxzz.2010.04.014

    DU Yelong, LI Shuangying, KONG Weilun, et al. The Permian sedimentary facies and depositional environment analysis the Jingxian-Nanling region of Anhui [J]. Journal of Stratigraphy, 2010, 34(4): 431-444. doi: 10.19839/j.cnki.dcxzz.2010.04.014

    [18] 丁江辉, 张金川, 石刚, 等. 皖南地区上二叠统大隆组页岩沉积环境与有机质富集机理[J]. 石油与天然气地质, 2021, 42(1):158-172 doi: 10.11743/ogg20210114

    DING Jianghui, ZHANG Jinchuan, SHI Gang, et al. Sedimentary environment and organic matter enrichment mechanisms of the Upper Permian Dalong Formation shale, southern Anhui Province, China [J]. Oil & Gas Geology, 2021, 42(1): 158-172. doi: 10.11743/ogg20210114

    [19] 丁江辉, 孙金声, 张金川, 等. 皖南地区大隆组页岩生物标志化合物特征及其地质意义[J]. 地球科学, 2023, 48(1):235-251

    DING Jianghui, SUN Jinsheng, ZHANG Jinchuan, et al. Characteristics and geological significance of biomarker for the upper Permian Dalong Formation shale in southern Anhui Province [J]. Earth Science, 2023, 48(1): 235-251.

    [20] 葛海霞, 张枝焕. 下扬子黄桥-句容地区二叠系-下三叠统油源分析[J]. 科学技术与工程, 2015, 15(26):140-151 doi: 10.3969/j.issn.1671-1815.2015.26.025

    GE Haixia, ZHANG Zhihuan. Oil-source analysis of Permian-lower Triassic crude oils from Huangqiao and Jurong area in Lower Yangtze Region [J]. Science Technology and Engineering, 2015, 15(26): 140-151. doi: 10.3969/j.issn.1671-1815.2015.26.025

    [21] 宋换新, 文志刚, 包建平. 巢湖地区二叠系栖霞组和三叠系南陵湖组石灰岩生物标志物特征与生烃潜力: 以平顶山和马家山剖面为例[J]. 海相油气地质, 2015, 20(2):21-28

    SONG Huanxin, WEN Zhigang, BAO Jianping. Characteristics of biomarkers and hydrocarbon potential in lower Permian Qixia and lower Triassic Nanlinghu limestone: cases from Pingdingshan and Majiashan outcrops in Chaohu, Anhui [J]. Marine Origin Petroleum Geology, 2015, 20(2): 21-28.

    [22] 江纳言, 贾蓉芬, 王子玉, 等. 下扬子区二叠纪古地理和地球化学环境[M]. 北京: 石油工业出版社, 1994: 1-214

    JIANG Nayan, JIA Rongfen, WANG Ziyu, et al. Permian palaeogeography and geochemical environment in Lower Yangtze Region, China[M]. Beijing: Petroleum Industry Press, 1994: 1-214.

    [23] 廖志伟. 下扬子地区二叠纪晚期沉积环境演化与烃源岩发育特征研究[D]. 南京大学博士学位论文, 2016

    LIAO Zhiwei. A study of source rock features and sedimentary environmental evolution during the late Permian in Lower Yangtze Region, Southeastern China[D]. Doctor Dissertation of Nanjing University, 2016.

    [24]

    Cai L X, Xiao G L, Guo X W, et al. Assessment of Mesozoic and Upper Paleozoic source rocks in the South Yellow Sea Basin based on the continuous borehole CSDP-2 [J]. Marine and Petroleum Geology, 2019, 101: 30-42. doi: 10.1016/j.marpetgeo.2018.11.028

    [25] 蔡来星, 王蛟, 郭兴伟, 等. 南黄海中部隆起中—古生界沉积相及烃源岩特征: 以CSDP-2井为例[J]. 吉林大学学报: 地球科学版, 2017, 47(4):1030-1046

    CAI Laixing, WANG Jiao, GUO Xingwei, et al. Characteristics of sedimentary facies and source rocks of Mesozoic-Paleozoic in Central Uplift of South Yellow Sea: A case study of CSDP-2 Coring Well [J]. Journal of Jilin University:Earth Science Edition, 2017, 47(4): 1030-1046.

