菲律宾海板块东南边界地质过程与研究展望

鄢全树, 袁龙, 闫施帅, 刘振轩, 吴增, 石学法

鄢全树,袁龙,闫施帅,等. 菲律宾海板块东南边界地质过程与研究展望[J]. 海洋地质与第四纪地质,2023,43(5): 50-63. DOI: 10.16562/j.cnki.0256-1492.2023040701
引用本文: 鄢全树,袁龙,闫施帅,等. 菲律宾海板块东南边界地质过程与研究展望[J]. 海洋地质与第四纪地质,2023,43(5): 50-63. DOI: 10.16562/j.cnki.0256-1492.2023040701
YAN Quanshu,YUAN Long,YAN Shishuai,et al. Geological evolution and research prospect in southeast boundary of Philippine Sea Plate[J]. Marine Geology & Quaternary Geology,2023,43(5):50-63. DOI: 10.16562/j.cnki.0256-1492.2023040701
Citation: YAN Quanshu,YUAN Long,YAN Shishuai,et al. Geological evolution and research prospect in southeast boundary of Philippine Sea Plate[J]. Marine Geology & Quaternary Geology,2023,43(5):50-63. DOI: 10.16562/j.cnki.0256-1492.2023040701

菲律宾海板块东南边界地质过程与研究展望

基金项目: 崂山实验室“十四五”重大项目“俯冲带动力过程与物质循环”(LSKJ202204103);国家重点研发计划项目“海洋划界相关自然特征的影响因素分析及其特征提取技术研究”(2017YFC1405502);国家自然科学基金“海底岩石学”(41322036);国家海洋局“全球变化与海气相互作用”专项(GASI-GEOGE-02);山东省泰山学者建设工程项目
详细信息
    作者简介:

    鄢全树(1976—),男,研究员,海底岩石学专业,E-mail:yanquanshu@163.com

  • 中图分类号: P736.1

Geological evolution and research prospect in southeast boundary of Philippine Sea Plate

  • 摘要: 晚中生代期间,由于古太平洋俯冲板片俯冲于欧亚板块之下,从而在欧亚大陆东缘存在一条巨型的类似于现今太平洋东侧的安第斯型俯冲带。岩浆活动记录显示,70 Ma左右,可能由于外来的正地形地体拼贴上该俯冲带,从而导致这条巨型安第斯型俯冲带逐渐消失,欧亚大陆东缘逐渐从主动大陆边缘变为被动大陆边缘。然而,新生代早期以来,伴随着菲律宾海板块从赤道北移,该被动大陆边缘又重新活化,变为主动大陆边缘,并逐渐形成了巨型的沟-弧-盆系统,期间西太平洋地区大致经历了三期的弧后扩张,即始新世、渐新世—中新世、上新世以来,且菲律宾海板块正好包括了这3个扩张期的弧后扩张盆地:西菲律宾海盆、四国海盆-帕里西维拉海盆以及马里亚纳海槽。本文详细总结了太平洋板块与次级的板块—菲律宾海板块及卡罗琳板块的地质演化历史,且详细探讨了以上3个主要板块之间相互作用的典型区域(菲律宾海板块东南侧)的地质学和岩石学特征以及尚存在的重要科学问题,并展望了未来该区域的研究方向。
    Abstract: During the Mesozoic Era, due to continuous subduction of the plaeo-Pacific slab beneath the Eurasian plate, a huge Andean-type subduction zone was gradually formed, being similar to that in modern eastern Pacific margin. Evidence from magmatic activity shows that the subduction processes of the Mesozoic Andean-type subduction zone had gradually ceased due to possible collaging of exotic positive topography terrane (s) into the subduction zone, and the eastern margin of the Eurasian plate has changed from active to passive continental margins. However, since early Cenozoic, accompanied by northward migration of the Philippine plate from south of the Equator (original place), the passive margin was reactivated and became an active margin and gradually formed a huge trench-arc-(back-arc) basin system in the western Pacific region after experienced three-epoch spreading evolution (i.e., Eocene, Oligocene-Miocene, Pliocence-Present). The Philippine Sea plate (PSP) includes these three-epoch back-arc basins (i.e., West Philippine Basin, Shikoku-Parece Vela Basins, and Mariana Trough). This study summarized in detail the geological evolution history of Pacific plate (first-order large tectonic plate), Philippine Sea plate and Caroline plate (second-order tectonic plate), described the geological and petrological characteristics for typical regions of interaction of the three tectonic plates, proposed some important scientific questions, and finally, pointed out the directions of investigation and research in the near future.
  • 海底作为一个具有重要意义的地质界面,一直都是海洋科学研究的热点。海底底质的开发和利用在许多领域上都具有重要意义,特别是海洋军事[1]、海洋资源勘探[2]、水下考古[3]、海洋工程建设[4]、海洋渔业[5]等重要领域。传统的海底底质分类通常采用箱式取样、重力取样、抓斗等方式,按一定网格离散现场区域,通过室内测试分析后进行底质类型划分,但是该方式效率低,取样有限,作业成本高,所需时间长,且只能获取离散的海底底质点数据,需通过内插或外延的方式才能获得连续的底质分布。随着声学技术的不断发展,出现了多波束、侧扫声呐等一系列非接触式的声学底质探测方法[6-10],不仅改善了作业效率,而且明显减少了投入成本。目前应用较多的声学探测系统有多波束、侧扫声呐、浅地层剖面仪等。这些方法基本上都是基于沉积物类型与散射强度、回波波形等物理量的相关性,进行相关改正后再进行特征提取和统计分析[11-12]。多波束和侧扫声呐通过采集多角度反向散射信号来获取大面积的海底底质信息,多波束的回波强度数据往往侧重于统计特征参量的分类,而侧扫声呐的回波强度数据更倾向于图像纹理分类[13]。然而,海底以下的沉积层中包含了很多可以表征底质特征的声学参数,如声阻抗、声衰减等,由于多波束和侧扫仅能穿透海底表面以下数厘米的深度,无法提取这些特征信息[14-16]

