逆冲-走滑作用叠加的复合构造变形机制砂箱模拟研究:以张家口-蓬莱断裂带渤海段为例

吕春晓, 郭玲莉, 陶圩, 张家轩, 周琦杰, 张京京, 陈欣, 王光增, 李三忠

吕春晓,郭玲莉,陶圩,等. 逆冲-走滑作用叠加的复合构造变形机制砂箱模拟研究:以张家口-蓬莱断裂带渤海段为例[J]. 海洋地质与第四纪地质,2024,44(4): 108-122. DOI: 10.16562/j.cnki.0256-1492.2023032802
引用本文: 吕春晓,郭玲莉,陶圩,等. 逆冲-走滑作用叠加的复合构造变形机制砂箱模拟研究:以张家口-蓬莱断裂带渤海段为例[J]. 海洋地质与第四纪地质,2024,44(4): 108-122. DOI: 10.16562/j.cnki.0256-1492.2023032802
LV Chunxiao,GUO Lingli,TAO Wei,et al. Sandbox modeling on the reworking of strike-slip faulting from pre-existing thrusts: A case study of Zhangjiakou-Penglai Fault Zone in Bohai area[J]. Marine Geology & Quaternary Geology,2024,44(4):108-122. DOI: 10.16562/j.cnki.0256-1492.2023032802
Citation: LV Chunxiao,GUO Lingli,TAO Wei,et al. Sandbox modeling on the reworking of strike-slip faulting from pre-existing thrusts: A case study of Zhangjiakou-Penglai Fault Zone in Bohai area[J]. Marine Geology & Quaternary Geology,2024,44(4):108-122. DOI: 10.16562/j.cnki.0256-1492.2023032802

逆冲-走滑作用叠加的复合构造变形机制砂箱模拟研究:以张家口-蓬莱断裂带渤海段为例

基金项目: 崂山实验室科技创新项目“基于数字孪生的全球深时地貌重塑与资源环境预测”(LSKJ202204400);国家自然科学基金创新研究群体项目“海底古地貌动态重建”(42121005);国家自然科学基金重大计划重点支持项目(92058211);国家自然科学基金面上项目“走滑派生构造差异演化主控因素的砂箱实验研究:以郯庐断裂渤海-山东段张扭派生的构造为例”(42072235);李三忠教授泰山学者攀登计划项目(tspd20210305);邢会林教授泰山学者特聘专家计划项目(tstp20221112)
详细信息
    作者简介:

    吕春晓 (1996—),女,硕士研究生,主要从事构造地质学研究,E-mail:lcx5975@stu.ouc.edu.cn

    通讯作者:

    郭玲莉 (1985—),女,副教授,从事构造地质学及海洋地质学研究,E-mail: guolingli@ouc.edu.cn

  • 中图分类号: P736.1

Sandbox modeling on the reworking of strike-slip faulting from pre-existing thrusts: A case study of Zhangjiakou-Penglai Fault Zone in Bohai area

  • 摘要:

    逆冲构造体受走滑作用影响形成新的复合构造体系在自然界中较为常见。新生代以来张家口-蓬莱断裂带渤海段的左旋走滑运动,改造了渤海湾盆地内燕山期挤压运动形成的逆冲构造。北西向的张家口-蓬莱断裂带渤海段受新生代以来太平洋板块俯冲驱动,与共轭的北东向郯庐断裂带共同控制了渤海湾盆地现今的构造样式,同时又是地震多发区和油气聚集区。本文通过砂箱模拟实验,研究不同走滑速率不同基底强度条件下,逆冲推覆构造受走滑作用改造的复合构造演化机制。实验结果显示,在挤压背景下,实验模型中先产生一系列的逆冲断层,形成逆冲推覆构造和冲起构造;叠加走滑作用后,走滑断层切割先存逆冲断层,具有明显的负花状构造特征。剖面上看,走滑速率越大,则断层数量越多,断层断距更大,花状构造更为复杂。在局部塑性基底模型中,无叠加的走滑构造区可形成断陷。结合研究区构造演化过程,模拟结果与张家口-蓬莱断裂带渤海段构造演化过程具有一定相似性,尤其沙北断裂、沙东断裂内部花状构造发育最为典型。走滑断裂对构造圈闭具有一定的控制作用,本模型可对逆冲叠加走滑复合区域的构造演变及动力机制分析提供参考和借鉴。

    Abstract:

