细菌藿四醇异构体BHT-x:海洋水体缺氧的新型代用指标

朱犇, 董良

朱犇,董良. 细菌藿四醇异构体BHT-x:海洋水体缺氧的新型代用指标[J]. 海洋地质与第四纪地质,2024,44(6): 152-162. DOI: 10.16562/j.cnki.0256-1492.2023032501
引用本文: 朱犇,董良. 细菌藿四醇异构体BHT-x:海洋水体缺氧的新型代用指标[J]. 海洋地质与第四纪地质,2024,44(6): 152-162. DOI: 10.16562/j.cnki.0256-1492.2023032501
ZHU Ben,DONG Liang. The application progress of BHT-x as biomarker to marine hypoxia[J]. Marine Geology & Quaternary Geology,2024,44(6):152-162. DOI: 10.16562/j.cnki.0256-1492.2023032501
Citation: ZHU Ben,DONG Liang. The application progress of BHT-x as biomarker to marine hypoxia[J]. Marine Geology & Quaternary Geology,2024,44(6):152-162. DOI: 10.16562/j.cnki.0256-1492.2023032501

细菌藿四醇异构体BHT-x:海洋水体缺氧的新型代用指标

基金项目: 国家“十三五”重点研发计划“近海脱氧环境微型生物代谢对碳源汇的影响”(2020YFA06083002);国家自然科学基金“海洋奇古菌完整极性细胞膜脂GDGTs与氨氧化速率关系研究”(42072332)
详细信息
    作者简介:

    朱犇(1997—),男,硕士研究生,主要从事海洋地球化学研究,E-mail:zhuben9@sjtu.edu.cn

    通讯作者:

    董良(1986—),男,博士,副研究员,主要从事生物有机地球化学研究,E-mail:dongliang@sjtu.edu.cn

  • 中图分类号: P736.4

The application progress of BHT-x as biomarker to marine hypoxia

  • 摘要:

    海洋缺氧是当前人类面临的重大生态环境问题之一,对海洋生物、元素循环及全球气候变化都产生了重要影响。细菌藿多醇(bacteriohopanepolyols,BHPs)是一种来源于细菌细胞膜的五环三萜类化合物,也是地质体中普遍存在的藿烷类化合物的生物前体物质,作为生物标志物被广泛应用于示踪陆源有机质,指示好氧甲烷氧化等生态过程。本文聚焦于BHPs中重要的一种脂类化合物—BHT-x(细菌藿四醇异构体之一),总结了其生物来源及验证过程,并简介了目前BHT-x ratio作为水体缺氧代用指标在海洋环境中的应用研究。利用BHT-x来重建长时间尺度的缺氧现象,可以帮助我们更好地认识海洋缺氧过程,为我们预测和应对未来海洋环境的变化提供更多的理论依据。

    Abstract:

    Marine hypoxia is one of the major ecological and environmental problems at present as it has important impact on marine organisms, chemical element cycle, and global climate. Bacteriohopanepolyols (BHPs) are a group of pentacyclic triterpenoid compound derived from bacterial cell membranes, and also the biological precursor of hopane that are ubiquitous in geological records. BHPs have been widely used as a biomarker in tracing terrestrial organic matter and indicating aerobic methane oxidation. By focusing on bacteriohopanetetrol (BHT)-x, an important member of BHPs that could be used to indicate anaerobic ammonia oxidation and water hypoxia, we reviewed its biological origination and the verification, and briefly introduced the application of the BHT-x ratio (the ratio of BHT-x over total BHT) as a proxy of water column hypoxia for different marine environments, including samples of suspended particles and sediments. The application of BHT-x could help us reconstruct marine hypoxia evolution, and predict and protect the modern marine environment with richer theoretical evidence.