    [26] 蔡来星, 肖国林, 郭兴伟, 等. 南黄海盆地科学钻探CSDP-2井上古生界—中生界烃源岩评价及海相油气勘探前景[J]. 石油学报, 2018, 39(6):660-673

    CAI Laixing, XIAO Guolin, GUO Xingwei, et al. Evaluation of Upper Paleozoic and Mesozoic source rocks in Well CSDP-2 and marine oil & gas exploration prospect in the South Yellow Sea Basin [J]. Acta Petrolei Sinica, 2018, 39(6): 660-673.

    [27] 蔡来星, 郭兴伟, 徐朝晖, 等. 南黄海盆地中部隆起上古生界沉积环境探讨[J]. 沉积学报, 2018, 36(4):695-705

    CAI Laixing, GUO Xingwei, XU Chaohui, et al. Depositional Environment of Upper Paleozoic in the Central Uplift of the South Yellow Sea Basin [J]. Acta Sedimentologica Sinica, 2018, 36(4): 695-705.

    [28] 袁勇, 陈建文, 梁杰, 等. 应用多属性聚类分析方法研究南黄海盆地二叠系沉积特征[J]. 海洋地质前沿, 2016, 32(10):44-50

    YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Application of multiple attributes cluster analysis to Permian deposits in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 44-50.

    [29] 李文强. 南黄海盆地中部隆起晚二叠世—早三叠世沉积演化[D]. 中国石油大学(华东)硕士学位论文, 2019

    LI Wenqiang. Sedimentary evolution of the Late Permian-Early Triassic in the central uplift of the South Yellow Sea Basin[D]. Master Dissertation of China University of Petroleum (East China), 2019.

    [30]

    Cai L X, Zhang X H, Guo X W, et al. Effective hydrocarbon-bearing geological conditions of the Permian strata in the South Yellow Sea Basin, China: Evidence from borehole CSDP-2 [J]. Journal of Petroleum Science and Engineering, 2021, 196: 107815. doi: 10.1016/j.petrol.2020.107815

    [31]

    Chen G, Chang X C, Guo X W, et al. Geochemical characteristics and organic matter enrichment mechanism of Permian black mudstone in the South Yellow Sea Basin, China [J]. Journal of Petroleum Science and Engineering, 2022, 208: 109248. doi: 10.1016/j.petrol.2021.109248

    [32] 雷宝华, 张银国, 王明健, 等. 南黄海盆地崂山隆起构造特征与油气勘探方向[J]. 海洋地质与第四纪地质, 2022, 42(2):131-143

    LEI Baohua, ZHANG Yinguo, WANG Mingjian, et al. Structural characteristics and hydrocarbon exploration prospect of the Laoshan uplift in the South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2022, 42(2): 131-143.

    [33] 张训华, 杨金玉, 李刚, 等. 南黄海盆地基底及海相中、古生界地层分布特征[J]. 地球物理学报, 2014, 57(12):4041-4051

    ZHANG Xunhua, YANG Jinyu, LI Gang, et al. Basement structure and distribution of Mesozoic-Paleozoic marine strata in the South Yellow Sea Basin [J]. Chinese Journal of Geophysics, 2014, 57(12): 4041-4051.

    [34] 陈建文, 施剑, 刘俊, 等. 南黄海海相中—古生界地震地质条件[J]. 海洋地质前沿, 2016, 32(10):1-8

    CHEN Jianwen, SHI Jian, LIU Jun, et al. Seismic Geological conditions of the Marine Meso-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 1-8.

    [35] 袁勇, 陈建文, 梁杰, 等. 南黄海崂山隆起二叠系砂岩储层特征及其油气勘探前景[J]. 海洋地质与第四纪地质, 2021, 41(5):181-193

    YONG Yuan, JIANWEN Chen, JIE Liang, et al. Characteristics and hydrocarbon prospects of the Permian sandstone reservoirs of the Laoshan Uplift, South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2021, 41(5): 181-193.

    [36] 谭思哲, 高顺莉, 葛和平, 等. 南黄海盆地二叠系烃源岩孢粉相特征及其形成环境[J]. 吉林大学学报:地球科学版, 2015, 45(3):691-700

    TAN Sizhe, GAO Shunli, GE Heping, et al. Palynofacies Characteristics and formation environment of Permian source rock in South Yellow Sea Basin [J]. Journal of Jilin University:Earth Science Edition, 2015, 45(3): 691-700.