    It is common in nature for thrust structures to form new composite structural systems under the influence of strike-slip faulting. Since the Cenozoic, the sinistral strike-slip movement of the Zhangjiakou-Penglai fault zone in Bohai basin altered the pre-existed Yanshanian thrust structure. Driven by the subduction of the Pacific Plate since the Cenozoic, the NW-trending Zhangjiakou-Penglai fault zone fault zone co-worked with the conjugate NE-trending Tancheng-Lujiang fault zone and established the modern tectonic pattern of the Bohai Bay Basin. This area is an earthquake-prone area and also an oil-gas accumulation area. To understand the mechanism of strike-slip faulting from pre-existing thrusts, we conducted sandbox modeling with various strike-slip rates and basement rigidity setting. Results show a series of thrust faults forming thrust imbricate fan and pop-up structures under compression. After the superposition of thrusting by strike-slip motion, some strike-slip faults were formed and they cut through pre-existing thrusts, presenting a flower structure. Seen in the cross-section, the larger the strike-slip rate, the more faults, the larger the fault spacing, and the more complex flower structure. In the local plastic basement model, the strike-slip zone without superposition can form a fault depression. Combined with the tectonic evolution process of the study area, the modeled results showed a similar pattern of the tectonic pattern of the Zhangjiakou-Penglai fault zone, especially those of the flower structures in the Shabei fault and Shadong fault. Therefore, the strike-slip fault played a role in controlling the tectonic trap. This study provided a reference for understanding the dynamic mechanism of tectonic superposition of strike-slip faulting and thrusting.

  • 图  1   渤海湾盆地的地质单元及张家口-蓬莱断裂带位置[33, 55]

    Figure  1.   Geological units in the Bohai Bay Basin showing the location of the regional fault zones [33, 55]

    图  2   模型装置简化图

    a:实验装置示意图,b:挤压模型,c:走滑模型。

    Figure  2.   Simplified view of the model setup

    a: Experimental device, b: compression model, c: strike-slip faulting model.

    图  3   Exp.1逆冲阶段平面演化图

    左:模型的平面视图,右:模型的体应变图($\varepsilon_{v}$)。

    Figure  3.   Plain view of the deformation in compression stage of Exp.1

    Left: view of the models; right: view of volumetric strain ($\varepsilon_{v}$).

    图  4   Exp.1逆冲阶段的剖面演化特征

    区域位置见图3;a-e:对应缩短量的模型侧面图;F1-F4、f1-f2为发育的主控断层。

    Figure  4.   Section view of the deformation in compression stage of Exp.1

    The blue square area in Fig. 3 is the observation area of the DSCM system. a-e: section views corresponding to different shortenings; F1–F4, f1 and f2 are the main controlling faults.

    图  5   Exp.1走滑阶段平面演化图

    左图:模型的平面演化图,其中A为逆冲受走滑改造叠加区,B为无叠加的走滑构造区;中间图:体应变图($\varepsilon_{v}$);右图:最大剪应变图($ {\tau }_{n}) $。

    Figure  5.   Plain view of the deformation evolution in late-stage strike-slip faulting of Exp.1, showing the thrusts superposed by strike-slip faults (A) and by the strike-slip structures without superposition (B)

    Left: surface view of the models, middle: volumetric strain ($\varepsilon_{v}$), right: maximum shear strain ($ {\tau }_{n}) $.

    图  6   Exp.1的平面图和剖面图

    左:平面断层视图标示Exp.1的剖面位置,右:模型剖面图。

    Figure  6.   Views of the Exp.1

    Left: plain view showing the position of the Exp.1 profiles, Right: section views showing serial deformation and fault interpretation for 12 profiles of Exp.1.

    图  7   Exp.2的平面图和剖面图

    左图:平面断层视图标示Exp.2的剖面位置,右图:模型剖面图。

    Figure  7.   Views of Exp.2

    Left: plain view showing the position of the Exp.2 profiles, Right: section views showing serial deformation and fault interpretation for 8 profiles of Exp.2

    图  8   Exp.4的平面图和剖面图

    左图:平面断层视图标示Exp.4的剖面位置,右图:模型剖面图。

    Figure  8.   Views of Exp.4

    Left: plain view showing the position of the Exp.4 profiles, Right: section views showing serial deformation and fault interpretation for 8 profiles of Exp.4

    图  9   Exp.3的平面图和剖面图

    左图:平面断层视图标示Exp.3的剖面位置,右图:模型剖面图。

    Figure  9.   Views of Exp.3

    Left: plain view showing the position of the Exp.3 profiles, Right: section views showing serial deformation and fault interpretation for 12 profiles of Exp.3

    图  10   研究区平面演化模式图及剖面

    a-c:研究区平面演化模式图,研究区位置见图1;d:渤海湾盆地渤中坳陷沙垒田凸起东北部的地震剖面位置;e-g:地震剖面图显示了研究区域的走滑断层模式,据文献[42, 78]修改。

    Figure  10.   Plain view of tectonic evolution of the study area

    a-c: Plain view of tectonic evolution of the study area (study area in Fig.1); d: the locationof the northeastern area of the Shaleitian Uplift in the Bozhong Depression of the Bohai Bay Basin, showing the location of the seismic profile; e-g: seismic profiles showing the strike-slip fault patterns of the study area (modified from references [42, 78]) .

    表  1   基于逆冲叠加走滑的砂箱模拟实验参数

    Table  1   Parameters of the sandbox modeling based on early-stage compression superposition late-stage strike-slip faulting

    实验编号模型尺寸
    /mm
    总缩短量
    /mm
    挤压速率
    /(mm·s−1)
    加载方向总走滑位移量/mm走滑速率/(mm·s−1)局部塑性基底
    Exp.11100×500×721600.01双向1200.02
    Exp.21100×500×721600.01单向600.01
    Exp.31100×500×721600.01双向1200.02150mm×300mm×1mm的弹性硅胶
    Exp.41050×500×721700.04双向1200.02150mm×300mm× 5mm的弹性硅胶
    注:单向加载的走滑速率为电机速率,双向加载的走滑速率为电机速率的两倍。
    下载: 导出CSV
  • [1]

    Faill R T. A geologic history of the north-central Appalachians, part 3. The Alleghany Orogeny [J]. American Journal of Science, 1998, 298(2): 131-179. doi: 10.2475/ajs.298.2.131

    [2]

    Mount V S. Structural style of the Appalachian Plateau fold belt, north-central Pennsylvania [J]. Journal of Structural Geology, 2014, 69: 284-303. doi: 10.1016/j.jsg.2014.04.005

    [3]

    Barclay J E, Smith D G. Western Canada foreland basin oil and gas plays[M]//In Macqueen R W, Leckie D A. Foreland Basins and Fold Belts. American Association of Petroleum Geologists, 1992, 55: 81-105.

    [4]

    Roest W R, Srivastava S P. Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the present [J]. Geology, 1991, 19(6): 613-616. doi: 10.1130/0091-7613(1991)019<0613:KOTPBB>2.3.CO;2

    [5]

    Anastasio D J, Teletzke A L, Kodama K P, et al. Geologic evolution of the Peña flexure, Southwestern Pyrenees mountain front, Spain [J]. Journal of Structural Geology, 2020, 131: 103969.

    [6]

    Velaj T, Davison I, Serjani A, et al. Thrust tectonics and the role of evaporites in the Ionian Zone of the Albanides [J]. AAPG Bulletin, 1999, 83(9): 1408-1425.

    [7]

    Velaj T. New ideas on the tectonic of the Kurveleshi anticlinal belt in Albania, and the perspective for exploration in its subthrust [J]. Petroleum, 2015, 1(4): 269-288. doi: 10.1016/j.petlm.2015.10.013

    [8]

    Jadoon I A K, Frisch W. Hinterland-vergent tectonic wedge below the Riwat Thrust, Himalayan foreland, Pakistan: Implications for hydrocarbon exploration [J]. AAPG Bulletin, 1997, 81(3): 1320-1336.

    [9]

    Davis D M, Engelder T. The role of salt in fold-and-thrust belts [J]. Tectonophysics, 1985, 119(1-4): 67-88. doi: 10.1016/0040-1951(85)90033-2

    [10] 卢景美, 闵才政, 于圣杰, 等. 巴布亚盆地构造研究新认识及勘探意义[J]. 中国海上油气, 2022, 34(3):20-27 doi: 10.11935/j.issn.1673-1506.2022.03.003

    LU Jingmei, MIN Caizheng, YU Shengjie, et al. New understanding and exploration significance of Papuan Basin structural research [J]. China Offshore Oil and Gas, 2022, 34(3): 20-27. doi: 10.11935/j.issn.1673-1506.2022.03.003

    [11]

    Beydoun Z R, Hughes Clarke M W, Stoneley R. Petroleum in the Zagros Basin: a late Tertiary foreland basin overprinted onto the outer edge of a vast hydrocarbon-rich Paleozoic-Mesozoic passive-margin shelf[M]//In Macqueen R W, Leckie D A. Foreland Basins and Fold Belts. American Association of Petroleum Geologists, 1992, 55, 309-339.

    [12]

    Sarkarinejad K, Ghanbarian M A. The Zagros hinterland fold-and-thrust belt in-sequence thrusting, Iran [J]. Journal of Asian Earth Sciences, 2014, 85: 66-79. doi: 10.1016/j.jseaes.2014.01.017

    [13]

    Dunn J F, Hartshorn K G, Hartshorn P W. Structural styles and hydrocarbon potential of the sub-Andean thrust belt of southern Bolivia[M]//In Tankard A J, Suárez Soruco R, Welsink H J. Petroleum Basins of South America. American Association of Petroleum Geologists, 1995: 523-543.