  • 生物硅(BSi),又称生物蛋白石,主要由上层水体中的硅质浮游生物(如硅藻、放射虫、硅鞭藻等)死亡后的骨骼或细胞壁堆积而成[1-2],是海洋沉积物中重要的生源物质组成部分[3],其含量与表层水体中的生物量密切相关[4]。在上述硅质生物种群中,硅藻遍布于各类水体,为海洋提供了40%左右的初级生产力[5-6],是海洋BSi中最主要的组成部分[7-8]。因此,沉积物BSi的时空分布常作为古海洋初级生产力的变化指标[9]。由于生产力的波动与表层海水营养物质的供应量关系密切,因此可以将BSi沉积记录与可能导致海水营养盐供给变化的大尺度气候和海洋过程(如季风、洋流等)联系起来,作为重建过去海洋环境变化的重要工具[10-12]

    南海是西太平洋最大的边缘海,地理位置独特,其环境受东亚季风的强烈影响,是追溯冰期-间冰期旋回中东亚季风演变历史的热点区域之一[13-15]。泰国湾(Gulf of Thailand),旧称暹罗湾,是南海重要的组成部分,位于南海西南部的巽他陆架之上,处于太平洋及其附属海的最西端,是南海最大的海湾之一,为典型的半封闭型陆架海,其面积约35 000 km2。泰国湾属于热带季风气候,其风向和海流与亚洲季风关系密切[16-17]。在西南季风影响的5—10月,该海域沿岸流呈顺时针运动,而在受东北季风影响的11月至次年2月沿岸流则呈逆时针运动[18]。近年来有关研究表明,南海古生产力的变化与亚洲季风的周期性变化具有密切联系[10, 12, 19-22],然而这些研究主要集中在南海海盆和北部沿岸地区,有关南海西部和西南部,尤其是泰国湾的古生产力研究则少有涉及。因此本研究选取位于泰国湾北部沿岸海域的两根沉积物柱状样LCS05和WLE08,通过对柱样中BSi含量的分析,探讨近9 ka以来泰国湾古生产力的状况。

    本研究所用的LSC05和WLE08沉积柱样,系由自然资源部第三海洋研究所和泰国自然资源与环境部矿产资源局合作于2017年5月12日在泰国湾尖竹汶海岸通过重力及回旋取样结合的方法取得。其中,LSC05柱样(12°21′29″N、101°58′36″E)长1.58 m,水深18 m;WLE08柱样(12°17′28″N、102°10′18″E)长1.98 m,水深13 m[17],具体采样位置见图1。在自然资源部第三海洋研究所海洋与海岸地质实验室以2 cm连续间隔对两根柱样进行分样。LSC05柱样共挑选27个样品进行BSi(Si)和有机碳(TOC)测试分析;WLE08柱样共挑选33个样品进行BSi(Si)和有机碳(TOC)测试分析。有机碳(TOC)分析在自然资源部第三海洋研究所完成;BSi分析工作在中国海洋大学海洋地球科学学院地球化学实验室完成。

    图  1  LSC05、WLE08柱样调查站位的地理位置以及表层流分布情况
    A: 南海及主要洋流[26],B: 研究区及主要洋流。
    Figure  1.  The location of Cores LSC05 and WLE08 and the surface currents in the Gulf of Thailand
    A: South China Sea and main currents[26]; B: Study area and main currents.

    BSi测试采用钼酸铵分光光度法测定萃取物中溶解的二氧化硅[23]。对沉积物样品研磨烘干(65℃烘48 h,106℃下烘2 h),称取130~140 mg干样于50 mL塑料离心管中,加5 mL10% 的H2O2溶液,混匀后静置30 min。加5 mL 1∶9的HCL混匀,静置30 min。加20 mL去离子水,离心20 min,之后对样品进行干燥。干燥后的样品加40 mL 浓度为2 mol/L的 Na2CO3提取液,放置在85 ℃水浴中加热提取。之后每隔1 h取出离心,取125 µL上清液用于测定Si浓度,连续提取8 h。利用分光光度法测定提取液中的硅[24-25]。测得的提取液中的Si含量数据和对应的提取时间点作图,曲线直线部分的反向延长线与Y轴的交点为样品的BSi含量[23-24]。全过程标准偏差控制在5%以内。

    根据粒度测试结果选取LSC05柱样的4个层位和WLE08柱样的3个层位中的贝壳或植物碎屑样品进行AMS14C测试。样品送美国BETA实验室完成,BETA实验室已对原始测年数据进行了日历年龄校正,海洋碳库效应校正由于附近没有已知点故选取全球海洋修正,具体测试结果见表1。本文年代采用日历年。