    浅地层剖面仪,使用的是低频、高能量的正入射信号,能穿透至浅地层数十乃至数百米深度,获取这一深度区间内的高分辨率垂直剖面资料,其回波中包含更多浅地层沉积物信息,可用较高置信度推断底质类型[17-18]。关于浅地层剖面的底质分类方法主要有3种:一是组合系统分类,将浅地层剖面与多波束或侧扫声呐相结合来识别不同的底质特征;二是基于模型的声学参数底质反演分类,Shock [19-20]在Biot-Stoll模型的基础上计算了快波波速和衰减系数来预测表层沉积物的类型,反演方法在计算连续较深的沉积层性质时被证明是可靠的。郑红波等 [21]利用Biot-Stoll模型反演海底沉积物的孔隙度和渗透率,并计算平均粒径实现底质分类,结果表明,Biot-Stoll模型适用于软质海底沉积物的分类;三是无模型的回波信号统计特征量底质自动分类,Yegireddi等[22]利用灰度共生矩阵统计数据进行浅地层特征识别和纹理特征向量提取,并选择一种名为自组织映射的无监督神经网络算法进行分类,成功从海底图像中分离出4种不同底质类型的沉积层。陈佳兵[23]等提取图像的相关系数、角二阶矩、同质性等6个特征向量,并提出将粒子群优化算法与BP神经网络相结合,通过优化BP神经网络的初始权值和阈值提高底质分类的精度。本文基于最近在舟山群岛采集的高密度高分辨率浅地层剖面测线,从处理后的浅地层数据中提取用于底质分类研究的关键参数,在此基础上,用无模型的回波信号统计特征量反演海底表层沉积物类型,并与高密度侧扫声呐数据解释的地貌类型和实测海底沉积物类型进行对比,分析该反演方法的准确率和可靠性,并绘制海底底质分布类型图,作为一种海底沉积物类型反演的新方法探索,为后期开展相关研究提供参考。

    研究区主要位于舟山群岛海域,舟山群岛是浙东天台山脉向海延伸的余脉。在10~8 ka前,由于海平面上升将山体淹没才形成今天的岛群。古近纪和新近纪沿海及海岛地区全面隆起,处于剥蚀、侵蚀构造环境。进入第四纪,气候明显变冷,早更新世浙江沿海及海岛地区仍处于上升阶段,遭受构造侵蚀,形成了低山丘陵地貌。第四纪以来,伴随着海平面的多次升降,沉积了海相砂砾层和淤泥滩堆积[24-25]

    舟山群岛及其附近海域海流主要由东海沿岸流、长江冲淡水、台湾暖流等组成,季节性变化显著。受沿岸流影响,长江口入海泥沙经舟山群岛向东南搬运到水深小于60 m的内陆架区域。舟山群岛海域为典型往复流,岛屿间泥沙输运沿水道方向,潮流作用复杂,以峡道沉积作用为主,泥沙输运具有北进南出特征。已有研究表明,舟山群岛海域沉积物类型主要有5种,包括粉砂、砾质砂、砂质粉砂、粉砂质砂、砂,其中粉砂含量最高,呈片状广泛分布于舟山群岛东部宽阔海域[26-28]

    2021年7—8月中国地质调查局烟台海岸带地质调查中心在舟山海域开展了1 100 km浅地层剖面和523 km侧扫声呐测量(图1),作业过程中导航定位采用美国Trimble公司产SPS351-DGPS差分信标接收机,CGCS2000坐标系,投影方式采用高斯克吕格6°带投影。

    图  1  研究区内浅地层剖面和侧扫声呐测线图
    Figure  1.  Deployment of shallow seismic profiles and side scan sonar lines in the study area

    浅地层剖面采集仪器为英国应用声学公司生产的AAE型电火花浅地层剖面仪,测线间距1 km×2 km,震源为CSP-D(50-2400 J),水下声源Squid 2000,水听器为20单元组合检波水听器,频率响应范围为145~7 000 Hz,探测地层垂向分辨率优于0.5 m。通过试验确定的采集参数为:激发能量750 J,激发间隔800 ms,带通滤波100~5 000 Hz,电火花震源距离船尾30 m,水听器与电火花震源5 m,数据记录格式为SEGY,记录量程200 ms。

    侧扫声呐采用美国Klein公司生产的Klein4900型数字式双频侧扫声呐,主测线平行等深线,联络测线垂直主测线,主测线间距350 m,测量分两个区,金塘海域主测线共30条,联络测线共11条;定海海域主测线共17条,联络测线共11条。试验取得的剖面以具有较高分辨率和良好的记录面貌为原则,最终确定的侧扫声呐工作参数为:455 kHz低频采集,量程200 m,TVG选择自动,后拖时拖缆放长15 m,船速保持在5节左右。实际作业时根据回波信号的强度及声图质量,适时调整船速、量程等施工参数,确保声图能够清楚地反映海底的地貌特征。

    浅地层剖面数据处理采用集成开发的运行在Windows平台的处理系统,在浅地层剖面数据处理方面,有针对性地编写了特有模块和算法,目前成熟的模块有:能量分析、频谱分析、频率域滤波、时变滤波、真振幅恢复、道间能量均衡、非相干及相干噪音压制、水体噪音压制、鬼波压制、海底多次波压制、涌浪改正、潮位改正、道坐标归算等。根据浅地层剖面特点,本次使用的模块包括频谱分析、频率扫描、频率域滤波、振幅恢复、能量均衡、层位平滑、多次波衰减、噪音衰减等,通过数据处理,压制了噪音和多次波,突出了有效波,提高了信噪比,并加强了层位连续性,方便后续属性数据的提取。

    对原始SEGY数据进行前处理,包括滤波、真振幅恢复、振幅衰减补偿、振幅校正、振幅属性提取、多次波提取及反射系数计算等,方便后续属性数据的提取[29]

    通过对原始数据进行频率扫描,频谱分析等,大致确定数据资料的频率范围,以确定频率域滤波参数,通过分析对比,本次数据资料的有效频带范围大致在150~1 800,根据分析结果进而选择相应的滤波参数,滤波后高频和甚低频干扰噪音都得到了压制,同时也避免了噪音对后期海底振幅属性提取的干扰(图2)。

    图  2  带通滤波前(a)和滤波后(b)海底振幅属性对比
    Figure  2.  Comparison of seafloor amplitude properties before (a) and after (b) bandpass filtering

    地震波在传播过程中,受波前扩散、大地滤波、吸收、散射、投射损失等多种因素影响,后处理过程中使用振幅恢复模块对地震波能量进行补偿和校正,以恢复较深层的弱反射能量,处理效果及补偿前后能量衰减对比见图3,从剖面图和能量曲线上可以看出,振幅补偿后深层能量得到有效恢复。

    图  3  振幅补偿前(左)和补偿后(右)剖面对比
    Figure  3.  Amplitude compensation Profiles comparison before (left) and after (b) profiles comparison amplitude compensation

    外业采集过程中接收端能量往往受电缆沉放深度、震源深度、激发能量、海况等多种因素的影响,反映到资料剖面上,各道能量出现不均衡现象,同时也影响了海底反射能量,为减少这方面的影响,后处理过程中使用能量均衡模块,恢复因不同激发能量等因素引起的海底能量不一致性。通过互相关、能量匹配等方法对主要反射层位进行跟踪分析,采用拟合平滑局部层位以提高连续性、横向分辨率等。

    针对测区剖面上的短程多次波、海底多次波,采用预测反褶积模块对多次波进行衰减,特别是针对海底振幅能量有影响的鬼波,在提取能量前进行去鬼波处理(图4)。

    图  4  海底多次波处理前(左)和处理后(右)效果对比图
    Figure  4.  Before (left) and after (right) seabed multiple multi-wave processing

    通过浅地层剖面数据处理,对振幅进行校正后,先拾取海底反射(图5),再根据剖面判读反射特征与子波波形,推测实际地震子波长度大约为2 ms(图6),然后分别计算海底反射所在的波段和2 ms长度(下面简称区段)其对应的多个振幅属性,包括振幅最大值Max,振幅平均值Average及振幅均方根RMS等属性值。

    图  5  海底跟踪拾取
    Figure  5.  Seafloor tracking pickup
    图  6  子波长度估测
    Figure  6.  Wavelet length estimation

    对于异常振幅段要进行剔除,如震源无激发的记录道(图7),海底过浅以致海底反射受直达波影响的记录道,这类异常一般出现在测线开始或结尾处。

    图  7  测线3500—3670炮震源无激发记录
    Figure  7.  Source record of no excitation from 3500 to the 3670 shot

    根据高密度高分辨率浅地层剖面数据提取的各振幅属性值,包括波段Max、波段Average、波段RMS、区段Max、区段Average、区段RMS,见图8。对各属性体采用克里金栅格化后形成的等值线如图9所示。振幅属性值越大对应海底沉积物越硬,反之,值越小对应海底沉积物越软。

    图  8  根据浅地层剖面数据提取的各振幅属性值
    a:波段Max,b:波段Average,c:波段RMS,d:区段Max,e:区段Average,f:区段RMS。
    Figure  8.  Amplitude attribute values extracted from shallow seismic profiles
    a:Band Max, b: band Average, c:band RMS, d:section Max, e:section Average, f:section RMS.
    图  9  各振幅属性值克里金栅格化后等值线图
    a:波段Max,b:波段Average,c:波段RMS,d:区段Max,e:区段Average,f:区段RMS。
    Figure  9.  Each amplitude properties values Kriegin rasterized contour mapContour map of each amplitude attribute value after Kriging rasterization
    a: Band Max; b: band Average; c: band RMS; d: section Max; e: section Average; f: section RMS.

    通过对所有侧扫声呐测线的地貌进行分析,发现测区范围内主要存在冲刷沟槽(潮道)和海底平原地貌类型。在冲刷沟槽中分布大量的浅埋基岩和出露基岩、沙波、岩石台地和滑坡体等(图10),海底平原地区发育大量沙波以及人类活动留下的痕迹等,其中人类活动留下的痕迹又包括拖痕区、采砂区、渔网等(图11),测区侧扫声呐数据解释获得的地貌分类及其分布见图12

    图  10  侧扫声呐数据揭示的潮道底部出露的基岩
    高出海底近50 m。
    Figure  10.  Bedrock outcrop at the bottom of the tidal channel revealed by side-scan sonar data
    Nearly 50 m above the sea floor.
    图  11  侧扫声呐揭示的沙波
    Figure  11.  Sand waves revealed by side scan sonar
    图  12  侧扫声呐数据解释的地貌分类及其分布
    Figure  12.  Geomorphic classification and distribution interpreted by side scan sonar data

    出露基岩在本次调查范围内主要有两种,基本分布在冲刷沟槽(潮道)底部和潮道边缘,一种是在声呐图像上主要表现为反射深浅相间在水深100 m左右,由于拖鱼距离海底较大,声呐反射成像较差,但是岩石纹理仍然清晰,此类型在本次调查范围内的冲沟底部大面积出露,另一种是出露基岩表现为海底高高突起(图10),在声呐图像上的表现为海底水深线剧烈起伏,垂直拖鱼航向上近拖鱼位置反射强,随后为阴影暗反射区,基岩/风化壳分布范围见图12中红色区域所示。

    沙波一般是指浅水区河床中的泥沙质堆积地貌,在浅水区,水面受河床底部起伏影响呈波形,水流流速受上坡和下坡影响存在差异,进而导致沙波背水坡泥沙被侵蚀,而被侵蚀的泥沙会在下一个沙波的迎水坡堆积[30]。从平面上看,沙波的波峰大致互相平行,并与水流方向垂直或略显斜交。有时,它们呈时断时续的蛇曲形状或显弧形。测区范围内存在3处明显的沙波(图12中黄色范围),册子岛南边海域仅观察到少量沙波分布,估计是受挖沙影响,沙波沉积遭到破坏。大榭岛正北及东北海域的沙波,其沙波长达数百米,波高可达2~5 m(图11)。

    针对测区剖面上的海底多次波,采用预测反褶积模块对多次波进行求取(图13)。

    图  13  多次波提取前后剖面对比
    a:去多次波前,b:去多次波后,c:多次波。
    Figure  13.  Profile comparison before and after multiplex extraction
    a: Before multiplex extraction; b: after multiplex extraction; v: the multiplex.

    提取多次波后,再利用去多次波模块计算获得反射系数,图14为计算得到的反射系数属性体图。值越大对应海底沉积物越硬,反之,值越小反映海底沉积物越软。

    图  14  研究区浅地层剖面测线反射系数属性体(上)及等值线图(下)
    Figure  14.  Reflection coefficient properties (up) and contour map (down) of shallow seismic profiles

    由于测区范围内浅层气特别发育,除了基岩出露的部分测线段以外,几乎遍布整个测区,以致计算所获的反射系数整体偏高(图15)。

    图  15  测线反射系数(a)与RMS属性(b)对比图
    Figure  15.  Comparison of reflection coefficient (a) and RMS attributes (b)

    结合基岩出露、侧扫声呐资料解释后的沉积分区(图12)进行对比分析,可以明显看出,振幅属性对底质的刻画,特别是潮道区,区段振幅属性要优于波段振幅属性,3个区段振幅属性整体上差别不大。再根据2015年收集的实测表层样资料[31-32],进行综合对比(图16),并结合以往属性计算经验,最终采用区段RMS属性进行海底底质反演。为了方便对比,最终对区段RMS属性进行归一化处理。根据RMS属性值和粒度分析的相关关系,推测海底沉积物类型,研究区海底沉积物类型见图17,反演质量整体上较好。

    图  16  研究区实测表层沉积物类型及浅地层剖面区段振幅属性对比
    2015年实测沉积物类型:◆黏土质粉砂 ◆粉砂 ◆砂质粉砂。
    Figure  16.  Comparison of measured surface sediment types and amplitude attributes of shallow seismic profiles in the study area
    Measured sediment types in 2015:◆clayey silt ◆silt ◆sandy silt.
    图  17  根据浅地层剖面RMS振幅属性反演的海底表层沉积物类型
    Figure  17.  Seafloor surface sediment types derived from RMS amplitude attributes based on shallow seismic profiles

    部分推测区与表层样存在不符合的情况,研究区东北角反演推测的粉砂区,有2个黏土质粉砂表层样及2个砂质粉砂表层样落在此范围,1个砂质粉砂落在推测的黏土质粉砂范围内;另有桃花岛北边2个黏土质站位落在潮道边缘,推测为砂质区,全部29个站位中,其余22个站位(占总站位的72.41%)与推测的底质类型一致。

    反演推测区与表层样存在不符合的情况,原因可能为:一是表层样取样时间是2015年,地球物理测线采集是2021年,期间相隔6年,舟山海区流速大、沉积物源丰富,水动力(波浪、恒流、潮汐等)强,都会引起局部沉积物的成分变化,对比相关海域已公开发表的资料,可以发现不同年份的取样其底质分析结果也存在些许差异[33];二是研究区范围内浅层气特别发育,除基岩出露的区域外,浅层气几乎遍布其他区域,对沉积物类型反演有一定影响;三是受测线稀疏程度的影响,反演得到的海底底质分类的分辨率有限[34-35]

    本文探索了一种利用高密度高分辨率浅地层剖面资料振幅属性反演海底表层沉积物类型的新方法,利用地震数据前处理、振幅提取等技术,提取了浅地层剖面波段Max、波段Average、波段RMS、区段Max、区段Average、区段RMS等多个振幅属性值,对比分析发现区段RMS属性可较准确地反演沉积物类型。利用最近获得的浅地层剖面数据振幅RMS属性值反演出舟山群岛的沉积物类型主要有黏土、黏土质粉砂、粉砂、砂和基岩5种类型,通过与侧扫声呐数据解释的地貌单位和实测海底表层沉积物类型数据对比,初步估算准确率在72%以上,该反演方法在研究区可行。

    同时,该反演方法准确率受测线稀疏程度、数据原始采集质量等因素影响,因此结合本次资料处理及反演过程,为使后期提取的振幅属性更真实、多次波的计算更准确,在外业采集过程中应提高外业采集质量,保证记录长度超过多次波的到达时间在30 ms以上,尽量减小背景噪音,电缆沉放深度可以适当加大,可以减少水面噪音等。

  • 图  1   190~5 Ma古太平洋的板块构造格局[21]

    Figure  1.   Plate tectonic pattern of the Paleo-Pacific during 190~5 Ma [21]

    图  2   菲律宾海板块及其邻近区域地质和基底岩石基本类型

    Figure  2.   Sketch geological map and basement rock types of the Philippine Sea plate and adjacent areas

    图  3   卡罗琳板块及其邻近区域地质和基底岩石基本类型

    白色破折线围限的大致区域为卡罗琳板块。

    Figure  3.   Sketch geological map and basement rock types of the Caroline plate and adjacent areas

    The white dotted line represents the boundary of Caroline Plate.

    图  4   50 Ma以来三大板块的构造演化示意图[14]

    Figure  4.   Schematic diagram of tectonic evolution of the three plates since 50 Ma [14]

    图  5   菲律宾海板块东南边界区域熔岩微量元素蛛网图

    图中IAB代表岛弧玄武岩,N-MORB代表正常洋中脊玄武岩,OIB代表洋岛玄武岩。正常洋中脊玄武岩、洋岛玄武岩和原始地幔数据来自Sun和McDonough[57],岛弧玄武岩数据来自Niu and O’Hara [58],帕里西维拉海盆南部数据来自文献[59],雅浦弧数据来自文献[44, 52-53],卡罗琳高原数据来自文献[41],索罗尔海槽数据来自文献[60],帕劳弧数据来自文献[61-62],阿玉海槽数据来自文献 [63-65]。

    Figure  5.   Trace element compositions of lavas in the southeastern boundary of the Philippine Sea plate

    IAB: island arc basalt; N-MORB: normal mid-ocean ridge basalt; OIB: ocean island basalt. Data for the N-MORB, OIB and primitive mantle are from references[57]; data for IAB are from references[58]; data for the southern part of the Parece Vela Basin are from references[59]; data for the Yap Arc are from references[44, 52-53]; data for the Caroline Plateau are from references[41]; data for the Solor Trough are from references[60]; data for the Palau Arc are from references[61-62]; data for Ayu Trough are from references[63-65].

    表  1   菲律宾海板块东南边界主要构造单元的地质地球物理特征

    Table  1   Geological and geophysical features of the main geological units in the southeast boundary of the Philippine Sea plate

    构造单元 大致地理位置 规模 基底岩石
    年龄/Ma
    平均水
    深/m
    地壳厚
    度/km
    地球物理特征 岩石地球化学特征 可能成因 参考文献
    雅浦沟-弧
    系统
    马里亚纳和帕劳岛弧之间 长约700 km 7.6~10.9 6000~9000 8~16 具高热流值、浅源地震频发、俯冲速率低以及较短的沟弧间距 主要由变质岩组成,类似于洋中脊玄武岩的特征;橄榄岩和火山岩具有岛弧的相关性 太平洋和卡罗琳板块的俯冲以及卡罗琳高原的“碰撞/俯冲” [41-42,44,
    52-53,95]
    北雅浦陡崖 马里亚纳与雅浦海沟交汇处以北 长约为20 km 24.8 5600~6400 5~10 自由空气重力异常为负值,布格重力异常没有表现出显著特征,为残余结构 具有俯冲相关火山岩的典型特征,具有更多的放射性成因同位素Sr 帕里西维拉海盆南部扩张时期形成 [42,52,54]
    帕劳沟-弧
    系统
    九州-帕劳脊主体以南 长约500 km 20.1~37.7 6000~7000 >10 板块汇聚速率为0.3~0 cm/yr,由北向南递减 典型的洋内岛弧火山岩序列,亏损高场强元素,富集Sr、La、Ba、Rb等元素 俯冲后撤+卡罗琳高原“碰撞” [62-63,98]
    帕里西维拉
    海盆南部
    菲律宾海板块东南端,北雅浦陡崖以南至雅浦弧之间 370 km×
    440 km
    13.1~6.1 500~5200 4.8~5.9 无磁异常,缺失东半部分,双层地壳结构,同时存在平板俯冲和俯冲反转 具有类似于弧后盆地玄武岩的地球化学特征 弧后扩张成因 [60,82,95]
    阿玉海槽 帕劳海沟以南,卡罗琳板块与菲律宾海板块边界处 长约600 km,宽约20~
    30 km
    19.9~25.2 5000~6000 5~7 扩张速率为1.0~1.5 cm/yr,存在扩张方向的转变,地震多与走滑断层相关 主要由玄武岩组成,具有类似于洋中脊玄武岩或弧后盆地玄武岩的特征 火山弧的初始裂谷阶段之后围绕轴线的扩展 [38,66,70]
    卡罗琳高原 雅浦海沟以东,卡罗琳板块和太平洋板块边界处 长约530 km 8.1~23.9 1000~3000 9~15 地壳较厚,具有较低的布格重力异常 主要由玄武岩组成,具有与洋岛玄武岩或洋中脊玄武岩相似的地球化学特征 地幔柱作用 [28,41,
    85,97]
    索罗尔海槽 东、西卡罗琳洋脊之间 西宽(150~
    175 km),东窄(75 km),长约530 km
    7.0 1600~5000 5~6 斜向张裂转换系统,兼具走滑和伸展特征 主要由玄武岩组成,具有类似于洋中脊玄武岩或洋岛玄武岩的化学特征 卡罗琳洋底高原裂解 [3,28,32,
    53,61,64]
    下载: 导出CSV
  • [1]

    Li S Z, Yu S, Zhao S J, et al. Tectonic transition and plate reconstructions of the east Asian continental margin[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 65-94.

    [2]

    Yan Q S, Metcalfe I, Shi X F, et al. Early Cretaceous granitic rocks from the southern Jiaodong Peninsula, eastern China: implications for lithospheric extension[J]. International Geology Review, 2019, 61(7): 821-838. doi: 10.1080/00206814.2018.1474388

    [3]

    Yan Q S, Shi X F, Yuan L, et al. Tectono-magmatic evolution of the Philippine Sea Plate: A review[J]. Geosystems and Geoenvironment, 2022, 1(2): 100018. doi: 10.1016/j.geogeo.2021.100018

    [4] 石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737-750 doi: 10.11867/j.issn.1001-8166.2013.07.0737

    SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 2013, 28(7): 737-750. doi: 10.11867/j.issn.1001-8166.2013.07.0737

    [5]

    Niu Y L, Liu Y, Xue Q Q, et al. Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic[J]. Science Bulletin, 2015, 60(18): 1598-1616. doi: 10.1007/s11434-015-0891-z

    [6]

    Xu Y, Yan Q S, Shi X F, et al. Discovery of Late Mesozoic volcanic seamounts at the ocean-continent transition zone in the Northeastern margin of South China Sea and its tectonic implication[J]. Gondwana Research, 2022.doi: 10.1016/j.gr.2022.04.003.

    [7]

    Sharp W D, Clague D A. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion[J]. Science, 2006, 313(5791): 1281-1284. doi: 10.1126/science.1128489

    [8]

    Torsvik T H, Doubrovine P V, Steinberger B, et al. Pacific plate motion change caused the Hawaiian-Emperor Bend[J]. Nature Communications, 2017, 8(1): 15660. doi: 10.1038/ncomms15660

    [9]

    Karig D E. Origin and development of marginal basins in the western Pacific[J]. Journal of Geophysical Research, 1971, 76(11): 2542-2561. doi: 10.1029/JB076i011p02542

    [10]

    Stern R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3-1-3-38.

    [11]

    Hilde T W C, Lee C S. Origin and evolution of the West Philippine Basin: a new interpretation[J]. Tectonophysics, 1984, 102(1-4): 85-104. doi: 10.1016/0040-1951(84)90009-X

    [12] 李三忠, 索艳慧, 朱俊江, 等. 海沟系统研究的进展与前沿[J]. 中国科学: 地球科学, 2020, 50(12): 1874-1892 doi: 10.1360/SSTe-2019-0301

    LI Sanzhong, SUO Yanhui, ZHU Junjiang, et al. Advance and frontier of the research on trench system[J]. Scientia Sinica Terrae, 2020, 50(12): 1874-1892. doi: 10.1360/SSTe-2019-0301

    [13]

    Hickey‐Vargas R. Origin of the Indian Ocean‐type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large‐scale processes[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B9): 20963-20979. doi: 10.1029/98JB02052

    [14]

    Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431 doi: 10.1016/S1367-9120(01)00069-4

    [15]

    Yan Q S, Shi X F. Geological comparative studies of Japan arc system and Kyushu-Palau arc[J]. Acta Oceanologica Sinica, 2011, 30(4): 107-121. doi: 10.1007/s13131-011-0134-3

    [16]

    Seno T, Maruyama S. Paleogeographic reconstruction and origin of the Philippine Sea[J]. Tectonophysics, 1984, 102(1-4): 53-84. doi: 10.1016/0040-1951(84)90008-8

    [17]

    Okino K, Ohara Y, Kasuga S, et al. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins[J]. Geophysical Research Letters, 1999, 26(15): 2287-2290. doi: 10.1029/1999GL900537

    [18]

    Shervais J W, Reagan M, Haugen E, et al. Magmatic response to subduction initiation: Part 1. Fore‐arc basalts of the Izu‐Bonin arc from IODP expedition 352[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(1): 314-338. doi: 10.1029/2018GC007731

    [19] 吴时国, 范建柯, 董冬冬. 论菲律宾海板块大地构造分区[J]. 地质科学, 2013, 48(3): 677-692 doi: 10.3969/j.issn.0563-5020.2013.03.008

    WU Shiguo, FAN Jianke, DONG Dongdong. Discussion on the tectonic division of the Philippine Sea Plate[J]. Chinese Journal of Geology, 2013, 48(3): 677-692. doi: 10.3969/j.issn.0563-5020.2013.03.008

    [20]

    Engebretson D C, Cox A, Gordon R G. Relative motions between oceanic and continental plates in the Pacific basin[M]. Geological Society of America, 1985: 1-60.

    [21]

    Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200Ma[J]. Earth-Science Reviews, 2012, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002

    [22]

    Nakanishi M, Tamaki K, Kobayashi K. A new Mesozoic isochron chart of the northwestern Pacific Ocean: Paleomagnetic and tectonic implications[J]. Geophysical Research Letters, 1992, 19(7): 693-696. doi: 10.1029/92GL00022

    [23]

    Flower M F J, Chung S L, Lo C H, et al. Mantle Dynamics and Plate Interactions in East Asia. Washington: American Geophysical Union, 1998: 67-88.

    [24]

    Jolivet L, Faccenna C, Becker T, et al. Mantle flow and deforming continents: From India‐Asia convergence to Pacific subduction[J]. Tectonics, 2018, 37(9): 2887-2914. doi: 10.1029/2018TC005036

    [25]

    Hall R, Ali J R, Anderson C D, et al. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics, 1995, 251(1-4): 229-250. doi: 10.1016/0040-1951(95)00038-0

    [26]

    Weissel J K, Anderson R N. Is there a Caroline plate?[J]. Earth and Planetary Science Letters, 1978, 41(2): 143-158. doi: 10.1016/0012-821X(78)90004-3

    [27]

    Hegarty K A, Weissel J K. Complexities in the development of the Caroline Plate region, western equatorial Pacific[J]. The Ocean Basins and Margins: The Pacific Ocean. Boston: Springer, 1988: 277-301.

    [28]

    Altis S. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis[J]. Tectonophysics, 1999, 313(3): 271-292. doi: 10.1016/S0040-1951(99)00204-8

    [29]

    Bird P. An updated digital model of plate boundaries[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3): 1027.

    [30]

    Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04006.

    [31]

    Bracey D R. Reconnaissance geophysical survey of the Caroline Basin[J]. Geological Society of America Bulletin, 1975, 86(6): 775-784. doi: 10.1130/0016-7606(1975)86<775:RGSOTC>2.0.CO;2

    [32]

    Bracey D R, Andrews J E. Western Caroline Ridge: relic island arc?[J]. Marine Geophysical Researches, 1974, 2(2): 111-125. doi: 10.1007/BF00340029

    [33]

    Gaina C, Müller D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins[J]. Earth-Science Reviews, 2007, 83(3-4): 177-203. doi: 10.1016/j.earscirev.2007.04.004

    [34]

    Keating B H, Mattey D P, Helsley C E, et al. Evidence for a hot spot origin of the Caroline Islands[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B12): 9937-9948. doi: 10.1029/JB089iB12p09937

    [35]

    Zhang Z Y, Dong D D, Sun W D, et al. Investigation of an oceanic plateau formation and rifting initiation model implied by the Caroline Ridge on the Caroline Plate, western Pacific[J]. International Geology Review, 2021, 63(2): 193-207. doi: 10.1080/00206814.2019.1707126

    [36]

    Hill K C, Hegarty K A. New tectonic framework for PNG and the Caroline plate: implications for cessation of spreading in back-arc basins[C]//Pacific Rim 87. International Congress on the Geology, Structure, Mineralisation and Economics of Pacific Rim. Parkville: Australasian Inst. Mining Metallurgy, 1987: 179-182.

    [37]

    Fujiwara T, Tamura C, Nishizawa A, et al. Morphology and tectonics of the Yap Trench[J]. Marine Geophysical Researches, 2000, 21(1): 69-86.

    [38]

    Lee S M. Deformation from the convergence of oceanic lithosphere into Yap trench and its implications for early-stage subduction[J]. Journal of Geodynamics, 2004, 37(1): 83-102. doi: 10.1016/j.jog.2003.10.003

    [39]

    Dong D D, Zhang Z Y, Bai Y L, et al. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction[J]. Tectonophysics, 2018, 722: 410-421. doi: 10.1016/j.tecto.2017.11.030

    [40] 李三忠, 曹现志, 王光增, 等. 太平洋板块中—新生代构造演化及板块重建[J]. 地质力学学报, 2019, 25(5): 642-677 doi: 10.12090/j.issn.1006-6616.2019.25.05.060

    LI Sanzhong, CAO Xianzhi, WANG Guangzeng, et al. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 2019, 25(5): 642-677. doi: 10.12090/j.issn.1006-6616.2019.25.05.060

    [41]

    Zhang G L, Zhang J, Wang S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau[J]. Chemical Geology, 2020, 540: 119566. doi: 10.1016/j.chemgeo.2020.119566

    [42]

    Ohara Y, Fujioka K, Ishizuka O, et al. Peridotites and volcanics from the Yap arc system: implications for tectonics of the southern Philippine Sea Plate[J]. Chemical Geology, 2002, 189(1-2): 35-53. doi: 10.1016/S0009-2541(02)00062-1

    [43] 瞿洪宝, 郑彦鹏, 刘晨光, 等. 晚始新世以来雅浦海沟-岛弧构造演化模式[J]. 海洋科学进展, 2017, 35(2): 249-257 doi: 10.3969/j.issn.1671-6647.2017.02.009

    QU Hongbao, ZHENG Yanpeng, LI Chenguang, et al. Model of tectonic evolution for Yap Trench-Arc Since Late Eocene[J]. Advances in Marine Science, 2017, 35(2): 249-257. doi: 10.3969/j.issn.1671-6647.2017.02.009

    [44]

    Yang Y M, Wu S G, Gao J W, et al. Geology of the Yap Trench: new observations from a transect near 10 N from manned submersible Jiaolong[J]. International Geology Review, 2018, 60(16): 1941-1953. doi: 10.1080/00206814.2017.1394226

    [45] 张志毅, 韩喜彬, 许冬. 雅浦–马里亚纳海沟连接处地貌特征研究[J]. 海洋学报, 2022, 44(11): 63-76

    ZHANG Zhiyi, HAN Xibin, XU Dong. Geomorphological characteristics of the junction Yap Trench and Mariana Trench[J]. Haiyang Xuebao, 2022, 44(11): 63-76.

    [46]

    Kinoshita M, Kasumi Y. Heat flow measurements in the Yap Trench area[J]. Preliminary report of Hakuho-maru Cruise KH87-3: Tokyo, The Ocean Research Institute, University of Tokyo, 1989: 136-143.

    [47]

    Sato T, Kasahara J, Katao H, et al. Seismic observations at the Yap Islands and the northern Yap Trench[J]. Tectonophysics, 1997, 271(3-4): 285-294. doi: 10.1016/S0040-1951(96)00251-X

    [48]

    Crawford A J, Beccaluva L, Serri G, et al. Petrology, geochemistry and tectonic implications of volcanics dredged from the intersection of the Yap and Mariana trenches[J]. Earth and Planetary Science Letters, 1986, 80(3-4): 265-280. doi: 10.1016/0012-821X(86)90110-X

    [49]

    Hawkins J, Batiza R. Metamorphic rocks of the Yap arc-trench system[J]. Earth and Planetary Science Letters, 1977, 37(2): 216-229. doi: 10.1016/0012-821X(77)90166-2

    [50]

    McCabe R, Uyeda S. Hypothetical model for the bending of the Mariana Arc[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington, DC, USA: American Geophysical Union, 1983: 281-293.

    [51] 董冬冬, 张广旭, 钱进, 等. 西太平洋雅浦俯冲带的地貌及地层结构特征[J]. 海洋地质与第四纪地质, 2017, 37(1): 23-29 doi: 10.16562/j.cnki.0256-1492.2017.01.003

    DONG Dongdong, ZHANG Guangxu, QIAN Jin, et al. Geomorphology and Stratigraphic framework of the Yap subduction zone, Western Pacific[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 23-39. doi: 10.16562/j.cnki.0256-1492.2017.01.003

    [52]

    Beccaluva L, Macciotta G, Savelli C, et al. Geochemistry and K/Ar ages of volcanics dredged in the Philippine Sea (Mariana, Yap, and Palau trenches and Parece Vela Basin)[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington DC: American Geophysical Union, 1980: 247-268.

    [53]

    Beccaluva L, Serri G, Dostal J. Geochemistry of volcanic rocks from the Mariana, Yap and Palau trenches bearing on the tectono-magmatic evolution of the Mariana trench-arc-backarc system[J]. Developments in Geotectonics, 1986, 21: 481-508.

    [54]

    Shiraki K. Metamorphic basement rocks of Yap Islands, western Pacific: Possible oceanic crust beneath an island arc[J]. Earth and Planetary Science Letters, 1971, 13(1): 167-174. doi: 10.1016/0012-821X(71)90120-8

    [55]

    Matsuda J I, Zashu S, Ozima M. Sr isotopic studies of volcanic rocks from island arcs in the western Pacific[J]. Tectonophysics, 1977, 37(1-3): 141-151. doi: 10.1016/0040-1951(77)90044-0

    [56]

    Zhang J, Zhang G L. Geochemical and chronological evidence for collision of proto-Yap arc/Caroline plateau and rejuvenated plate subduction at Yap trench[J]. Lithos, 2020, 370-371: 105616. doi: 10.1016/j.lithos.2020.105616

    [57]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [58]

    Niu Y L, O'Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 2209.

    [59]

    Yuan L, Yan Q S. Source lithology and magmatic processes recorded in the mineral of basalts from the Parece Vela Basin[J]. Acta Geologica Sinica‐English Edition, 2022, 96(6): 1991-2006. doi: 10.1111/1755-6724.14937

    [60]

    Perfit M R, Fornari D J. Mineralogy and geochemistry of volcanic and plutonic rocks from the boundaries of the Caroline plate: Tectonic implications[J]. Tectonophysics, 1982, 87(1-4): 279-313. doi: 10.1016/0040-1951(82)90230-X

    [61]

    Hawkins J W, Castillo P R. Early history of the Izu–Bonin–Mariana arc system: evidence from Belau and the Palau Trench[J]. Island Arc, 1998, 7(3): 559-578. doi: 10.1111/j.1440-1738.1998.00210.x

    [62]

    Hawkins J W, Ishizuka O. Petrologic evolution of Palau, a nascent island arc[J]. Island Arc, 2009, 18(4): 599-641. doi: 10.1111/j.1440-1738.2009.00683.x

    [63]

    Fornari D J, Weissel J K, Perfit M R, et al. Petrochemistry of the Sorol and Ayu Troughs: implications for crustal accretion at the northern and western boundaries of the Caroline Plate[J]. Earth and Planetary Science Letters, 1979, 45(1): 1-15. doi: 10.1016/0012-821X(79)90102-X

    [64]

    Kumagai H, Kaneoka I, Ishii T. The active period of the Ayu Trough estimated from K-Ar ages: The southeastern spreading center of Philippine Sea Plate[J]. Geochemical Journal, 1996, 30(2): 81-87. doi: 10.2343/geochemj.30.81

    [65]

    Park S H, Lee S M, Arculus R J. Geochemistry of basalt from the Ayu Trough, equatorial western Pacific[J]. Earth and Planetary Science Letters, 2006, 248(3-4): 700-714. doi: 10.1016/j.jpgl.2006.06.021

    [66]

    Haston R, Fuller M, Schmidtke E. Paleomagnetic results from Palau, West Caroline Islands: a constraint on Philippine Sea plate motion[J]. Geology, 1988, 16(7): 654-657. doi: 10.1130/0091-7613(1988)016<0654:PRFPWC>2.3.CO;2

    [67]

    Haston R B, Fuller M. Paleomagnetic data from the Philippine Sea plate and their tectonic significance[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6073-6098. doi: 10.1029/90JB02700

    [68]

    Kobayashi K, Fujioka K, Fujiwara T, et al. Why is the Palau Trench so deep? Deep-sea trench without plate convergence[J]. Proceedings of the Japan Academy, Series B, 1997, 73(6): 89-94. doi: 10.2183/pjab.73.89

    [69]

    Fujiwara T, Tamaki K, Fujimoto H, et al. Morphological studies of the Ayu trough, Philippine sea–Caroline plate boundary[J]. Geophysical Research Letters, 1995, 22(2): 109-112. doi: 10.1029/94GL02719

    [70]

    Cosca M, Arculus R, Pearce J, et al. 40Ar/39Ar and K–Ar geochronological age constraints for the inception and early evolution of the Izu–Bonin–Mariana arc system[J]. Island Arc, 1998, 7(3): 579-595. doi: 10.1111/j.1440-1738.1998.00211.x

    [71]

    Meijer A, Reagan M, Ellis H, et al. Chronology of volcanic events in the eastern Philippine Sea[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington DC: American Geophysical Union, 1983: 349-359.

    [72]

    Mason A. Military geology of the Palau Islands, Caroline Islands[J]. Rep. Intel. Div. Off. Engineer HQ, US Army (rear), 1956, 285.

    [73]

    Ishiwatari A, Yanagida Y, Li Y B, et al. Dredge petrology of the boninite‐and adakite‐bearing Hahajima Seamount of the Ogasawara (Bonin) forearc: An ophiolite or a serpentinite seamount?[J]. Island Arc, 2006, 15(1): 102-118. doi: 10.1111/j.1440-1738.2006.00512.x

    [74]

    Hong J K, Lee S M. Reflection seismology in the southern Ayu Trough, a slow-spreading divergent boundary[J]. Ocean and Polar Research, 2002, 24(3): 189-196. doi: 10.4217/OPR.2002.24.3.189

    [75]

    Macdonald K C. Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone[J]. Annual Review of Earth and Planetary Sciences, 1982, 10(1): 155-190. doi: 10.1146/annurev.ea.10.050182.001103

    [76]

    Lee S M, Kim S S. Vector magnetic analysis within the southern Ayu Trough, equatorial western Pacific[J]. Geophysical Journal International, 2004, 156(2): 213-221. doi: 10.1111/j.1365-246X.2003.02125.x

    [77]

    Zhang Z, Li S Z, Wang G Z, et al. Plate boundary processes of the Caroline Plate[J]. Science China Earth Sciences, 2022, 65(8): 1554-1567. doi: 10.1007/s11430-021-9919-6

    [78]

    Hickey-Vargas R. Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc and basin magmas of the Philippine tectonic plate[J]. Earth and Planetary Science Letters, 1991, 107(2): 290-304. doi: 10.1016/0012-821X(91)90077-U

    [79]

    Mrozowski C L, Hayes D E. The evolution of the Parece Vela basin, eastern Philippine Sea[J]. Earth and Planetary Science Letters, 1979, 46(1): 49-67. doi: 10.1016/0012-821X(79)90065-7

    [80] 俞恂, 陈立辉. 弧后盆地玄武岩的成分变化及其成因[J]. 岩石学报, 2020, 36(7): 1953-1972 doi: 10.18654/1000-0569/2020.07.02

    YU Xun, CHEN Lihui. Geochemical variation of back-arc Basin basalt and its genesis[J]. Acta Petrologica Sinica, 2020, 36(7): 1953-1972. doi: 10.18654/1000-0569/2020.07.02

    [81] 鄢全树, 袁龙, 石学法. 帕里西维拉海盆岩浆-构造过程及钻探建议[J]. 海洋地质与第四纪地质, 2022, 42(5): 103-109 doi: 10.16562/j.cnki.0256-1492.2022062003

    YAN Quanshu, YUAN Long, SHI Xuefa. Magmatism and tectonic evolution of the Parece Vela Basin and the drilling proposal[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 103-109. doi: 10.16562/j.cnki.0256-1492.2022062003

    [82]

    Okino K, Ohara Y, Fujiwara T, et al. Tectonics of the southern tip of the Parece Vela Basin, Philippine Sea Plate[J]. Tectonophysics, 2009, 466(3-4): 213-228. doi: 10.1016/j.tecto.2007.11.017

    [83]

    Nisbet E G, Pearce J A. Clinopyroxene composition in mafic lavas from different tectonic settings[J]. Contributions to Mineralogy and Petrology, 1977, 63(2): 149-160. doi: 10.1007/BF00398776

    [84]

    Weissel J K, Karner G D. Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B10): 13919-13950. doi: 10.1029/JB094iB10p13919

    [85]

    Heezen BC, Fischer AG, Boyce RE, et al. Initial reports of the deep sea drilling project, 57[M]. Washington DC: US Government Printing Office, 1971, 6: 493-537.

    [86]

    Yan S S, Yan Q S, Shi X F, et al. The dynamics of the Sorol Trough magmatic system: Insights from bulk‐rock chemistry and mineral geochemistry of basaltic rocks[J]. Geological Journal, 2022, 57(10): 4074-4089. doi: 10.1002/gj.4529

    [87]

    Ridley W I, Rhodes J M, REID A M, et al. Basalts from leg 6 of the deep-sea drilling project[J]. Journal of Petrology, 1974, 15(1): 140-159. doi: 10.1093/petrology/15.1.140

    [88]

    Hegarty K A, Weissel J K, Hayes D E. Convergence at the Caroline-Pacific plate boundary: collision and subduction[M]// Hayes K A. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington DC: American Geophysical Union, 1983: 326-348.

    [89]

    Seton M, Müller R D, Zahirovic S, et al. A global data set of present‐day oceanic crustal age and seafloor spreading parameters[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(10): e2020GC009214.

    [90] 鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应[J]. 海洋学报, 2014, 36(5): 107-123

    YAN Quanshu, SHI Xuefa. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone[J]. Acta Oceanologica Sinica, 2014, 36(5): 107-123.

    [91]

    Tetreault J L, Buiter S J H. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8): B08403.

    [92]

    Barazangi M, Isacks B L. Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America[J]. Geology, 1976, 4(11): 686-692. doi: 10.1130/0091-7613(1976)4<686:SDOEAS>2.0.CO;2

    [93]

    Van Hunen J, Van Den BERG A P, Vlaar N J. On the role of subducting oceanic plateaus in the development of shallow flat subduction[J]. Tectonophysics, 2002, 352(3-4): 317-333. doi: 10.1016/S0040-1951(02)00263-9

    [94]

    Jackson M G, Price A A, Blichert-Toft J, et al. Geochemistry of lavas from the Caroline hotspot, Micronesia: Evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He[J]. Chemical Geology, 2017, 455: 385-400. doi: 10.1016/j.chemgeo.2016.10.038

    [95]

    Fan J K, Zheng H, Zhao D P, et al. Seismic structure of the Caroline Plateau‐Yap Trench collision zone[J]. Geophysical Research Letters, 2022, 49(6): e2022GL098017.

    [96]

    Campbell I H. The mantle’s chemical structure: insights from the melting products of mantle plumes[M]//Jackson I. The Earth’s Mantle: Composition, Structure, and Evolution. Cambridge: Cambridge University Press, 1998: 259-310.

    [97] 张吉, 张国良. 雅浦岛弧变质岩成因和构造环境研究[J]. 海洋地质与第四纪地质, 2018, 38(4): 71-82 doi: 10.16562/j.cnki.0256-1492.2018.04.006

    Zhang J, Zhang G L. Origin and tectonic setting of metamorphic rocks in the Yap Island Arc[J]. Marine Geology and Quaternary Geology, 2018, 38(4): 71-82. doi: 10.16562/j.cnki.0256-1492.2018.04.006

    [98]

    Kobayashi K. Origin of the Palau and Yap trench-arc systems[J]. Geophysical Journal International, 2004, 157(3): 1303-1315. doi: 10.1111/j.1365-246X.2003.02244.x

    [99]

    Ishizuka O, Hickey-Vargas R, Arculus R J, et al. Age of Izu–Bonin–Mariana arc basement[J]. Earth and Planetary Science Letters, 2018, 481: 80-90. doi: 10.1016/j.jpgl.2017.10.023

图(5)  /  表(1)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  65
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 修回日期:  2023-06-25
  • 录用日期:  2023-06-25
  • 网络出版日期:  2023-10-29
  • 刊出日期:  2023-10-27

目录

/

返回文章
返回