菲律宾海板块东南边界地质过程与研究展望

鄢全树, 袁龙, 闫施帅, 刘振轩, 吴增, 石学法

鄢全树,袁龙,闫施帅,等. 菲律宾海板块东南边界地质过程与研究展望[J]. 海洋地质与第四纪地质,2023,43(5): 50-63. DOI: 10.16562/j.cnki.0256-1492.2023040701
引用本文: 鄢全树,袁龙,闫施帅,等. 菲律宾海板块东南边界地质过程与研究展望[J]. 海洋地质与第四纪地质,2023,43(5): 50-63. DOI: 10.16562/j.cnki.0256-1492.2023040701
YAN Quanshu,YUAN Long,YAN Shishuai,et al. Geological evolution and research prospect in southeast boundary of Philippine Sea Plate[J]. Marine Geology & Quaternary Geology,2023,43(5):50-63. DOI: 10.16562/j.cnki.0256-1492.2023040701
Citation: YAN Quanshu,YUAN Long,YAN Shishuai,et al. Geological evolution and research prospect in southeast boundary of Philippine Sea Plate[J]. Marine Geology & Quaternary Geology,2023,43(5):50-63. DOI: 10.16562/j.cnki.0256-1492.2023040701

菲律宾海板块东南边界地质过程与研究展望

基金项目: 崂山实验室“十四五”重大项目“俯冲带动力过程与物质循环”(LSKJ202204103);国家重点研发计划项目“海洋划界相关自然特征的影响因素分析及其特征提取技术研究”(2017YFC1405502);国家自然科学基金“海底岩石学”(41322036);国家海洋局“全球变化与海气相互作用”专项(GASI-GEOGE-02);山东省泰山学者建设工程项目
详细信息
    作者简介:

    鄢全树(1976—),男,研究员,海底岩石学专业,E-mail:yanquanshu@163.com

  • 中图分类号: P736.1

Geological evolution and research prospect in southeast boundary of Philippine Sea Plate

  • 摘要: 晚中生代期间,由于古太平洋俯冲板片俯冲于欧亚板块之下,从而在欧亚大陆东缘存在一条巨型的类似于现今太平洋东侧的安第斯型俯冲带。岩浆活动记录显示,70 Ma左右,可能由于外来的正地形地体拼贴上该俯冲带,从而导致这条巨型安第斯型俯冲带逐渐消失,欧亚大陆东缘逐渐从主动大陆边缘变为被动大陆边缘。然而,新生代早期以来,伴随着菲律宾海板块从赤道北移,该被动大陆边缘又重新活化,变为主动大陆边缘,并逐渐形成了巨型的沟-弧-盆系统,期间西太平洋地区大致经历了三期的弧后扩张,即始新世、渐新世—中新世、上新世以来,且菲律宾海板块正好包括了这3个扩张期的弧后扩张盆地:西菲律宾海盆、四国海盆-帕里西维拉海盆以及马里亚纳海槽。本文详细总结了太平洋板块与次级的板块—菲律宾海板块及卡罗琳板块的地质演化历史,且详细探讨了以上3个主要板块之间相互作用的典型区域(菲律宾海板块东南侧)的地质学和岩石学特征以及尚存在的重要科学问题,并展望了未来该区域的研究方向。
    Abstract: During the Mesozoic Era, due to continuous subduction of the plaeo-Pacific slab beneath the Eurasian plate, a huge Andean-type subduction zone was gradually formed, being similar to that in modern eastern Pacific margin. Evidence from magmatic activity shows that the subduction processes of the Mesozoic Andean-type subduction zone had gradually ceased due to possible collaging of exotic positive topography terrane (s) into the subduction zone, and the eastern margin of the Eurasian plate has changed from active to passive continental margins. However, since early Cenozoic, accompanied by northward migration of the Philippine plate from south of the Equator (original place), the passive margin was reactivated and became an active margin and gradually formed a huge trench-arc-(back-arc) basin system in the western Pacific region after experienced three-epoch spreading evolution (i.e., Eocene, Oligocene-Miocene, Pliocence-Present). The Philippine Sea plate (PSP) includes these three-epoch back-arc basins (i.e., West Philippine Basin, Shikoku-Parece Vela Basins, and Mariana Trough). This study summarized in detail the geological evolution history of Pacific plate (first-order large tectonic plate), Philippine Sea plate and Caroline plate (second-order tectonic plate), described the geological and petrological characteristics for typical regions of interaction of the three tectonic plates, proposed some important scientific questions, and finally, pointed out the directions of investigation and research in the near future.
  • 图  1   190~5 Ma古太平洋的板块构造格局[21]

    Figure  1.   Plate tectonic pattern of the Paleo-Pacific during 190~5 Ma [21]

    图  2   菲律宾海板块及其邻近区域地质和基底岩石基本类型

    Figure  2.   Sketch geological map and basement rock types of the Philippine Sea plate and adjacent areas

    图  3   卡罗琳板块及其邻近区域地质和基底岩石基本类型

    白色破折线围限的大致区域为卡罗琳板块。

    Figure  3.   Sketch geological map and basement rock types of the Caroline plate and adjacent areas

    The white dotted line represents the boundary of Caroline Plate.

    图  4   50 Ma以来三大板块的构造演化示意图[14]

    Figure  4.   Schematic diagram of tectonic evolution of the three plates since 50 Ma [14]

    图  5   菲律宾海板块东南边界区域熔岩微量元素蛛网图

    图中IAB代表岛弧玄武岩,N-MORB代表正常洋中脊玄武岩,OIB代表洋岛玄武岩。正常洋中脊玄武岩、洋岛玄武岩和原始地幔数据来自Sun和McDonough[57],岛弧玄武岩数据来自Niu and O’Hara [58],帕里西维拉海盆南部数据来自文献[59],雅浦弧数据来自文献[44, 52-53],卡罗琳高原数据来自文献[41],索罗尔海槽数据来自文献[60],帕劳弧数据来自文献[61-62],阿玉海槽数据来自文献 [63-65]。

    Figure  5.   Trace element compositions of lavas in the southeastern boundary of the Philippine Sea plate

    IAB: island arc basalt; N-MORB: normal mid-ocean ridge basalt; OIB: ocean island basalt. Data for the N-MORB, OIB and primitive mantle are from references[57]; data for IAB are from references[58]; data for the southern part of the Parece Vela Basin are from references[59]; data for the Yap Arc are from references[44, 52-53]; data for the Caroline Plateau are from references[41]; data for the Solor Trough are from references[60]; data for the Palau Arc are from references[61-62]; data for Ayu Trough are from references[63-65].

    表  1   菲律宾海板块东南边界主要构造单元的地质地球物理特征

    Table  1   Geological and geophysical features of the main geological units in the southeast boundary of the Philippine Sea plate

    构造单元 大致地理位置 规模 基底岩石
    年龄/Ma
    平均水
    深/m
    地壳厚
    度/km
    地球物理特征 岩石地球化学特征 可能成因 参考文献
    雅浦沟-弧
    系统
    马里亚纳和帕劳岛弧之间 长约700 km 7.6~10.9 6000~9000 8~16 具高热流值、浅源地震频发、俯冲速率低以及较短的沟弧间距 主要由变质岩组成,类似于洋中脊玄武岩的特征;橄榄岩和火山岩具有岛弧的相关性 太平洋和卡罗琳板块的俯冲以及卡罗琳高原的“碰撞/俯冲” [41-42,44,
    52-53,95]
    北雅浦陡崖 马里亚纳与雅浦海沟交汇处以北 长约为20 km 24.8 5600~6400 5~10 自由空气重力异常为负值,布格重力异常没有表现出显著特征,为残余结构 具有俯冲相关火山岩的典型特征,具有更多的放射性成因同位素Sr 帕里西维拉海盆南部扩张时期形成 [42,52,54]
    帕劳沟-弧
    系统
    九州-帕劳脊主体以南 长约500 km 20.1~37.7 6000~7000 >10 板块汇聚速率为0.3~0 cm/yr,由北向南递减 典型的洋内岛弧火山岩序列,亏损高场强元素,富集Sr、La、Ba、Rb等元素 俯冲后撤+卡罗琳高原“碰撞” [62-63,98]
    帕里西维拉
    海盆南部
    菲律宾海板块东南端,北雅浦陡崖以南至雅浦弧之间 370 km×
    440 km
    13.1~6.1 500~5200 4.8~5.9 无磁异常,缺失东半部分,双层地壳结构,同时存在平板俯冲和俯冲反转 具有类似于弧后盆地玄武岩的地球化学特征 弧后扩张成因 [60,82,95]
    阿玉海槽 帕劳海沟以南,卡罗琳板块与菲律宾海板块边界处 长约600 km,宽约20~
    30 km
    19.9~25.2 5000~6000 5~7 扩张速率为1.0~1.5 cm/yr,存在扩张方向的转变,地震多与走滑断层相关 主要由玄武岩组成,具有类似于洋中脊玄武岩或弧后盆地玄武岩的特征 火山弧的初始裂谷阶段之后围绕轴线的扩展 [38,66,70]
    卡罗琳高原 雅浦海沟以东,卡罗琳板块和太平洋板块边界处 长约530 km 8.1~23.9 1000~3000 9~15 地壳较厚,具有较低的布格重力异常 主要由玄武岩组成,具有与洋岛玄武岩或洋中脊玄武岩相似的地球化学特征 地幔柱作用 [28,41,
    85,97]
    索罗尔海槽 东、西卡罗琳洋脊之间 西宽(150~
    175 km),东窄(75 km),长约530 km
    7.0 1600~5000 5~6 斜向张裂转换系统,兼具走滑和伸展特征 主要由玄武岩组成,具有类似于洋中脊玄武岩或洋岛玄武岩的化学特征 卡罗琳洋底高原裂解 [3,28,32,
    53,61,64]
    下载: 导出CSV
  • [1]

    Li S Z, Yu S, Zhao S J, et al. Tectonic transition and plate reconstructions of the east Asian continental margin[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 65-94.

    [2]

    Yan Q S, Metcalfe I, Shi X F, et al. Early Cretaceous granitic rocks from the southern Jiaodong Peninsula, eastern China: implications for lithospheric extension[J]. International Geology Review, 2019, 61(7): 821-838. doi: 10.1080/00206814.2018.1474388

    [3]

    Yan Q S, Shi X F, Yuan L, et al. Tectono-magmatic evolution of the Philippine Sea Plate: A review[J]. Geosystems and Geoenvironment, 2022, 1(2): 100018. doi: 10.1016/j.geogeo.2021.100018

    [4] 石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737-750 doi: 10.11867/j.issn.1001-8166.2013.07.0737

    SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 2013, 28(7): 737-750. doi: 10.11867/j.issn.1001-8166.2013.07.0737

    [5]

    Niu Y L, Liu Y, Xue Q Q, et al. Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic[J]. Science Bulletin, 2015, 60(18): 1598-1616. doi: 10.1007/s11434-015-0891-z

    [6]

    Xu Y, Yan Q S, Shi X F, et al. Discovery of Late Mesozoic volcanic seamounts at the ocean-continent transition zone in the Northeastern margin of South China Sea and its tectonic implication[J]. Gondwana Research, 2022.doi: 10.1016/j.gr.2022.04.003.

    [7]

    Sharp W D, Clague D A. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion[J]. Science, 2006, 313(5791): 1281-1284. doi: 10.1126/science.1128489

    [8]

    Torsvik T H, Doubrovine P V, Steinberger B, et al. Pacific plate motion change caused the Hawaiian-Emperor Bend[J]. Nature Communications, 2017, 8(1): 15660. doi: 10.1038/ncomms15660

    [9]

    Karig D E. Origin and development of marginal basins in the western Pacific[J]. Journal of Geophysical Research, 1971, 76(11): 2542-2561. doi: 10.1029/JB076i011p02542

    [10]

    Stern R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3-1-3-38.

    [11]

    Hilde T W C, Lee C S. Origin and evolution of the West Philippine Basin: a new interpretation[J]. Tectonophysics, 1984, 102(1-4): 85-104. doi: 10.1016/0040-1951(84)90009-X

    [12] 李三忠, 索艳慧, 朱俊江, 等. 海沟系统研究的进展与前沿[J]. 中国科学: 地球科学, 2020, 50(12): 1874-1892 doi: 10.1360/SSTe-2019-0301

    LI Sanzhong, SUO Yanhui, ZHU Junjiang, et al. Advance and frontier of the research on trench system[J]. Scientia Sinica Terrae, 2020, 50(12): 1874-1892. doi: 10.1360/SSTe-2019-0301

    [13]

    Hickey‐Vargas R. Origin of the Indian Ocean‐type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large‐scale processes[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B9): 20963-20979. doi: 10.1029/98JB02052

    [14]

    Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431 doi: 10.1016/S1367-9120(01)00069-4

    [15]

    Yan Q S, Shi X F. Geological comparative studies of Japan arc system and Kyushu-Palau arc[J]. Acta Oceanologica Sinica, 2011, 30(4): 107-121. doi: 10.1007/s13131-011-0134-3

    [16]

    Seno T, Maruyama S. Paleogeographic reconstruction and origin of the Philippine Sea[J]. Tectonophysics, 1984, 102(1-4): 53-84. doi: 10.1016/0040-1951(84)90008-8

    [17]

    Okino K, Ohara Y, Kasuga S, et al. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins[J]. Geophysical Research Letters, 1999, 26(15): 2287-2290. doi: 10.1029/1999GL900537

    [18]

    Shervais J W, Reagan M, Haugen E, et al. Magmatic response to subduction initiation: Part 1. Fore‐arc basalts of the Izu‐Bonin arc from IODP expedition 352[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(1): 314-338. doi: 10.1029/2018GC007731

    [19] 吴时国, 范建柯, 董冬冬. 论菲律宾海板块大地构造分区[J]. 地质科学, 2013, 48(3): 677-692 doi: 10.3969/j.issn.0563-5020.2013.03.008

    WU Shiguo, FAN Jianke, DONG Dongdong. Discussion on the tectonic division of the Philippine Sea Plate[J]. Chinese Journal of Geology, 2013, 48(3): 677-692. doi: 10.3969/j.issn.0563-5020.2013.03.008

    [20]

    Engebretson D C, Cox A, Gordon R G. Relative motions between oceanic and continental plates in the Pacific basin[M]. Geological Society of America, 1985: 1-60.

    [21]

    Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200Ma[J]. Earth-Science Reviews, 2012, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002

    [22]

    Nakanishi M, Tamaki K, Kobayashi K. A new Mesozoic isochron chart of the northwestern Pacific Ocean: Paleomagnetic and tectonic implications[J]. Geophysical Research Letters, 1992, 19(7): 693-696. doi: 10.1029/92GL00022

    [23]

    Flower M F J, Chung S L, Lo C H, et al. Mantle Dynamics and Plate Interactions in East Asia. Washington: American Geophysical Union, 1998: 67-88.

    [24]

    Jolivet L, Faccenna C, Becker T, et al. Mantle flow and deforming continents: From India‐Asia convergence to Pacific subduction[J]. Tectonics, 2018, 37(9): 2887-2914. doi: 10.1029/2018TC005036

    [25]

    Hall R, Ali J R, Anderson C D, et al. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics, 1995, 251(1-4): 229-250. doi: 10.1016/0040-1951(95)00038-0

    [26]

    Weissel J K, Anderson R N. Is there a Caroline plate?[J]. Earth and Planetary Science Letters, 1978, 41(2): 143-158. doi: 10.1016/0012-821X(78)90004-3

    [27]

    Hegarty K A, Weissel J K. Complexities in the development of the Caroline Plate region, western equatorial Pacific[J]. The Ocean Basins and Margins: The Pacific Ocean. Boston: Springer, 1988: 277-301.

    [28]

    Altis S. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis[J]. Tectonophysics, 1999, 313(3): 271-292. doi: 10.1016/S0040-1951(99)00204-8

    [29]

    Bird P. An updated digital model of plate boundaries[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3): 1027.

    [30]

    Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04006.

    [31]

    Bracey D R. Reconnaissance geophysical survey of the Caroline Basin[J]. Geological Society of America Bulletin, 1975, 86(6): 775-784. doi: 10.1130/0016-7606(1975)86<775:RGSOTC>2.0.CO;2

    [32]

    Bracey D R, Andrews J E. Western Caroline Ridge: relic island arc?[J]. Marine Geophysical Researches, 1974, 2(2): 111-125. doi: 10.1007/BF00340029

    [33]

    Gaina C, Müller D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins[J]. Earth-Science Reviews, 2007, 83(3-4): 177-203. doi: 10.1016/j.earscirev.2007.04.004

    [34]

    Keating B H, Mattey D P, Helsley C E, et al. Evidence for a hot spot origin of the Caroline Islands[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B12): 9937-9948. doi: 10.1029/JB089iB12p09937

    [35]

    Zhang Z Y, Dong D D, Sun W D, et al. Investigation of an oceanic plateau formation and rifting initiation model implied by the Caroline Ridge on the Caroline Plate, western Pacific[J]. International Geology Review, 2021, 63(2): 193-207. doi: 10.1080/00206814.2019.1707126

    [36]

    Hill K C, Hegarty K A. New tectonic framework for PNG and the Caroline plate: implications for cessation of spreading in back-arc basins[C]//Pacific Rim 87. International Congress on the Geology, Structure, Mineralisation and Economics of Pacific Rim. Parkville: Australasian Inst. Mining Metallurgy, 1987: 179-182.

    [37]

    Fujiwara T, Tamura C, Nishizawa A, et al. Morphology and tectonics of the Yap Trench[J]. Marine Geophysical Researches, 2000, 21(1): 69-86.

    [38]

    Lee S M. Deformation from the convergence of oceanic lithosphere into Yap trench and its implications for early-stage subduction[J]. Journal of Geodynamics, 2004, 37(1): 83-102. doi: 10.1016/j.jog.2003.10.003

    [39]

    Dong D D, Zhang Z Y, Bai Y L, et al. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction[J]. Tectonophysics, 2018, 722: 410-421. doi: 10.1016/j.tecto.2017.11.030

    [40] 李三忠, 曹现志, 王光增, 等. 太平洋板块中—新生代构造演化及板块重建[J]. 地质力学学报, 2019, 25(5): 642-677 doi: 10.12090/j.issn.1006-6616.2019.25.05.060

    LI Sanzhong, CAO Xianzhi, WANG Guangzeng, et al. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 2019, 25(5): 642-677. doi: 10.12090/j.issn.1006-6616.2019.25.05.060

    [41]

    Zhang G L, Zhang J, Wang S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau[J]. Chemical Geology, 2020, 540: 119566. doi: 10.1016/j.chemgeo.2020.119566

    [42]

    Ohara Y, Fujioka K, Ishizuka O, et al. Peridotites and volcanics from the Yap arc system: implications for tectonics of the southern Philippine Sea Plate[J]. Chemical Geology, 2002, 189(1-2): 35-53. doi: 10.1016/S0009-2541(02)00062-1

    [43] 瞿洪宝, 郑彦鹏, 刘晨光, 等. 晚始新世以来雅浦海沟-岛弧构造演化模式[J]. 海洋科学进展, 2017, 35(2): 249-257 doi: 10.3969/j.issn.1671-6647.2017.02.009

    QU Hongbao, ZHENG Yanpeng, LI Chenguang, et al. Model of tectonic evolution for Yap Trench-Arc Since Late Eocene[J]. Advances in Marine Science, 2017, 35(2): 249-257. doi: 10.3969/j.issn.1671-6647.2017.02.009

    [44]

    Yang Y M, Wu S G, Gao J W, et al. Geology of the Yap Trench: new observations from a transect near 10 N from manned submersible Jiaolong[J]. International Geology Review, 2018, 60(16): 1941-1953. doi: 10.1080/00206814.2017.1394226

    [45] 张志毅, 韩喜彬, 许冬. 雅浦–马里亚纳海沟连接处地貌特征研究[J]. 海洋学报, 2022, 44(11): 63-76

    ZHANG Zhiyi, HAN Xibin, XU Dong. Geomorphological characteristics of the junction Yap Trench and Mariana Trench[J]. Haiyang Xuebao, 2022, 44(11): 63-76.

    [46]

    Kinoshita M, Kasumi Y. Heat flow measurements in the Yap Trench area[J]. Preliminary report of Hakuho-maru Cruise KH87-3: Tokyo, The Ocean Research Institute, University of Tokyo, 1989: 136-143.

    [47]

    Sato T, Kasahara J, Katao H, et al. Seismic observations at the Yap Islands and the northern Yap Trench[J]. Tectonophysics, 1997, 271(3-4): 285-294. doi: 10.1016/S0040-1951(96)00251-X

    [48]

    Crawford A J, Beccaluva L, Serri G, et al. Petrology, geochemistry and tectonic implications of volcanics dredged from the intersection of the Yap and Mariana trenches[J]. Earth and Planetary Science Letters, 1986, 80(3-4): 265-280. doi: 10.1016/0012-821X(86)90110-X

    [49]

    Hawkins J, Batiza R. Metamorphic rocks of the Yap arc-trench system[J]. Earth and Planetary Science Letters, 1977, 37(2): 216-229. doi: 10.1016/0012-821X(77)90166-2

    [50]

    McCabe R, Uyeda S. Hypothetical model for the bending of the Mariana Arc[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington, DC, USA: American Geophysical Union, 1983: 281-293.

    [51] 董冬冬, 张广旭, 钱进, 等. 西太平洋雅浦俯冲带的地貌及地层结构特征[J]. 海洋地质与第四纪地质, 2017, 37(1): 23-29 doi: 10.16562/j.cnki.0256-1492.2017.01.003

    DONG Dongdong, ZHANG Guangxu, QIAN Jin, et al. Geomorphology and Stratigraphic framework of the Yap subduction zone, Western Pacific[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 23-39. doi: 10.16562/j.cnki.0256-1492.2017.01.003

    [52]

    Beccaluva L, Macciotta G, Savelli C, et al. Geochemistry and K/Ar ages of volcanics dredged in the Philippine Sea (Mariana, Yap, and Palau trenches and Parece Vela Basin)[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington DC: American Geophysical Union, 1980: 247-268.

    [53]

    Beccaluva L, Serri G, Dostal J. Geochemistry of volcanic rocks from the Mariana, Yap and Palau trenches bearing on the tectono-magmatic evolution of the Mariana trench-arc-backarc system[J]. Developments in Geotectonics, 1986, 21: 481-508.

    [54]

    Shiraki K. Metamorphic basement rocks of Yap Islands, western Pacific: Possible oceanic crust beneath an island arc[J]. Earth and Planetary Science Letters, 1971, 13(1): 167-174. doi: 10.1016/0012-821X(71)90120-8

    [55]

    Matsuda J I, Zashu S, Ozima M. Sr isotopic studies of volcanic rocks from island arcs in the western Pacific[J]. Tectonophysics, 1977, 37(1-3): 141-151. doi: 10.1016/0040-1951(77)90044-0

    [56]

    Zhang J, Zhang G L. Geochemical and chronological evidence for collision of proto-Yap arc/Caroline plateau and rejuvenated plate subduction at Yap trench[J]. Lithos, 2020, 370-371: 105616. doi: 10.1016/j.lithos.2020.105616

    [57]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [58]

    Niu Y L, O'Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 2209.

    [59]

    Yuan L, Yan Q S. Source lithology and magmatic processes recorded in the mineral of basalts from the Parece Vela Basin[J]. Acta Geologica Sinica‐English Edition, 2022, 96(6): 1991-2006. doi: 10.1111/1755-6724.14937

    [60]

    Perfit M R, Fornari D J. Mineralogy and geochemistry of volcanic and plutonic rocks from the boundaries of the Caroline plate: Tectonic implications[J]. Tectonophysics, 1982, 87(1-4): 279-313. doi: 10.1016/0040-1951(82)90230-X

    [61]

    Hawkins J W, Castillo P R. Early history of the Izu–Bonin–Mariana arc system: evidence from Belau and the Palau Trench[J]. Island Arc, 1998, 7(3): 559-578. doi: 10.1111/j.1440-1738.1998.00210.x

    [62]

    Hawkins J W, Ishizuka O. Petrologic evolution of Palau, a nascent island arc[J]. Island Arc, 2009, 18(4): 599-641. doi: 10.1111/j.1440-1738.2009.00683.x

    [63]

    Fornari D J, Weissel J K, Perfit M R, et al. Petrochemistry of the Sorol and Ayu Troughs: implications for crustal accretion at the northern and western boundaries of the Caroline Plate[J]. Earth and Planetary Science Letters, 1979, 45(1): 1-15. doi: 10.1016/0012-821X(79)90102-X

    [64]

    Kumagai H, Kaneoka I, Ishii T. The active period of the Ayu Trough estimated from K-Ar ages: The southeastern spreading center of Philippine Sea Plate[J]. Geochemical Journal, 1996, 30(2): 81-87. doi: 10.2343/geochemj.30.81

    [65]

    Park S H, Lee S M, Arculus R J. Geochemistry of basalt from the Ayu Trough, equatorial western Pacific[J]. Earth and Planetary Science Letters, 2006, 248(3-4): 700-714. doi: 10.1016/j.jpgl.2006.06.021

    [66]

    Haston R, Fuller M, Schmidtke E. Paleomagnetic results from Palau, West Caroline Islands: a constraint on Philippine Sea plate motion[J]. Geology, 1988, 16(7): 654-657. doi: 10.1130/0091-7613(1988)016<0654:PRFPWC>2.3.CO;2

    [67]

    Haston R B, Fuller M. Paleomagnetic data from the Philippine Sea plate and their tectonic significance[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6073-6098. doi: 10.1029/90JB02700

    [68]

    Kobayashi K, Fujioka K, Fujiwara T, et al. Why is the Palau Trench so deep? Deep-sea trench without plate convergence[J]. Proceedings of the Japan Academy, Series B, 1997, 73(6): 89-94. doi: 10.2183/pjab.73.89

    [69]

    Fujiwara T, Tamaki K, Fujimoto H, et al. Morphological studies of the Ayu trough, Philippine sea–Caroline plate boundary[J]. Geophysical Research Letters, 1995, 22(2): 109-112. doi: 10.1029/94GL02719

    [70]

    Cosca M, Arculus R, Pearce J, et al. 40Ar/39Ar and K–Ar geochronological age constraints for the inception and early evolution of the Izu–Bonin–Mariana arc system[J]. Island Arc, 1998, 7(3): 579-595. doi: 10.1111/j.1440-1738.1998.00211.x

    [71]

    Meijer A, Reagan M, Ellis H, et al. Chronology of volcanic events in the eastern Philippine Sea[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington DC: American Geophysical Union, 1983: 349-359.

    [72]

    Mason A. Military geology of the Palau Islands, Caroline Islands[J]. Rep. Intel. Div. Off. Engineer HQ, US Army (rear), 1956, 285.

    [73]

    Ishiwatari A, Yanagida Y, Li Y B, et al. Dredge petrology of the boninite‐and adakite‐bearing Hahajima Seamount of the Ogasawara (Bonin) forearc: An ophiolite or a serpentinite seamount?[J]. Island Arc, 2006, 15(1): 102-118. doi: 10.1111/j.1440-1738.2006.00512.x

    [74]

    Hong J K, Lee S M. Reflection seismology in the southern Ayu Trough, a slow-spreading divergent boundary[J]. Ocean and Polar Research, 2002, 24(3): 189-196. doi: 10.4217/OPR.2002.24.3.189

    [75]

    Macdonald K C. Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone[J]. Annual Review of Earth and Planetary Sciences, 1982, 10(1): 155-190. doi: 10.1146/annurev.ea.10.050182.001103

    [76]

    Lee S M, Kim S S. Vector magnetic analysis within the southern Ayu Trough, equatorial western Pacific[J]. Geophysical Journal International, 2004, 156(2): 213-221. doi: 10.1111/j.1365-246X.2003.02125.x

    [77]

    Zhang Z, Li S Z, Wang G Z, et al. Plate boundary processes of the Caroline Plate[J]. Science China Earth Sciences, 2022, 65(8): 1554-1567. doi: 10.1007/s11430-021-9919-6

    [78]

    Hickey-Vargas R. Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc and basin magmas of the Philippine tectonic plate[J]. Earth and Planetary Science Letters, 1991, 107(2): 290-304. doi: 10.1016/0012-821X(91)90077-U

    [79]

    Mrozowski C L, Hayes D E. The evolution of the Parece Vela basin, eastern Philippine Sea[J]. Earth and Planetary Science Letters, 1979, 46(1): 49-67. doi: 10.1016/0012-821X(79)90065-7

    [80] 俞恂, 陈立辉. 弧后盆地玄武岩的成分变化及其成因[J]. 岩石学报, 2020, 36(7): 1953-1972 doi: 10.18654/1000-0569/2020.07.02

    YU Xun, CHEN Lihui. Geochemical variation of back-arc Basin basalt and its genesis[J]. Acta Petrologica Sinica, 2020, 36(7): 1953-1972. doi: 10.18654/1000-0569/2020.07.02

    [81] 鄢全树, 袁龙, 石学法. 帕里西维拉海盆岩浆-构造过程及钻探建议[J]. 海洋地质与第四纪地质, 2022, 42(5): 103-109 doi: 10.16562/j.cnki.0256-1492.2022062003

    YAN Quanshu, YUAN Long, SHI Xuefa. Magmatism and tectonic evolution of the Parece Vela Basin and the drilling proposal[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 103-109. doi: 10.16562/j.cnki.0256-1492.2022062003

    [82]

    Okino K, Ohara Y, Fujiwara T, et al. Tectonics of the southern tip of the Parece Vela Basin, Philippine Sea Plate[J]. Tectonophysics, 2009, 466(3-4): 213-228. doi: 10.1016/j.tecto.2007.11.017

    [83]

    Nisbet E G, Pearce J A. Clinopyroxene composition in mafic lavas from different tectonic settings[J]. Contributions to Mineralogy and Petrology, 1977, 63(2): 149-160. doi: 10.1007/BF00398776

    [84]

    Weissel J K, Karner G D. Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B10): 13919-13950. doi: 10.1029/JB094iB10p13919

    [85]

    Heezen BC, Fischer AG, Boyce RE, et al. Initial reports of the deep sea drilling project, 57[M]. Washington DC: US Government Printing Office, 1971, 6: 493-537.

    [86]

    Yan S S, Yan Q S, Shi X F, et al. The dynamics of the Sorol Trough magmatic system: Insights from bulk‐rock chemistry and mineral geochemistry of basaltic rocks[J]. Geological Journal, 2022, 57(10): 4074-4089. doi: 10.1002/gj.4529

    [87]

    Ridley W I, Rhodes J M, REID A M, et al. Basalts from leg 6 of the deep-sea drilling project[J]. Journal of Petrology, 1974, 15(1): 140-159. doi: 10.1093/petrology/15.1.140

    [88]

    Hegarty K A, Weissel J K, Hayes D E. Convergence at the Caroline-Pacific plate boundary: collision and subduction[M]// Hayes K A. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington DC: American Geophysical Union, 1983: 326-348.

    [89]

    Seton M, Müller R D, Zahirovic S, et al. A global data set of present‐day oceanic crustal age and seafloor spreading parameters[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(10): e2020GC009214.

    [90] 鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应[J]. 海洋学报, 2014, 36(5): 107-123

    YAN Quanshu, SHI Xuefa. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone[J]. Acta Oceanologica Sinica, 2014, 36(5): 107-123.

    [91]

    Tetreault J L, Buiter S J H. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8): B08403.

    [92]

    Barazangi M, Isacks B L. Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America[J]. Geology, 1976, 4(11): 686-692. doi: 10.1130/0091-7613(1976)4<686:SDOEAS>2.0.CO;2

    [93]

    Van Hunen J, Van Den BERG A P, Vlaar N J. On the role of subducting oceanic plateaus in the development of shallow flat subduction[J]. Tectonophysics, 2002, 352(3-4): 317-333. doi: 10.1016/S0040-1951(02)00263-9

    [94]

    Jackson M G, Price A A, Blichert-Toft J, et al. Geochemistry of lavas from the Caroline hotspot, Micronesia: Evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He[J]. Chemical Geology, 2017, 455: 385-400. doi: 10.1016/j.chemgeo.2016.10.038

    [95]

    Fan J K, Zheng H, Zhao D P, et al. Seismic structure of the Caroline Plateau‐Yap Trench collision zone[J]. Geophysical Research Letters, 2022, 49(6): e2022GL098017.

    [96]

    Campbell I H. The mantle’s chemical structure: insights from the melting products of mantle plumes[M]//Jackson I. The Earth’s Mantle: Composition, Structure, and Evolution. Cambridge: Cambridge University Press, 1998: 259-310.

    [97] 张吉, 张国良. 雅浦岛弧变质岩成因和构造环境研究[J]. 海洋地质与第四纪地质, 2018, 38(4): 71-82 doi: 10.16562/j.cnki.0256-1492.2018.04.006

    Zhang J, Zhang G L. Origin and tectonic setting of metamorphic rocks in the Yap Island Arc[J]. Marine Geology and Quaternary Geology, 2018, 38(4): 71-82. doi: 10.16562/j.cnki.0256-1492.2018.04.006

    [98]

    Kobayashi K. Origin of the Palau and Yap trench-arc systems[J]. Geophysical Journal International, 2004, 157(3): 1303-1315. doi: 10.1111/j.1365-246X.2003.02244.x

    [99]

    Ishizuka O, Hickey-Vargas R, Arculus R J, et al. Age of Izu–Bonin–Mariana arc basement[J]. Earth and Planetary Science Letters, 2018, 481: 80-90. doi: 10.1016/j.jpgl.2017.10.023

图(5)  /  表(1)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  64
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 修回日期:  2023-06-25
  • 录用日期:  2023-06-25
  • 网络出版日期:  2023-10-29
  • 刊出日期:  2023-10-27

目录

    /

    返回文章
    返回