    表  1  LSC05和WLE08柱样[17]AMS14C测年结果
    Table  1.  AMS14C dating of Cores LSC05 and WLE08[17]
    柱样名称 样品深度/cm BETA实验室编号 测年材料 AMS14C测量年代/(aBP±1σ) 日历年龄/cal. aBP
    LSC05 8 Beta-509448 贝壳 3090±30 2857
    18 Beta-509449 贝壳 3210±30 3024
    100~102 Beta-509450 植物碎屑 6880±30 7726
    152~154 Beta-509451 植物碎屑 8480±30 9499
    WLE08 12~14 Beta-509452 贝壳 350±30
    96~98 Beta-509453 贝壳 1550±30 1109
    184~186 Beta-509454 贝壳 1S820±30 1373
    下载: 导出CSV 
    | 显示表格

    有机碳(TOC)分析采用Vario Isotope cube-IsoPrime 100型(Elementar)元素分析-稳定同位素比值质谱联用仪(EA-IRMS)完成。前处理取一定量的沉积物样品,加入4 mol/dm3 的HCl至过量,反应24 h。用去离子水洗酸至中性,将样品置于烘箱内60 ℃烘干,恒重后称量,研磨成粉末,过60目的筛子,密封备用。用天平准确称取适量固体样品,放入锡箔杯中并紧密包裹成小球状,依次放进96孔板内测定。

    LSC05、WLE08柱样的AMS14C测年数据如表1,两根柱样的年龄与深度模型见图23。在沉积物样品测年基础上,通过线性插值,获得各样品所代表的年龄,进而建立柱状样的年代框架。沉积速率的计算是通过两个测年点的线性关系得到,通常不考虑沉积物的固结压实和沉降作用。对于柱样第一个测年点之上的沉积速率,选择通过前两个测年点间的沉积速率外推至上部样品。LSC05柱样的沉积物年龄为2.7~9.6 cal.kaBP,18 cm以上的平均沉积速率约为59.9 cm/ka,18~100 cm的平均速率为17.4 cm/ka,100~158 cm的平均速率为29.3 cm/ka。WLE08柱样的年代框架已建立,建立方法与LSC05柱样相同。其沉积物年龄为1.1~1.4 cal.kaBP,整根柱子的沉积速率均为333.3 cm/ka [17]。LSC05孔提供了9 ka以来平均分辨率达约2.3 ka的沉积记录,WLE08孔提供了1.3 ka以来平均分辨率达约0.3 ka的高分辨率的沉积记录。

    图  2  LSC05年龄-深度模型
    Figure  2.  Age-depth model for Core LSC05
    图  3  WLE08年龄-深度模型
    Figure  3.  Age-depth model for Core WLE08

    LSC05与WLE08柱样均从表层(0 cm)开始向下取样,但两根柱样均出现了顶部近代沉积物缺失的情况。根据WLE08柱样的210Pb测试结果显,示其活度随深度增加并没有呈现指数衰减趋势[27],说明 WLE08 孔的210Pb 活度值为本底值,缺少现代沉积物留存。有研究表明汇入该区域内的尖竹汶河与Welu河流量较小,入海泥沙量也相对较小[27],而其所在海域底层流流速均大于泥沙颗粒启动流速[28],在此沉积动力环境下,该区域很难大量接收现代河流沉积,并导致现代沉积物缺失。

    除了BSi以外,直观反映了海表有机质丰度来体现海表初级生产力的有机碳含量(TOC)被视为衡量海表生产力的替代指标[29-30]。LSC05和WLE08柱样TOC含量变化范围分别为0.03%~1.60%和1.83%~4.10%,平均值分别为0.90%和2.68%(图4B)。TOC含量在9~6.5 cal.kaBP期间逐渐增加,在6.5~3 cal.kaBP期间含量整体较低,变化较小,较为稳定,在1.4~0.84 cal.kaBP期间含量较高。

    图  4  LSC05、WLE08柱样BSi含量、TOC含量、C/N比值与其他气候、环境变化序列对比
    粉红色条带代表BSi含量高值带,粉蓝色条带代表BSi含量低值带。
    Figure  4.  Comparison among biogenic silica content, TOC content, C/N in LSC05, and WLE08 with other climate and environmental variation sequences
    Redish bands represent the high value band of BSi content and the bluish bands represent the low value band of BSi content.

    在全球变暖的背景下,泰国湾的有机碳的输送、扩散和埋藏与热带季风气候控制的降水等条件密切相关[31]。研究区的TOC自6.5 cal.kaBP以来的变化趋势与王承涛等[17]研究得到的泰国湾中晚全新世以来沉积物的敏感粒级变化趋势吻合度较高,指示了研究区的西南夏季风在6.5~3 cal.kaBP处于较弱的稳定期,在1.4 cal.kaBP以来有所增强。在6.5 cal.kaBP以前的时期,本研究TOC含量较低,与中晚全新世以来沉积物的敏感粒级的研究结果差异较大,可能是由于王承涛等[17]研究的WLE12柱样位于河口内,但LSC05柱样距河口位置明显更远,因此LSC05接收到的来自河流携带的有机物汇入较少。

    LSC05和WLE08柱状沉积物中BSi含量如图4A所示。LSC05和WLE08柱样BSi含量变化范围分别为0.41%~1.56%和0.60%~1.52%,平均值分别为0.88%和1.11%。结合研究区周边与南海部分海域的BSi研究成果(表2)可以发现,研究区属于南海中的低值海区,与南海南部(巽他陆架东部)和南海北部陆坡(珠江口外)水深小于200 m的陆架浅水区沉积物BSi含量[19, 32]较为接近。

    表  2  南海部分海域BSi含量对比
    Table  2.  Comparison of BSi content in the South China Sea
    研究海域 沉积物性质 水深/m BSi含量占比/% 参考文献
    范围 平均值
    南海西部泰国湾(本文) LSC05柱样 15~20 0.41~1.56 0.88
    WLE08柱样 10 0.60~1.52 1.11
    南海北部陆坡 ODP1144钻孔 2 037 1.50(1050~900 ka) [42-43]
    3.80(900 ka后)
    南海北部 表层沉积物 <200 1.59 [19]
    >200 2.06
    南海中部 ODP1143钻孔 2 722 1.31~3.38 - [22, 43]
    南海南部 表层沉积物 <200 0.37~1.86 [32]
    >1 000 3.39~9.00
    东印度洋爪哇岛以南 CJ01-185柱样 1 538 1.41 [3]
    下载: 导出CSV 
    | 显示表格

    沉积物中BSi含量的最主要的影响因素是硅质骨骼或细胞壁的供给量和溶解作用[33],两者的动态平衡关系主导了BSi的总体分布[34],再加上不同沉积物物质来源以及物质稀释的影响,共同决定了BSi最终的分布格局。LSC05和WLE08柱样采样站位水文环境条件与其他南海相关研究有所不同,季风的盛行导致南海存在较多的上升流区[35-37]。上涌的下层水体将营养物质携带至海表,为海表硅藻等硅质生物勃发提供了良好的生境,因此上升流区BSi含量明显较高。除本研究区以外,表2中涉及的其他站位均靠近南海上升流区[38-39],但有研究表明泰国湾区域无上升流发育[36],这就导致了泰国湾硅质骨骼与壳体供给量低于其他有上升流的南海海域,因此BSi含量偏低。

    碳氮比值(C/N)是古生产力研究中重要的参考性指标 ,可以用来反映沉积物的来源[40]。海洋自身有机物的C/N一般为5~8[31, 41],陆源有机物的C/N则大于12[31]。研究区9 ka以来,LSC05和WLE08柱样的C/N比值偏高,平均值为14.81,较多时期的C/N比值高于12(图4C, 8.6~8.8 cal.kaBP和9.0~9.4 cal.kaBP数据缺失),说明研究区中陆源有机质输入量较高。LSC05与WLE08两根柱样的采样位置均位于近岸区域,水深为10~20 m,其沉积物物源受到海洋与陆地的双重影响。末次冰消期以来,泰国湾的沉积物均来自于中南半岛[44] ,较多陆源沉积物的输入稀释了BSi含量。

    由此可见,泰国湾低BSi含量这一特征与BSi的来源、堆积过程及其保存环境密切相关,低硅质骨骼与壳体供给量和陆源物质的稀释共同作用形成了该BSi低含量海域。

    沉积物中的BSi与有机质关系密切[45],虽然只有约 3%的BSi能长期存在于海底沉积物中,但是相对于生源有机碳,BSi的埋藏效率明显更高,更能保存上层水体的生产力及环境信息[46]。因此BSi常作为指示生产力的有效替代性指标,可以用来指示表层水体生产力的演变。

    研究区BSi含量最高值出现于7.5 cal.kaBP,最低值出现于2.8 cal.kaBP,最高值为最低值的3.8倍。柱样中的BSi含量共有4个高值带,分别是8.1~7.5、4.8、3.4和1.0 cal.kaBP左右。同时有3个低值带,分别是8.2、7和3 cal.kaBP左右。

    海洋初级生产力是各种物理、化学和生物因素的综合效应的表现[47]。东亚冬季风对于南海的生产力起着重要的作用[4,15,18,22,48-49]。亚洲季风的变化引起泰国湾降水、水体营养浓度、叶绿素含量、浮游植物丰度等环境变化[31, 48- 50]。若亚洲夏季风势力强盛,带来大量的降雨,使地表河流径流量增加,从而携带更多营养物质汇入海洋[10],BSi含量则随之增加,这就反映了海表初级生产力提高。

    1.4~0.8 cal.kaBP期间,BSi含量为0.60%~1.52%(平均含量1.11%),属于本研究中偏高的一段时期。此时正处于东亚夏季风偏强的中世纪暖期时期,这说明该时期内的海表初级生产力较高可能是由于夏季风势力较强所致。8.5~8.2、7.1~6.9 cal. ka BP两段时间内,BSi含量较低,这可能是由于此时南亚夏季风势力较弱导致的。8.2 cal.kaBP时,BSi含量快速下降并近乎到达最低值。此时夏季风也处于该时期内最低值,表明夏季风存在一次较大的衰弱期,响应了8.2 cal.kaBP全球范围的气候突变事件[17,51],指示了此段时间内由于夏季风的衰减致使研究区海表初级生产力降低。

    对比研究区柱样BSi含量曲线和南海区域温度异常值曲线[52]图4A、D)可以发现,温度变化与BSi含量变化也有相近的变化趋势,但BSi含量的变化略滞后于南海区域温度异常的变化。这反映出BSi作为古生产力的替代指标与古气候在一定程度上具有对应性[4]。但我们发现8.2 cal.kaBP时期冷事件之前的曲线呈现相反的变化趋势,南海温度异常增加,BSi含量反而降低,这反映了由于夏季风过度强盛而引起的异常暖事件反而可能会抑制硅质生物的生长,导致海表初级生产力降低[10]

    将BSi含量与格陵兰冰芯[53]、华南董歌洞石笋[54]以及阿曼Qunf岩洞石笋记录[55]图4F、G、H)对比,可以发现泰国湾9 ka以来有部分时期能够吻合。3~2.7 cal.kaBP时期,BSi含量出现明显低值带,此时期董歌洞石笋与阿曼Qunf岩洞石笋记录均出现了对应的低值区,可能指示了一次冷事件的出现,这与4~2 cal.kaBP时期出现的热带海域“斜氏普林虫低值事件”对应[56-57]。8.2 cal.kaBP变冷事件时期[51],格陵兰冰芯、董歌洞石笋以及阿曼Qunf岩洞石笋记录同样能找到相应的低值记录,格陵兰冰芯甚至达到最低值。以上对应事件说明研究区古生产力的变化趋势与全球尺度的环境变化具有相关性,指示了泰国湾古环境变化对全球环境变化有一定程度的响应。

    (1) LSC05和WLE08柱样中BSi含量分别为0.41%~1.56%和0.60%~1.52%,为低值海域,最高值和最低值分别出现于7.5、2.8 cal.kaBP时期。区域内无上升流导致的低硅质骨骼和低壳体供给量以及陆源物质输入的稀释是BSi含量低的主要原因。

    (2)本研究柱样中共出现了4个BSi含量高值带与3个BSi含量低值带。TOC含量自9 cal.kaBP以来呈现逐渐增加-平稳较低-继续增加的趋势。将 9 ka以来研究区生物硅含量曲线与南海气候曲线进行对比发现,生物硅含量与南海气温异常曲线和南海夏季风替代指标值期有一定的对应性,但BSi曲线略滞后于南海气温异常曲线,且1.4~0.84 cal.kaBP这一海表生产力高值期正处于东亚夏季风偏强的中世纪暖期时期,指示了高生物硅含量对应的海表高初级生产力时期可能是由于夏季风阶段性势力较强导致。但8.2 cal.kaBP冷事件之前的南海异常高温却对应了生物硅含量低值区,这可能反映了夏季风过强引起的过度高温反而不利于海表初级生产力的提高。

    (3)研究区生物硅含量与格陵兰冰芯、董歌洞石笋以及阿曼Qunf岩洞石笋记录有较好的对应性,BSi含量低值带与热带海域“斜氏普林虫低值事件”和8.2 cal.kaBP冷事件对应,表明研究区古生产力的变化趋势与全球尺度的环境变化具有明显的相关性,这指示了泰国湾古环境变化对全球环境变化的响应。

    致谢:感谢所有在航次调查期间帮助采样和采集数据的中泰合作项目组成员。

  • 图  1   应用于海洋环境的4类常见BHPs的化学结构(BHT-x立体结构尚未确定)[36, 41]

    Figure  1.   Structures of common four BHPs used in marine environments (the stereochemical structure of BHT-x remains to be revealed)[36, 41]

    图  2   地中海腐泥样品BHT、BHT-x超高效液相色谱-质谱分析[58]

    Figure  2.   UHPLC-MS analysis of BHT and BHT-x in the Mediterranean sapropel[58]

    图  3   BHT-x在世界大洋悬浮颗粒物和沉积物中的现有应用分布

    蓝点代表悬浮颗粒物,红色方块代表沉积物。

    Figure  3.   Distribution of application cases of BHT-x in suspended particulate matter and sediments in the world oceans

    Blue dots represent suspended particulate matter and red squares represent sediments.

    图  4   BHT-x ratio与相关指标比较以示踪氧化还原条件变化、厌氧氨氧化过程

    a图数据来自文献[75],b图数据来自文献[44]。

    Figure  4.   Comparison of the BHT-x ratio with other relevant indicators in tracing redox condition and anammox

    Data in (a) and (b) are collected from references [75] and [44], respectively.

    表  1   不同缺氧环境下的BHT-x ratio

    Table  1   BHT-x ratio in different hypoxic environments

    海域 缺氧海区水体DO浓度/μM 样品类型 BHT-x ratio 来源文献
    东海 <62.5 表层沉积物 0.02~0.46 [23]
    东海 <62.5 沉积柱 0.20~0.76 [80]
    东海 <62.5 沉积柱 0.03~0.50 [80]
    本格拉上升流区 约20~40 悬浮颗粒物 0.04~0.55 [27]
    阿拉伯海 <25 表层沉积物 0.22~0.30 [57]
    黑海 约8~90 悬浮颗粒物 0.01~0.21 [79]
    下载: 导出CSV
  • [1]

    Breitburg D, Levin L A, Oschlies A, et al. Declining oxygen in the global ocean and coastal waters[J]. Science, 2018, 359(6371): eaam7240. doi: 10.1126/science.aam7240

    [2]

    Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5891): 926-929. doi: 10.1126/science.1156401

    [3]

    Middelburg J J, Levin L A. Coastal hypoxia and sediment biogeochemistry[J]. Biogeosciences, 2009, 6(7): 1273-1293. doi: 10.5194/bg-6-1273-2009

    [4]

    Conley D J, Carstensen J, Aigars J, et al. Hypoxia is increasing in the coastal zone of the Baltic Sea[J]. Environmental Science & Technology, 2011, 45(16): 6777-6783.

    [5]

    Diaz R J. Overview of hypoxia around the world[J]. