细菌藿四醇异构体BHT-x:海洋水体缺氧的新型代用指标

朱犇, 董良

朱犇,董良. 细菌藿四醇异构体BHT-x:海洋水体缺氧的新型代用指标[J]. 海洋地质与第四纪地质,2024,44(6): 152-162. DOI: 10.16562/j.cnki.0256-1492.2023032501
引用本文: 朱犇,董良. 细菌藿四醇异构体BHT-x:海洋水体缺氧的新型代用指标[J]. 海洋地质与第四纪地质,2024,44(6): 152-162. DOI: 10.16562/j.cnki.0256-1492.2023032501
ZHU Ben,DONG Liang. The application progress of BHT-x as biomarker to marine hypoxia[J]. Marine Geology & Quaternary Geology,2024,44(6):152-162. DOI: 10.16562/j.cnki.0256-1492.2023032501
Citation: ZHU Ben,DONG Liang. The application progress of BHT-x as biomarker to marine hypoxia[J]. Marine Geology & Quaternary Geology,2024,44(6):152-162. DOI: 10.16562/j.cnki.0256-1492.2023032501

细菌藿四醇异构体BHT-x:海洋水体缺氧的新型代用指标

基金项目: 国家“十三五”重点研发计划“近海脱氧环境微型生物代谢对碳源汇的影响”(2020YFA06083002);国家自然科学基金“海洋奇古菌完整极性细胞膜脂GDGTs与氨氧化速率关系研究”(42072332)
详细信息
    作者简介:

    朱犇(1997—),男,硕士研究生,主要从事海洋地球化学研究,E-mail:zhuben9@sjtu.edu.cn

    通讯作者:

    董良(1986—),男,博士,副研究员,主要从事生物有机地球化学研究,E-mail:dongliang@sjtu.edu.cn

  • 中图分类号: P736.4

The application progress of BHT-x as biomarker to marine hypoxia

  • 摘要:

    海洋缺氧是当前人类面临的重大生态环境问题之一,对海洋生物、元素循环及全球气候变化都产生了重要影响。细菌藿多醇(bacteriohopanepolyols,BHPs)是一种来源于细菌细胞膜的五环三萜类化合物,也是地质体中普遍存在的藿烷类化合物的生物前体物质,作为生物标志物被广泛应用于示踪陆源有机质,指示好氧甲烷氧化等生态过程。本文聚焦于BHPs中重要的一种脂类化合物—BHT-x(细菌藿四醇异构体之一),总结了其生物来源及验证过程,并简介了目前BHT-x ratio作为水体缺氧代用指标在海洋环境中的应用研究。利用BHT-x来重建长时间尺度的缺氧现象,可以帮助我们更好地认识海洋缺氧过程,为我们预测和应对未来海洋环境的变化提供更多的理论依据。

    Abstract:

    Marine hypoxia is one of the major ecological and environmental problems at present as it has important impact on marine organisms, chemical element cycle, and global climate. Bacteriohopanepolyols (BHPs) are a group of pentacyclic triterpenoid compound derived from bacterial cell membranes, and also the biological precursor of hopane that are ubiquitous in geological records. BHPs have been widely used as a biomarker in tracing terrestrial organic matter and indicating aerobic methane oxidation. By focusing on bacteriohopanetetrol (BHT)-x, an important member of BHPs that could be used to indicate anaerobic ammonia oxidation and water hypoxia, we reviewed its biological origination and the verification, and briefly introduced the application of the BHT-x ratio (the ratio of BHT-x over total BHT) as a proxy of water column hypoxia for different marine environments, including samples of suspended particles and sediments. The application of BHT-x could help us reconstruct marine hypoxia evolution, and predict and protect the modern marine environment with richer theoretical evidence.

  • 图  1   应用于海洋环境的4类常见BHPs的化学结构(BHT-x立体结构尚未确定)[36, 41]

    Figure  1.   Structures of common four BHPs used in marine environments (the stereochemical structure of BHT-x remains to be revealed)[36, 41]

    图  2   地中海腐泥样品BHT、BHT-x超高效液相色谱-质谱分析[58]

    Figure  2.   UHPLC-MS analysis of BHT and BHT-x in the Mediterranean sapropel[58]

    图  3   BHT-x在世界大洋悬浮颗粒物和沉积物中的现有应用分布

    蓝点代表悬浮颗粒物,红色方块代表沉积物。

    Figure  3.   Distribution of application cases of BHT-x in suspended particulate matter and sediments in the world oceans

    Blue dots represent suspended particulate matter and red squares represent sediments.

    图  4   BHT-x ratio与相关指标比较以示踪氧化还原条件变化、厌氧氨氧化过程

    a图数据来自文献[75],b图数据来自文献[44]。

    Figure  4.   Comparison of the BHT-x ratio with other relevant indicators in tracing redox condition and anammox

    Data in (a) and (b) are collected from references [75] and [44], respectively.

    表  1   不同缺氧环境下的BHT-x ratio

    Table  1   BHT-x ratio in different hypoxic environments

    海域 缺氧海区水体DO浓度/μM 样品类型 BHT-x ratio 来源文献
    东海 <62.5 表层沉积物 0.02~0.46 [23]
    东海 <62.5 沉积柱 0.20~0.76 [80]
    东海 <62.5 沉积柱 0.03~0.50 [80]
    本格拉上升流区 约20~40 悬浮颗粒物 0.04~0.55 [27]
    阿拉伯海 <25 表层沉积物 0.22~0.30 [57]
    黑海 约8~90 悬浮颗粒物 0.01~0.21 [79]
    下载: 导出CSV
  • [1]

    Breitburg D, Levin L A, Oschlies A, et al. Declining oxygen in the global ocean and coastal waters[J]. Science, 2018, 359(6371): eaam7240. doi: 10.1126/science.aam7240

    [2]

    Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5891): 926-929. doi: 10.1126/science.1156401

    [3]

    Middelburg J J, Levin L A. Coastal hypoxia and sediment biogeochemistry[J]. Biogeosciences, 2009, 6(7): 1273-1293. doi: 10.5194/bg-6-1273-2009

    [4]

    Conley D J, Carstensen J, Aigars J, et al. Hypoxia is increasing in the coastal zone of the Baltic Sea[J]. Environmental Science & Technology, 2011, 45(16): 6777-6783.

    [5]

    Diaz R J. Overview of hypoxia around the world[J]. Journal of Environmental Quality, 2001, 30(2): 275-281. doi: 10.2134/jeq2001.302275x

    [6]

    Levin L A, Ekau W, Gooday A J, et al. Effects of natural and human-induced hypoxia on coastal benthos[J]. Biogeosciences, 2009, 6(10): 2063-2098. doi: 10.5194/bg-6-2063-2009

    [7]

    Penn J L, Deutsch C, Payne J L, et al. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction[J]. Science, 2018, 362(6419): eaat1327. doi: 10.1126/science.aat1327

    [8]

    Pohl A, Ridgwell A, Stockey R G, et al. Continental configuration controls ocean oxygenation during the Phanerozoic[J]. Nature, 2022, 608(7923): 523-527. doi: 10.1038/s41586-022-05018-z

    [9]

    Breitburg D L, Hondorp D W, Davias L A, et al. Hypoxia, nitrogen, and fisheries: integrating effects across local and global landscapes[J]. Annual Review of Marine Science, 2009, 1: 329-349. doi: 10.1146/annurev.marine.010908.163754

    [10]

    Fennel K, Testa J M. Biogeochemical controls on coastal hypoxia[J]. Annual Review of Marine Science, 2019, 11: 105-130. doi: 10.1146/annurev-marine-010318-095138

    [11]

    Keeling R F, Körtzinger A, Gruber N. Ocean deoxygenation in a warming world[J]. Annual Review of Marine Science, 2010, 2: 199-229. doi: 10.1146/annurev.marine.010908.163855

    [12]

    Pitcher G C, Aguirre-Velarde A, Breitburg D, et al. System controls of coastal and open ocean oxygen depletion[J]. Progress in Oceanography, 2021, 197: 102613. doi: 10.1016/j.pocean.2021.102613

    [13]

    Rabalais N N, Díaz R J, Levin L A, et al. Dynamics and distribution of natural and human-caused hypoxia[J]. Biogeosciences, 2010, 7(2): 585-619. doi: 10.5194/bg-7-585-2010

    [14]

    Algeo T J, Owens J D, Morford J L, et al. New developments in geochemical proxies for paleoceanographic research[J]. Geochimica et Cosmochimica Acta, 2020, 287: 1-7. doi: 10.1016/j.gca.2020.07.010

    [15]

    Fujisaki W, Sawaki Y, Yamamoto S, et al. Tracking the redox history and nitrogen cycle in the pelagic Panthalassic deep ocean in the Middle Triassic to Early Jurassic: insights from redox-sensitive elements and nitrogen isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 397-420. doi: 10.1016/j.palaeo.2016.01.039

    [16]

    Reckhardt A, Beck M, Greskowiak J, et al. Cycling of redox-sensitive elements in a sandy subterranean estuary of the southern North Sea[J]. Marine Chemistry, 2017, 188: 6-17. doi: 10.1016/j.marchem.2016.11.003

    [17]

    Guo X Y, Xu B C, Burnett W C, et al. A potential proxy for seasonal hypoxia: LA-ICP-MS Mn/Ca ratios in benthic foraminifera from the Yangtze River Estuary[J]. Geochimica et Cosmochimica Acta, 2019, 245: 290-303. doi: 10.1016/j.gca.2018.11.007

    [18]

    Goswami V, Singh S K, Bhushan R, et al. Spatial distribution of Mo and δ98Mo in waters of the northern Indian Ocean: role of suboxia and particle-water interactions on lighter Mo in the Bay of Bengal[J]. Geochimica et Cosmochimica Acta, 2022, 324: 174-193. doi: 10.1016/j.gca.2022.03.010

    [19]

    Nelsen T A, Blackwelder P, Hood T, et al. Time-based correlation of biogenic, lithogenic and authigenic sediment components with anthropogenic inputs in the Gulf of Mexico NECOP study area[J]. Estuaries, 1994, 17(4): 873-885. doi: 10.2307/1352755

    [20]

    Emmings J F, Poulton S W, Walsh J, et al. Pyrite mega-analysis reveals modes of anoxia through geological time[J]. Science Advances, 2022, 8(11): eabj5687. doi: 10.1126/sciadv.abj5687

    [21]

    Raven M R, Fike D A, Bradley A S, et al. Paired organic matter and pyrite δ34S records reveal mechanisms of carbon, sulfur, and iron cycle disruption during Ocean Anoxic Event 2[J]. Earth and Planetary Science Letters, 2019, 512: 27-38. doi: 10.1016/j.jpgl.2019.01.048

    [22]

    Huang Y G, Chen Z Q, Algeo T J, et al. Two-stage marine anoxia and biotic response during the Permian–Triassic transition in Kashmir, northern India: pyrite framboid evidence[J]. Global and Planetary Change, 2019, 172: 124-139. doi: 10.1016/j.gloplacha.2018.10.002

    [23]

    Yin M L, Duan L Q, Song J M, et al. Bacteriohopanepolyols signature in sediments of the East China Sea and its indications for hypoxia and organic matter sources[J]. Organic Geochemistry, 2021, 158: 104268. doi: 10.1016/j.orggeochem.2021.104268

    [24]

    Li X X, Bianchi T S, Yang Z S, et al. Historical trends of hypoxia in Changjiang River estuary: applications of chemical biomarkers and microfossils[J]. Journal of Marine Systems, 2011, 86(3-4): 57-68. doi: 10.1016/j.jmarsys.2011.02.003

    [25]

    Zimmerman A R, Canuel E A. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition[J]. Marine Chemistry, 2000, 69(1-2): 117-137. doi: 10.1016/S0304-4203(99)00100-0

    [26]

    Elling F J, Hemingway J D, Kharbush J J, et al. Linking diatom-diazotroph symbioses to nitrogen cycle perturbations and deep-water anoxia: insights from Mediterranean sapropel events[J]. Earth and Planetary Science Letters, 2021, 571: 117110. doi: 10.1016/j.jpgl.2021.117110

    [27]

    van Kemenade Z R, Villanueva L, Hopmans E C, et al. Bacteriohopanetetrol-x: constraining its application as a lipid biomarker for marine anammox using the water column oxygen gradient of the Benguela upwelling system[J]. Biogeosciences, 2022, 19(1): 201-221. doi: 10.5194/bg-19-201-2022

    [28]

    Brinkmann I, Ni S, Schweizer M, et al. Foraminiferal Mn/Ca as bottom-water hypoxia proxy: an assessment of Nonionella stella in the Santa Barbara Basin, USA[J]. Paleoceanography and Paleoclimatology, 2021, 36(11): e2020PA004167.

    [29]

    Wang F F, Liu J, Qiu J D, et al. Historical evolution of hypoxia in the East China Sea off the Changjiang (Yangtze River) estuary for the last ~13, 000 years: evidence from the benthic foraminiferal community[J]. Continental Shelf Research, 2014, 90: 151-162. doi: 10.1016/j.csr.2014.02.013

    [30]

    Ren F H, Fan D D, Wu Y J, et al. The evolution of hypoxia off the Changjiang Estuary in the last 3000 years: evidence from benthic foraminifera and elemental geochemistry[J]. Marine Geology, 2019, 417: 106039. doi: 10.1016/j.margeo.2019.106039

    [31]

    Sen Gupta B K, Eugene Turner R, Rabalais N N. Seasonal oxygen depletion in continental-shelf waters of Louisiana: historical record of benthic foraminifers[J]. Geology, 1996, 24(3): 227-230. doi: 10.1130/0091-7613(1996)024<0227:SODICS>2.3.CO;2

    [32]

    van Dongen B E, Talbot H M, Schouten S, et al. Well preserved palaeogene and cretaceous biomarkers from the Kilwa area, Tanzania[J]. Organic Geochemistry, 2006, 37(5): 539-557. doi: 10.1016/j.orggeochem.2006.01.003

    [33]

    Rush D, Sinninghe Damsté J S, Poulton S W, et al. Anaerobic ammonium-oxidising bacteria: a biological source of the bacteriohopanetetrol stereoisomer in marine sediments[J]. Geochimica et Cosmochimica Acta, 2014, 140: 50-64. doi: 10.1016/j.gca.2014.05.014

    [34]

    Ourisson G, Albrecht P. Hopanoids. 1. Geohopanoids: the most abundant natural products on Earth?[J]. Accounts of Chemical Research, 1992, 25(9): 398-402. doi: 10.1021/ar00021a003

    [35]

    Ourisson G, Rohmer M. Hopanoids. 2. Biohopanoids: a novel class of bacterial lipids[J]. Accounts of Chemical Research, 1992, 25(9): 403-408. doi: 10.1021/ar00021a004

    [36]

    Kusch S, Rush D. Revisiting the precursors of the most abundant natural products on Earth: a look back at 30+ years of bacteriohopanepolyol (BHP) research and ahead to new frontiers[J]. Organic Geochemistry, 2022, 172: 104469. doi: 10.1016/j.orggeochem.2022.104469

    [37]

    Ourisson G, Rohmer M, Poralla K. Prokaryotic hopanoids and other polyterpenoid sterol surrogates[J]. Annual Review of Microbiology, 1987, 41: 301-333. doi: 10.1146/annurev.mi.41.100187.001505

    [38]

    Rohmer M, Bouvier-Nave P, Ourisson G. Distribution of hopanoid triterpenes in prokaryotes[J]. Microbiology, 1984, 130(5): 1137-1150. doi: 10.1099/00221287-130-5-1137

    [39]

    Sáenz J P, Sezgin E, Schwille P, et al. Functional convergence of hopanoids and sterols in membrane ordering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(35): 14236-14240.

    [40]

    Cooke M P, Talbot H M, Farrimond P. Bacterial populations recorded in bacteriohopanepolyol distributions in soils from Northern England[J]. Organic Geochemistry, 2008, 39(9): 1347-1358. doi: 10.1016/j.orggeochem.2008.05.003

    [41] 尹美玲, 段丽琴, 宋金明, 等. 藿类生物标志物及其对海洋碳氮循环过程的指示[J]. 中国环境科学, 2022, 42(8): 3890-3902 doi: 10.3969/j.issn.1000-6923.2022.08.048

    YIN Meiling, DUAN Liqin, SONG Jinming, et al. Hopanoids biomarkers and their indications in the marine carbon and nitrogen cycles[J]. China Environmental Science, 2022, 42(8): 3890-3902.] doi: 10.3969/j.issn.1000-6923.2022.08.048

    [42]

    Talbot H M, Farrimond P. Bacterial populations recorded in diverse sedimentary biohopanoid distributions[J]. Organic Geochemistry, 2007, 38(8): 1212-1225. doi: 10.1016/j.orggeochem.2007.04.006

    [43]

    Förster H J, Biemann K, Haigh W G, et al. The structure of novel C35 pentacyclic terpenes from Acetobacter xylinum[J]. Biochemical Journal, 1973, 135(1): 133-143. doi: 10.1042/bj1350133

    [44]

    Matys E D, Sepúlveda J, Pantoja S, et al. Bacteriohopanepolyols along redox gradients in the Humboldt Current System off northern Chile[J]. Geobiology, 2017, 15(6): 844-857. doi: 10.1111/gbi.12250

    [45]

    Talbot H M, Summons R E, Jahnke L L, et al. Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings[J]. Organic Geochemistry, 2008, 39(2): 232-263. doi: 10.1016/j.orggeochem.2007.08.006

    [46]

    Summons R E, Jahnke L L, Hope J M, et al. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis[J]. Nature, 1999, 400(6744): 554-557. doi: 10.1038/23005

    [47]

    Naafs B D A, Bianchini G, Monteiro F M, et al. The occurrence of 2-methylhopanoids in modern bacteria and the geological record[J]. Geobiology, 2022, 20(1): 41-59. doi: 10.1111/gbi.12465

    [48]

    Blumenberg M, Berndmeyer C, Moros M, et al. Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea[J]. Biogeosciences, 2013, 10(4): 2725-2735. doi: 10.5194/bg-10-2725-2013

    [49]

    Rush D, Villanueva L, van der Meer M T J, et al. Aerobic methanotrophy in North Sea sediment and Baltic Sea water column as revealed by bacteriohopanepolyol lipids and genomic approaches[C]//Proceedings of the 29th International Meeting on Organic Geochemistry. Gothenburg: European Association of Geoscientists & Engineers, 2019.

    [50]

    van Winden J F, Talbot H M, Kip N, et al. Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss[J]. Geochimica et Cosmochimica Acta, 2012, 77: 52-61. doi: 10.1016/j.gca.2011.10.026

    [51]

    Kusch S, Wakeham S G, Sepúlveda J. Diverse origins of “soil marker” bacteriohopanepolyols in marine oxygen deficient zones[J]. Organic Geochemistry, 2021, 151: 104150. doi: 10.1016/j.orggeochem.2020.104150

    [52]

    Zhu C, Talbot H M, Wagner T, et al. Intense aerobic methane oxidation in the Yangtze Estuary: a record from 35-aminobacteriohopanepolyols in surface sediments[J]. Organic Geochemistry, 2010, 41(9): 1056-1059. doi: 10.1016/j.orggeochem.2010.03.015

    [53]

    Zhu C, Talbot H M, Wagner T, et al. Distribution of hopanoids along a land to sea transect: implications for microbial ecology and the use of hopanoids in environmental studies[J]. Limnology and Oceanography, 2011, 56(5): 1850-1865. doi: 10.4319/lo.2011.56.5.1850

    [54]

    Cooke M P, Talbot H M, Wagner T. Tracking soil organic carbon transport to continental margin sediments using soil-specific hopanoid biomarkers: a case study from the Congo fan (ODP site 1075)[J]. Organic Geochemistry, 2008, 39(8): 965-971. doi: 10.1016/j.orggeochem.2008.03.009

    [55]

    Kusch S, Sepúlveda J, Wakeham S G. Origin of sedimentary BHPs along a mississippi river–gulf of mexico export transect: insights from spatial and density distributions[J]. Frontiers in Marine Science, 2019, 6: 729. doi: 10.3389/fmars.2019.00729

    [56]

    Schwartz-Narbonne R, Schaeffer P, Hopmans E C, et al. A unique bacteriohopanetetrol stereoisomer of marine anammox[J]. Organic Geochemistry, 2020, 143: 103994. doi: 10.1016/j.orggeochem.2020.103994

    [57]

    Sáenz J P, Wakeham S G, Eglinton T I, et al. New constraints on the provenance of hopanoids in the marine geologic record: bacteriohopanepolyols in marine suboxic and anoxic environments[J]. Organic Geochemistry, 2011, 42(11): 1351-1362. doi: 10.1016/j.orggeochem.2011.08.016

    [58]

    Rush D, Talbot H M, van der Meer M T J, et al. Biomarker evidence for the occurrence of anaerobic ammonium oxidation in the eastern Mediterranean Sea during Quaternary and Pliocene sapropel formation[J]. Biogeosciences, 2019, 16(12): 2467-2479. doi: 10.5194/bg-16-2467-2019

    [59]

    Sinninghe Damsté J S, Rijpstra W I C, Schouten S, et al. The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record[J]. Organic Geochemistry, 2004, 35(5): 561-566. doi: 10.1016/j.orggeochem.2004.01.013

    [60]

    Blumenberg M, Seifert R, Michaelis W. Aerobic methanotrophy in the oxic–anoxic transition zone of the Black Sea water column[J]. Organic Geochemistry, 2007, 38(1): 84-91. doi: 10.1016/j.orggeochem.2006.08.011

    [61]

    Talbot H M, Sidgwick F R, Bischoff J, et al. Analysis of non-derivatised bacteriohopanepolyols by ultrahigh-performance liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2016, 30(19): 2087-2098. doi: 10.1002/rcm.7696

    [62]

    Hopmans E C, Smit N T, Schwartz-Narbonne R, et al. Analysis of non-derivatized bacteriohopanepolyols using UHPLC-HRMS reveals great structural diversity in environmental lipid assemblages[J]. Organic Geochemistry, 2021, 160: 104285. doi: 10.1016/j.orggeochem.2021.104285

    [63]

    Lengger S K, Rush D, Mayser J P, et al. Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM)[J]. Global Biogeochemical Cycles, 2019, 33(12): 1715-1732. doi: 10.1029/2019GB006282

    [64]

    Rush D, Sinninghe Damsté J S. Lipids as paleomarkers to constrain the marine nitrogen cycle[J]. Environmental Microbiology, 2017, 19(6): 2119-2132. doi: 10.1111/1462-2920.13682

    [65] 尹美玲, 段丽琴, 宋金明, 等. 长江口邻近海域表层沉积物中的细菌藿多醇及对低氧区的响应判别[J]. 环境科学, 2021, 42(3): 1343-1353 doi: 10.13227/j.hjkx.202007244

    YIN Meiling, DUAN Liqin, SONG Jinming, et al. Response of bacteriohopanepolyols to hypoxic conditions in the surface sediments of the Yangtze Estuary and its adjacent areas[J]. Environmental Science, 2021, 42(3): 1343-1353.] doi: 10.13227/j.hjkx.202007244

    [66]

    Pitcher A, Villanueva L, Hopmans E C, et al. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone[J]. The ISME Journal, 2011, 5(12): 1896-1904. doi: 10.1038/ismej.2011.60

    [67]

    Blumenberg M, Mollenhauer G, Zabel M, et al. Decoupling of bio- and geohopanoids in sediments of the Benguela Upwelling System (BUS)[J]. Organic Geochemistry, 2010, 41(10): 1119-1129. doi: 10.1016/j.orggeochem.2010.06.005

    [68]

    Berndmeyer C, Thiel V, Schmale O, et al. Biomarkers for aerobic methanotrophy in the water column of the stratified Gotland Deep (Baltic Sea)[J]. Organic Geochemistry, 2013, 55: 103-111. doi: 10.1016/j.orggeochem.2012.11.010

    [69]

    Wakeham S G, Turich C, Schubotz F, et al. Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 63: 133-156. doi: 10.1016/j.dsr.2012.01.005

    [70]

    Jaeschke A, Ziegler M, Hopmans E C, et al. Molecular fossil evidence for anaerobic ammonium oxidation in the Arabian Sea over the last glacial cycle[J]. Paleoceanography, 2009, 24(2): PA2202.

    [71]

    Hemingway J D, Kusch S, Shah Walter S R, et al. A novel method to measure the 13C composition of intact bacteriohopanepolyols[J]. Organic Geochemistry, 2018, 123: 144-147. doi: 10.1016/j.orggeochem.2018.07.002

    [72]

    Talbot H M, Watson D F, Murrell J C, et al. Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry[J]. Journal of Chromatography A, 2001, 921(2): 175-185. doi: 10.1016/S0021-9673(01)00871-8

    [73]

    Talbot H M, Squier A H, Keely B J, et al. Atmospheric pressure chemical ionisation reversed-phase liquid chromatography/ion trap mass spectrometry of intact bacteriohopanepolyols[J]. Rapid Communications in Mass Spectrometry, 2003, 17(7): 728-737. doi: 10.1002/rcm.974

    [74]

    Talbot H M, Rohmer M, Farrimond P. Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(6): 880-892. doi: 10.1002/rcm.2911

    [75]

    Zindorf M, Rush D, Jaeger J, et al. Reconstructing oxygen deficiency in the glacial Gulf of Alaska: combining biomarkers and trace metals as paleo-redox proxies[J]. Chemical Geology, 2020, 558: 119864. doi: 10.1016/j.chemgeo.2020.119864

    [76]

    Kusch S, Wakeham S G, Dildar N, et al. Bacterial and archaeal lipids trace chemo(auto)trophy along the redoxcline in Vancouver Island fjords[J]. Geobiology, 2021, 19(5): 521-541. doi: 10.1111/gbi.12446

    [77]

    Berndmeyer C, Thiel V, Schmale O, et al. Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea)[J]. Biogeosciences, 2014, 11(23): 7009-7023. doi: 10.5194/bg-11-7009-2014

    [78]

    Kharbush J J, Ugalde J A, Hogle S L, et al. Composite bacterial hopanoids and their microbial producers across oxygen gradients in the water column of the California Current[J]. Applied and Environmental Microbiology, 2013, 79(23): 7491-7501. doi: 10.1128/AEM.02367-13

    [79]

    Kusch S, Wakeham S G, Sepúlveda J. Bacteriohopanepolyols across the Black Sea redoxcline trace diverse bacterial metabolisms[J]. Organic Geochemistry, 2022, 172: 104462. doi: 10.1016/j.orggeochem.2022.104462

    [80]

    Yin M L, Song J M, Duan L Q, et al. North-south differences in hypoxia and nitrogen cycle of the East China Sea over the last century indicated by sedimentary bacteriohopanepolyols[J]. Chemical Geology, 2023, 620: 121340. doi: 10.1016/j.chemgeo.2023.121340

图(4)  /  表(1)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  1
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 修回日期:  2023-04-06
  • 刊出日期:  2024-12-27

目录

    /

    返回文章
    返回