    [14] 赵淑娟, 李三忠, 刘鑫, 等. 准噶尔盆地东缘构造: 阿尔泰与北天山造山带交接转换的陆内过程[J]. 中国科学:地球科学, 2014, 44(10):2130-2141 doi: 10.1360/zd-2014-44-10-2130

    ZHAO Shujuan, LI Sanzhong, LIU Xin, et al. Structures of the eastern Junggar Basin: intracontinental transition between the North Tianshan and the Altai Orogens [J]. Scientia Sinica (Terrae), 2014, 44(10): 2130-2141. doi: 10.1360/zd-2014-44-10-2130

    [15] 郑和荣, 胡宗全, 云露, 等. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用[J]. 地学前缘, 2022, 29(6):224-238

    ZHENG Herong, HU Zongquan, YUN Lu, et al. Strike-slip faults in marine cratonic basins in China: Development characteristics and controls on hydrocarbon accumulation [J]. Earth Science Frontiers, 2022, 29(6): 224-238.

    [16]

    Huang L, Zhang C L, Pu R H, et al. Tectonic evolution of the thrust-Nappe belt in the southwestern Ordos Basin (China): new constraints from exploration seismic data [J]. Geotectonics, 2020, 54(2): 229-239. doi: 10.1134/S0016852120020053

    [17] 邓尚, 刘雨晴, 刘军, 等. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例[J]. 大地构造与成矿学, 2021, 45(6):1111-1126

    DENG Shang, LIU Yuqing, LIU Jun, et al. Structural styles and evolution models of intracratonic strike-slip faults and the implications for reservoir exploration and appraisal: a case study of the Shunbei Area, Tarim Basin [J]. Geotectonica et Metallogenia, 2021, 45(6): 1111-1126.

    [18]

    Song Z H, Tang L J, Liu C. Variations of thick-skinned deformation along Tumuxiuke thrust in Bachu uplift of Tarim Basin, northwestern China [J]. Journal of Structural Geology, 2021, 144: 104277. doi: 10.1016/j.jsg.2021.104277

    [19] 李新琦, 李慧勇, 于海波, 等. 张家口—蓬莱断裂带渤海段断裂特征及其与油气差异成藏的关系[J]. 油气地质与采收率, 2016, 23(5):16-22,49

    LI Xinqi, LI Huiyong, YU Haibo, et al. Fault characteristics and its relationship with differential hydrocarbon accumulation of Zhangjiakou-Penglai Fault in Bohai region [J]. Petroleum Geology and Recovery Efficiency, 2016, 23(5): 16-22,49.

    [20] 彭靖淞, 韦阿娟, 孙哲, 等. 张家口—蓬莱断裂渤海沙垒田凸起东北段盆岭再造及其对油气成藏的影响[J]. 石油勘探与开发, 2018, 45(2):200-211 doi: 10.11698/PED.2018.02.03

    PENG Jingsong, WEI Ajuan, SUN Zhe, et al. Sinistral strike slip of the Zhangjiakou-Penglai Fault and its control on hydrocarbon accumulation in the northeast of Shaleitian Bulge, Bohai Bay Basin, East China [J]. Petroleum Exploration and Development, 2018, 45(2): 200-211. doi: 10.11698/PED.2018.02.03

    [21] 徐长贵. 渤海走滑转换带及其对大中型油气田形成的控制作用[J]. 地球科学, 2016, 41(9):1548-1560

    XU Changgui. Strike-slip transfer zone and its control on formation of medium and large-sized oilfields in Bohai Sea Area [J]. Earth Science, 2016, 41(9): 1548-1560.

    [22] 董月霞, 汪泽成, 郑红菊, 等. 走滑断层作用对南堡凹陷油气成藏的控制[J]. 石油勘探与开发, 2008, 35(4):424-430 doi: 10.1016/S1876-3804(08)60090-7

    DONG Yuexia, WANG Zecheng, ZHENG Hongju, et al. Control of strike-slip faulting on reservoir formation of oil and gas in Nanpu Sag [J]. Petroleum Exploration and Development, 2008, 35(4): 424-430. doi: 10.1016/S1876-3804(08)60090-7

    [23] 徐杰, 王若柏, 王春华, 等. 华北东南部介休-新乡-溧阳北西向新生地震构造带[J]. 地震地质, 1997, 19(2):125-134

    XU Jie, WANG Ruobai, WANG Chunhua, et al. Jiexiu Xinxiang Liyang northwest trending newly generated seismotectonic zone in the southeast area of North China [J]. Seismology and Geology, 1997, 19(2): 125-134.

    [24] 朱德瑜, 王珊玲, 许桂林, 等. 河北省张家口断裂带的空间展布和第四纪活动特征[J]. 地壳构造与地壳应力文集, 2000(13):74-78

    ZHU Deyu, WANG Shanling, XU Geilin, et al. Spatial distribution and its quaternary activities of the Zhangjiakou Fault, Hebei Province [J]. Bulletin of the Institute of Crustal Dynamics, 2000(13): 74-78.

    [25] 赖晓玲, 张先康, 孙译. 张北地震区壳幔边界复杂性特征及其构造意义[J]. 地震学报, 2006, 28(3):230-237

    LAI Xiaoling, ZHANG Xiankang, SUN Yi. The complexity feature of crust-mantle boundary in Zhangbei seismic region and its tectonic implication [J]. Acta Seismologica Sinica, 2006, 28(3): 230-237.

    [26] 尤惠川, 邵翠茹, 杨歧焱, 等. 张家口断裂发现第四纪晚期活动证据[J]. 震灾防御技术, 2008, 3(4):474-477

    YOU Huichuan, SHAO Cuiru, YANG Qiyan, et al. Some active evidences in late Quaternary of Zhangjiakou Fault [J]. Technology for Earthquake Disaster Prevention, 2008, 3(4): 474-477.

    [27] 冉勇康, 陈立春, 徐锡伟. 北京西北活动构造定量资料与未来强震地点的讨论[J]. 地震学报, 2001, 23(5):502-513

    RAN Yongkang, CHEN Lichun, XU Xiwei. Quantitative data about active tectonics and possible locations of strong earthquakes in the future in northwest Beijing [J]. Acta Seismologica Sinica, 2001, 23(5): 502-513.

    [28] 李西双, 刘保华, 华清峰, 等. 张家口-蓬莱断裂带渤海段晚第四纪活动特征[J]. 海洋科学进展, 2009, 27(3):332-341 doi: 10.3969/j.issn.1671-6647.2009.03.006

    LI Xishuang, LIU Baohua, HUA Qingfeng, et al. Characters of the Zhangjiakou-Penglai fault zone activity in the Bohai sea since late quaternary [J]. Advances in Marine Science, 2009, 27(3): 332-341. doi: 10.3969/j.issn.1671-6647.2009.03.006

    [29] 徐杰, 宋长青, 楚全芝. 张家口-蓬莱断裂带地震构造特征的初步探讨[J]. 地震地质, 1998, 20(2):146-154

    XU Jie, SONG Changqing, CHU Quanzhi. Preliminary study on the seismotectonic characters of the Zhangjiakou-Penglai Fault Zone [J]. Seismology and Geology, 1998, 20(2): 146-154.

    [30] 朱光, 徐佑德, 刘国生, 等. 郯庐断裂带中-南段走滑构造特征与变形规律[J]. 地质科学, 2006, 41(2):226-241,255

    ZHU Guang, XU Youde, LIU Guosheng, et al. Structural and deformational characteristics of strike-slippings along the middle-southern sector of the Tan-Lu Fault Zone [J]. Chinese Journal of Geology, 2006, 41(2): 226-241,255.

    [31] 李三忠, 索艳慧, 戴黎明, 等. 渤海湾盆地形成与华北克拉通破坏[J]. 地学前缘, 2010, 17(4):64-89

    LI Sanzhong, SUO Yanhui, DAI Liming, et al. Development of the Bohai Bay Basin and destruction of the North China Craton [J]. Earth Science Frontiers, 2010, 17(4): 64-89.

    [32] 索艳慧, 李三忠, 刘鑫, 等. 中国东部NWW向活动断裂带构造特征: 以张家口-蓬莱断裂带为例[J]. 岩石学报, 2013, 29(3):953-966

    SUO Yanhui, LI Sanzhong, LIU Xin, et al. Structural characteristics of NWW-trending active fault zones in East China: a case study of the Zhangjiakou-Penglai Fault Zone [J]. Acta Petrologica Sinica, 2013, 29(3): 953-966.

    [33]

    Wang G Z, Li S Z, Suo Y H, et al. Deep-shallow coupling response of the Cenozoic Bohai Bay Basin to plate interactions around the Eurasian Plate [J]. Gondwana Research, 2022, 102: 180-199. doi: 10.1016/j.gr.2020.09.002

    [34] 王志才, 邓起东, 晁洪太, 等. 山东半岛北部近海海域北西向蓬莱-威海断裂带的声波探测[J]. 地球物理学报, 2006, 49(4):1092-1101

    WANG Zhicai, DENG Qidong, CHAO Hongtai, et al. Shallow-depth sonic reflection profiling studies on the active Penglai-Weihai fault zone offshore of the northern Shandong peninsula [J]. Chinese Journal of Geophysics, 2006, 49(4): 1092-1101.

    [35]

    Peng J S, Wei A J, Sun Z, et al. Sinistral strike slip of the Zhangjiakou-Penglai Fault and its control on hydrocarbon accumulation in the northeast of Shaleitian Bulge, Bohai Bay Basin, East China [J]. Petroleum Exploration and Development, 2018, 45(2): 215-226. doi: 10.1016/S1876-3804(18)30025-9

    [36]

    Fu Z X, Liu J, Liu G P. On the long-term seismic hazard analysis in the Zhangjiakou–Penglai seismotectonic zone, China [J]. Tectonophysics, 2004, 390(1-4): 75-83. doi: 10.1016/j.tecto.2004.03.021

    [37]

    Dai L M, Li Q W, Li S Z, et al. Numerical modelling of stress fields and earthquakes jointly controlled by NE-and NW-trending fault zones in the Central North China Block [J]. Journal of Asian Earth Sciences, 2015, 114: 28-40. doi: 10.1016/j.jseaes.2015.05.021

    [38]

    Su S J, Li Y, Chen Z, et al. Geochemistry of geothermal fluids in the Zhangjiakou-Penglai Fault Zone, North China: implications for structural segmentation [J]. Journal of Asian Earth Sciences, 2022, 230: 105218. doi: 10.1016/j.jseaes.2022.105218

    [39]

    Guo L L, Li S Z, Suo Y H, et al. Experimental study and active tectonics on the Zhangjiakou-Penglai fault zone across North China [J]. Journal of Asian Earth Sciences, 2015, 114: 18-27. doi: 10.1016/j.jseaes.2015.03.045

    [40] 高战武, 徐杰, 宋长青, 等. 张家口—蓬莱断裂带的分段特征[J]. 华北地震科学, 2001, 19(1):35-42,54

    GAO Zhanwu, XU Jie, SONG Changqing, et al. The segmental character of Zhangjiakou-Penglai Fault [J]. North China Earthquake Sciences, 2001, 19(1): 35-42,54.

    [41] 张先康, 杨玉春, 赵平, 等. 唐山滦县震区的三维地震透射研究: 中、上地壳速度层析成像[J]. 地球物理学报, 1994, 37(6):759-766

    ZHANG Xiankang, YANG Yuchun, ZHAO Ping, et al. Three-dimensional seismic transmission experiment in the Luanxian earthquake region of North China: tomographic determination of the upper and middle crust structure [J]. Chinese Journal of Geophysics, 1994, 37(6): 759-766.

    [42]

    Ma X, Liu J Y, Lin C S, et al. Cenozoic evolution of Zhangjiakou-Penglai Fault Zone in the western offshore Bohai Bay Basin: Evidence from 3D seismic data [J]. Geological Journal, 2021, 56(4): 2192-2211. doi: 10.1002/gj.4046

    [43]

    Li S Z, Zhao G C, Dai L M, et al. Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton [J]. Journal of Asian Earth Sciences, 2012, 47: 64-79. doi: 10.1016/j.jseaes.2011.06.008

    [44]

    Zhang Y, Dilek Y, Zhang F Q, et al. Structural architecture and tectonic evolution of the Cenozoic Zhanhua Sag along the Tan-Lu Fault Zone in the eastern North China: reconciliation of tectonic models on the origin of the Bohai Bay Basin [J]. Tectonophysics, 2020, 775: 228303. doi: 10.1016/j.tecto.2019.228303

    [45]

    Liang J T, Wang H L, Bai Y, et al. Cenozoic tectonic evolution of the Bohai Bay Basin and its coupling relationship with Pacific Plate subduction [J]. Journal of Asian Earth Sciences, 2016, 127: 257-266. doi: 10.1016/j.jseaes.2016.06.012

    [46]

    Qi J F, Yang Q. Cenozoic structural deformation and dynamic processes of the Bohai Bay basin province, China [J]. Marine and Petroleum Geology, 2010, 27(4): 757-771. doi: 10.1016/j.marpetgeo.2009.08.012

    [47]

    Liu L H, Hao T Y, Lü C C, et al. Crustal structure of Bohai Sea and adjacent area (North China) from two onshore–offshore wide-angle seismic survey lines [J]. Journal of Asian Earth Sciences, 2015, 98: 457-469. doi: 10.1016/j.jseaes.2014.11.034

    [48] 宗国洪, 施央申, 王秉海, 等. 济阳盆地中生代构造特征与油气[J]. 地质论评, 1998, 44(3):289-294

    ZONG Guohong, SHI Yangshen, WANG Binghai, et al. Mesozoic structures and their relations to hydrocarbon traps in the Jiyang Basin [J]. Geological Review, 1998, 44(3): 289-294.

    [49] 李理, 钟大赉. 渤海湾盆地济阳坳陷碎屑锆石裂变径迹年龄记录的构造抬升事件[J]. 岩石学报, 2018, 34(2):483-494

    LI Li, ZHONG Dalai. Tectonic uplift recorded by detrital zircon fission track age in Jiyang depression, Bohai Bay Basin [J]. Acta Petrologica Sinica, 2018, 34(2): 483-494.

    [50] 周琦杰, 刘永江, 王德英, 等. 渤海湾中部中、新生代构造演化与潜山的形成[J]. 地学前缘, 2022, 29(5):147-160

    ZHOU Qijie, LIU Yongjiang, WANG Deying, et al. Mesozoic-Cenozoic tectonic evolution and buried hill formation in central Bohai Bay [J]. Earth Science Frontiers, 2022, 29(5): 147-160.

    [51]

    Northrup C J, Royden L H, Burchfiel B C. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia [J]. Geology, 1995, 23(8): 719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2

    [52]

    Liu S F, Gurnis M, Ma P F, et al. Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma [J]. Earth-Science Reviews, 2017, 175: 114-142. doi: 10.1016/j.earscirev.2017.10.012

    [53]

    Liu X, Zhao D P, Li S Z, et al. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications [J]. Earth and Planetary Science Letters, 2017, 464: 166-174. doi: 10.1016/j.jpgl.2017.02.024

    [54] 武子涵, 于海波, 张参, 等. 渤海湾盆地中部428构造带近S-N向走滑断裂的形成时期及其在中生代期间的调节转换作用[J]. 海洋地质与第四纪地质, 2023, 43(1):71-81

    WU Zihan, YU Haibo, ZHANG Can, et al. Formation period of S-N strike-slip fault in the 428 tectonic belt in the central of Bohai Bay Basin and its adjustment and transformation in the Mesozoic [J]. Marine Geology & Quaternary Geology, 2023, 43(1): 71-81.

    [55]

    Li S Z, Zhao G C, Dai L M, et al. Cenozoic faulting of the Bohai Bay Basin and its bearing on the destruction of the eastern North China Craton [J]. Journal of Asian Earth Sciences, 2012, 47: 80-93. doi: 10.1016/j.jseaes.2011.06.011

    [56]

    Naylor M A, Mandl G, Supesteijn C H K. Fault geometries in basement-induced wrench faulting under different initial stress states [J]. Journal of Structural Geology, 1986, 8(7): 737-752. doi: 10.1016/0191-8141(86)90022-2

    [57]

    McClay K R. Extensional fault systems in sedimentary basins: a review of analogue model studies [J]. Marine and Petroleum Geology, 1990, 7(3): 206-233. doi: 10.1016/0264-8172(90)90001-W

    [58]

    Dooley T P. Geometries and kinematics of strike-slip fault systems: insights from physical modelling and field studies[D]. Doctor Dissertation of Royal Holloway, University of London, 1994.

    [59]

    Marques F O, Nogueira C R. Normal fault inversion by orthogonal compression: sandbox experiments with weak faults [J]. Journal of Structural Geology, 2008, 30(6): 761-766. doi: 10.1016/j.jsg.2008.02.015

    [60]

    Dooley T P, Schreurs G. Analogue modelling of intraplate strike-slip tectonics: a review and new experimental results [J]. Tectonophysics, 2012, 574-575: 1-71. doi: 10.1016/j.tecto.2012.05.030

    [61]

    Panien M, Schreurs G, Pfiffner A. Mechanical behaviour of granular materials used in analogue modelling: insights from grain characterisation, ring-shear tests and analogue experiments [J]. Journal of Structural Geology, 2006, 28(9): 1710-1724. doi: 10.1016/j.jsg.2006.05.004

    [62]

    Hubbert M K. Theory of scale models as applied to the study of geologic structures [J]. GSA Bulletin, 1937, 48(10): 1459-1520. doi: 10.1130/GSAB-48-1459

    [63]

    McClay K R. Deformation mechanics in analogue models of extensional fault systems [J]. Geological Society, London, Special Publications, 1990, 54(1): 445-453. doi: 10.1144/GSL.SP.1990.054.01.40

    [64] 李艳友, 漆家福, 周赏. 走滑构造差异变形特征及其主控因素分析: 基于砂箱模拟实验[J]. 石油实验地质, 2017, 39(5):711-715

    LI Yanyou, QI Jiafu, ZHOU Shang. Differential deformation and its main controls on strike-slip structures: evidence from sandbox experiments [J]. Petroleum Geology & Experiment, 2017, 39(5): 711-715.

    [65] 李伟, 平明明, 周东红, 等. 辽东湾坳陷新生代主干断裂走滑量的估算及其地质意义[J]. 大地构造与成矿学, 2018, 42(3):445-454

    LI Wei, PING Mingming, ZHOU Donghong, et al. Estimation of the Cenozoic strike-slip displacement for major faults in the Liaodong bay depression and its geological significance [J]. Geotectonica et Metallogenia, 2018, 42(3): 445-454.

    [66] 黄飞鹏. 阿尔金断裂带构造地貌特征与中东段上新世以来的走滑速率[D]. 中国地震局地质研究所博士学位论文, 2022

    HUANG Feipeng. A study on tectonic geomorphology characteristics and strike-slip rate since Pliocene in the middle and eastern section of the Altyn Tagh fault zone[D]. Doctor Dissertation of Institute of Geology, China Earthquake Administrator, 2022.

    [67]

    Zhou P, Goodson K E. Subpixel displacement and deformation gradient measurement using digital image/speckle correlation [J]. Optical Engineering, 2001, 40(8): 1613-1620. doi: 10.1117/1.1387992

    [68]

    Ma S P, Xu X H, Zhao Y H. The Geo-DSCM system and its application to the deformation measurement of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(Suppl 1): 292-297.

    [69]

    Dixon J M, Tirrul R. Centrifuge modelling of fold-thrust structures in a tripartite stratigraphic succession [J]. Journal of Structural Geology, 1991, 13(1): 3-20. doi: 10.1016/0191-8141(91)90097-3

    [70]

    Engebretson D C, Cox A, Gordon R G. Relative motions between oceanic and continental plates in the Pacific basin[M]//In Engebretson D C, Cox A, Gordon R G. Relative Motions Between Oceanic and Continental Plates in the Pacific Basin. Geological Society of America, 1985: 1-60.

    [71] 胡贺伟, 李慧勇, 肖述光, 等. 沙垒田凸起西段走滑断裂发育特征及其对油气的控制作用[J]. 海洋地质前沿, 2022, 38(3):36-44

    HU Hewei, LI Huiyong, XIAO Shuguang, et al. Characteristics of strike-slip faults on the western Shaleitian Uplift and their control over oil and gas accumulation [J]. Marine Geology Frontiers, 2022, 38(3): 36-44.

    [72] 石文龙, 张志强, 彭文绪, 等. 渤海西部沙垒田凸起东段构造演化特征与油气成藏[J]. 石油与天然气地质, 2013, 34(2):242-247

    SHI Wenlong, ZHANG Zhiqiang, PENG Wenxu, et al. Tectonic evolution and hydrocarbon accumulation in the east part of Shaleitian Sailent, western Bohai Sea [J]. Oil & Gas Geology, 2013, 34(2): 242-247.

    [73] 张正涛, 林畅松, 李慧勇, 等. 渤海湾盆地沙垒田地区新近纪走滑断裂发育特征及其对油气富集的控制作用[J]. 石油与天然气地质, 2019, 40(4):778-788

    ZHANG Zhengtao, LIN Changsong, LI Huiyong, et al. Characteristics of the Neogene strike-slip faults and their controls on hydrocarbon accumulation in Shaleitian uplift, Bohai Bay Basin [J]. Oil & Gas Geology, 2019, 40(4): 778-788.

    [74] 彭文绪, 张志强, 姜利群, 等. 渤海西部沙垒田凸起区走滑断层演化及其对油气的控制作用[J]. 石油学报, 2012, 33(2):204-212

    PENG Wenxu, ZHANG Zhiqiang, JIANG Liqun, et al. Evolution of strike-slip faults in the Shaleitian bulge of the western Bohai offshore and their control on hydrocarbons [J]. Acta Petrolei Sinica, 2012, 33(2): 204-212.

    [75] 李三忠, 刘鑫, 索艳慧, 等. 华北克拉通东部地块和大别-苏鲁造山带印支期褶皱-逆冲构造与动力学背景[J]. 岩石学报, 2009, 25(9):2031-2049

    LI Sanzhong, LIU Xin, SUO Yanhui, et al. Triassic folding and thrusting in the Eastern Block of the North China Craton and the Dabie-Sulu orogen and its geodynamics [J]. Acta Petrologica Sinica, 2009, 25(9): 2031-2049.

    [76] 索艳慧, 李三忠, 曹现志, 等. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘, 2017, 24(4):249-267

    SUO Yanhui, LIU Xin, CAO Xianzhi, et al. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate [J]. Earth Science Frontiers, 2017, 24(4): 249-267.

    [77] 王宇, 徐春强, 郭玲莉, 等. 渤海湾盆地石臼坨东428潜山构造成因解析: 华北克拉通破坏的深度揭示[J]. 大地构造与成矿学, 2021, 45(1):219-228

    WANG Yu, XU Chunqiang, GUO Lingli, et al. Structural analysis of Shijiutuo east 428 buried hill in Bohai bay basin: implications on destruction of the North China craton [J]. Geotectonica et Metallogenia, 2021, 45(1): 219-228.

    [78] 叶涛, 牛成民, 王德英, 等. 渤海西南海域中生代构造演化、动力学机制及其对华北克拉通破坏的启示[J]. 地学前缘, 2022, 29(5):133-146

    YE Tao, NIU Chengmin, WANG Deying, et al. Mesozoic tectonic evolution of the southwestern Bohai Sea and its dynamic mechanism: Implications for the destruction of the North China Craton [J]. Earth Science Frontiers, 2022, 29(5): 133-146.

图(10)  /  表(1)
计量
  • 文章访问数:  431
  • HTML全文浏览量:  84
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-05-20
  • 网络出版日期:  2023-07-02
  • 刊出日期:  2024-08-25

目录

    /

    返回文章
    返回