    [37]

    Hu P P, Yang F L, Li S Z, et al. Opposite thrust systems under the Subei-South Yellow Sea Basin: A synthesis on the closure of the eastern Tethyan Ocean [J]. Earth-Science Reviews, 2022(231): 104075.

    [38] 陈建平, 梁狄刚, 张水昌, 等. 中国古生界海相烃源岩生烃潜力评价标准与方法[J]. 地质学报, 2012, 86(7):1132-1142

    CHEN Jianping, LIANG Digang, ZHANG Shuichang, et al. Evaluation criterion and methods of the hydrocarbon generation potential for China’s Paleozoic marine source rocks [J]. Acta Geologica Sinica, 2012, 86(7): 1132-1142.

    [39]

    Peters K E, Walters C C, Moldowan J M. The Biomarker Guide. Volume 2. Biomarkers and Isotopes in petroleum exploration and earth history[M]. New York: Cambridge University Press, 2005.

    [40] 包建平, 王铁冠, 王金渝. 下扬子地区海相中、古生界有机地球化学[M]. 重庆: 重庆大学出版社, 1996: 140

    BAO Jianping, WANG Tieguan, WANG Jinyu. Marine Mesozoic-Paleozoic organic geochemistry in the Lower Yangtze region[M]. Chongqing: Chongqing University Press, 1996: 140.

    [41] 李景贵. 高过成熟海相碳酸盐岩抽提物不寻常的正构烷烃分布及其成因[J]. 石油勘探与开发, 2002, 29(4):8-11

    LI Jinggui. Unusual distribution and its origin of n-alkanes in extracts of marine carbonate rocks with high maturity and over maturity [J]. Petroleum Exploration and Development, 2002, 29(4): 8-11.

    [42] 刘宝泉, 蔡冰, 方杰. 上元古界下马岭组页岩干酪根的油气生成模拟实验[J]. 石油实验地质, 1990, 12(2):147-161

    LIU Baoquan, CAI Bin, FANG Jie. A simulation experiment of petroleum origin on Kerogen from shales of the Lower Xiamalin Formation in the Upper Proterozoic [J]. Experimental Petroleum Geology, 1990, 12(2): 147-161.

    [43] 黄第藩, 赵孟军. 下古生界海相原油之中蜡的成因: 干酪根PY-GC分析提供的证据[J]. 沉积学报, 1996, 14(2):12-20

    HUANG Difan, ZHAO Mengjun. The genesis of marine oils with middle wax from Lower Palaeozoic: evidences obtaining from Kerogen’s PY-GC Analysis [J]. Acta Sedimentologica Sinica, 1996, 14(2): 12-20.

    [44] 陈世加, 王廷栋, 黄清德, 等. C29甾烷成熟度指标“倒转”及其地质意义[J]. 天然气地球科学, 1997, 8(1):28-30

    CHEN Shijia, WANG Tingdong, HUANG Qingde, et al. C29 Sterane maturity index 'reversal' and its geological significance [J]. Natural Gas Geoscience, 1997, 8(1): 28-30.

    [45] 郭小文, 何生, 石万忠. 珠江口盆地番禺低隆起轻质原油芳烃地球化学特征[J]. 石油学报, 2008, 29(1):52-57

    GUO Xiaowen, HE Sheng, SHI Wanzhong. Aromatic geochemistry characteristics of light oils from Panyu Lower Uplift in Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2008, 29(1): 52-57.

    [46] 刘亚洲, 刚文哲, 陈果, 等. 鄂尔多斯盆地盐池—定边地区长7段烃源岩芳烃地球化学特征[J]. 沉积学报, 2018, 36(4):818-828

    LIU Yazhou, GANG Wenzhe, CHEN Guo, et al. Geochemical characteristics of aromatic hydrocarbons of Chang7 source rocks from the Yanchi-Dingbian area, Ordos Basin [J]. Acta Sedimentologica Sinica, 2018, 36(4): 818-828.

    [47] 孟江辉, 张敏, 姚明君. 不同沉积环境原油的芳烃组成特征及其地质地球化学意义[J]. 石油天然气学报(江汉石油学院学报), 2008, 30(1):228-231

    MENG Jianghui, ZHANG Min, YAO Mingjun. Features of aromatic composition in crude under different sedimentary environments and its geochemical meanings [J]. Journal of Oil and Gas Technology (J. JPI), 2008, 30(1): 228-231.

    [48]

    Bennett B, Olsen S D. The influence of source depositional conditions on the hydrocarbon and nitrogen compounds in petroleum from central Montana, USA [J]. Organic Geochemistry, 2007, 38(6): 935-956. doi: 10.1016/j.orggeochem.2007.01.004

    [49] 陈琰, 包建平, 刘昭茜, 等. 甲基菲指数及甲基菲比值与有机质热演化关系: 以柴达木盆地北缘地区为例[J]. 石油勘探与开发, 2010, 37(4):508-512

    CHEN Yan, BAO Jianping, LIU Zhaoqian, et al. Relationship between methylphenanthrene index, methylphenanthrene ratio and organic thermal evolution: Take the northern margin of Qaidam Basin as an example [J]. Petroleum Exploration and Development, 2010, 37(4): 508-512.

    [50] 陈治军, 张佳琪, 牛凌燕, 等. 芳烃参数在湖相烃源岩成熟度评价中的适用性: 以银根—额济纳旗盆地中生界烃源岩为例[J]. 石油学报, 2020, 41(8):928-939

    CHEN Zhijun, ZHANG Jiaqi, NIU Lingyan, et al. Applicability of aromatic parameters in maturity evaluation of lacustrine source rocks: a case study of Mesozoic source rocks in Yingen-Ejinaqi Basin [J]. Acta Petrolei Sinica, 2020, 41(8): 928-939.

    [51] 王辉. 辽河西部凹陷沙河街组泥岩中多环芳烃分布特征及其地球化学意义[J]. 西安石油大学学报(自然科学版), 2016, 31(6):39-47

    WANG Hui. Distribution characteristic of polycyclic aromatic hydrocarbons in Shahejie Formation mudstone, the Western Sag, Liaohe Basin and its geochemical significance [J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2016, 31(6): 39-47.

    [52] 魏志彬, 张大江, 张传禄, 等. 甲基二苯并噻吩分布指数(MDBI)作为烃源岩成熟度标尺的探讨[J]. 地球化学, 2001, 30(3):242-247

    WEI Zhibin, ZHANG Dajiang, ZHANG Chuanlu, et al. Methydibenzothiophenes distribution index as a tool for maturity assessments of source rocks [J]. Geochimica, 2001, 30(3): 242-247.

    [53] 吴小奇, 周小进, 陈迎宾, 等. 四川盆地川西坳陷上三叠统须家河组烃源岩分子地球化学特征[J]. 石油实验地质, 2022, 44(5):854-865

    WU Xiaoqi, ZHOU Xiaojin, CHEN Yingbin, et al. Molecular characteristics of source rocks in Upper Triassic Xujiahe Formation, Western Sichuan Depression, Sichuan Basin [J]. Petroleum Geology & Experiment, 2022, 44(5): 854-865.

    [54] 吴嘉, 齐雯, 罗情勇, 等. 二甲基二苯并噻吩生成实验及地球化学意义[J]. 石油实验地质, 2019, 41(2):260-267

    WU Jia, QI Wen, LUO Qingyong, et al. Experiments on the generation of dimethyldibenzothiophene and its geochemical implications [J]. Petroleum Geology & Experiment, 2019, 41(2): 260-267.

    [55]

    Hughes W B, Holba A G, Dzou L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks [J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598. doi: 10.1016/0016-7037(95)00225-O

    [56]

    Volkman J K. A review of sterol markers for marine and terrigenous organic matter [J]. Organic geochemistry, 1986, 9(2): 83-99. doi: 10.1016/0146-6380(86)90089-6

    [57]

    Matsumoto G, Torii T, Hanya T. High abundance of algal 24-ethylcholesterol in Antarctic lake sediment [J]. Nature, 1982, 299(5878): 52-54. doi: 10.1038/299052a0

    [58]

    Huang W Y, Meinschein W G. Sterols as ecological indicators [J]. Geochimica et Cosmochimica Acta, 1979, 43(5): 739-745. doi: 10.1016/0016-7037(79)90257-6

    [59]

    Grantham P J, Wakefield L L. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time [J]. Organic geochemistry, 1988, 12(1): 61-73. doi: 10.1016/0146-6380(88)90115-5

    [60]

    Ye Z W, Jiang J G, Wu G H. Biosynthesis and regulation of carotenoids in Dunaliella: Progresses and prospects [J]. Biotechnology Advances, 2008, 26(4): 352-360. doi: 10.1016/j.biotechadv.2008.03.004

    [61] 吴飘, 陈建文, 张银国, 等. 南黄海地区二叠系孤峰组硅质烃源岩的地球化学特征及上升流成因[J]. 海洋地质与第四纪地质, 2023, 43(1):1-21

    WU Piao, CHEN Jianwen, ZHANG Yinguo, et al. Geochemical characteristics and upwelling origin of siliceous source rocks in the Permian Gufeng Formation of the South Yellow Sea area [J]. Marine Geology & Quaternary Geology, 2023, 43(1): 1-21.

    [62] 张水昌, MOLDOWAN J. M. , LI M W, 等. 分子化石在寒武-前寒武纪地层中的异常分布及其生物学意义[J]. 中国科学(D辑), 2002, 45(3):193-200 doi: 10.1360/02yd9021

    ZHANG Shuichang, MOLDOWAN J. M., LI Maowen, et al. The abnormal distribution of the molecular fossils in the pre-Cambrian and Cambrian: its biological significance [J]. Science in China Series D:Earth Sciences, 2002, 45(3): 193-200. doi: 10.1360/02yd9021

    [63] 黄第藩, 张大江, 李晋超. 论4-甲基甾烷和孕甾烷的成因[J]. 石油勘探与开发, 1989(3):8-15

    HUANG Difan, ZHANG Dajiang, LI Jinchao. On origin of 4-methyl steranes and pregnanes [J]. Petroleum Exploration and Development, 1989(3): 8-15.

    [64]

    Moldowan J M, Seifert W K, Gallegos E J. Relationship between petroleum composition and depositional environment of petroleum source rocks [J]. AAPG Bulletin, 1985, 69(8): 1255-1268.

    [65]

    Tissot B P, Welte D H. Petroleum Formation and Occurrence[M]. 2nd ed. Berlin: Springer, 1984.

    [66]

    Volkman J K, Kearney P, Jeffrey S W. A new source of 4-methyl sterols and 5α(H)-stanols in sediments: prymnesiophyte microalgae of the genus Pavlova [J]. Organic Geochemistry, 1990, 15(5): 489-497. doi: 10.1016/0146-6380(90)90094-G

    [67]

    Hakimi M H, Abdullah W H, Alqudah M, et al. Organic geochemical and petrographic characteristics of the oil shales in the Lajjun area, Central Jordan: Origin of organic matter input and preservation conditions [J]. Fuel, 2016, 181: 34-45. doi: 10.1016/j.fuel.2016.04.070

    [68] 许婷, 侯读杰, 曹冰, 等. 东海盆地西湖凹陷轻质原油芳烃地球化学特征[J]. 沉积学报, 2017, 35(1):182-192

    XU Ting, HOU Dujie, CAO Bing, et al. Characteristics of aromatic geochemistry in light oils from Xihu Sag in East China Sea Basin [J]. Acta Sedimentologica Sinica, 2017, 35(1): 182-192.

    [69]

    Zhang M, Philp P. Geochemical characterization of aromatic hydrocarbons in crude oils from the Tarim, Qaidam and Turpan Basins, NW China [J]. Petroleum Science, 2010, 7(4): 448-457. doi: 10.1007/s12182-010-0097-6

    [70] 李水福, 何生. 原油芳烃中三芴系列化合物的环境指示作用[J]. 地球化学, 2008, 37(1):45-50

    LI Shuifu, HE Sheng. Geochemical characteristics of dibenzothiophene, dibenzofuran and fluorene and their homologues and their environmental indication [J]. Geochimica, 2008, 37(1): 45-50.

  • 期刊类型引用(2)

    1. 杨艳秋,李森,梁杰,孙晶. 南黄海盆地南部海相构造层研究新进展. 海洋地质前沿. 2025(02): 12-20 . 百度学术
    2. 田鑫,程斌,马大钧,邓德国,孙杰. 不同分离方法分离烃源岩可溶有机质的对比实验. 分析仪器. 2024(03): 56-62 . 百度学术

    其他类型引用(0)

图(9)  /  表(4)
计量
  • 文章访问数:  1049
  • HTML全文浏览量:  121
  • PDF下载量:  22
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-04-13
  • 修回日期:  2023-04-27
  • 录用日期:  2023-04-27
  • 网络出版日期:  2023-06-24
  • 刊出日期:  2023-08-27

目录

/

返回文章
返回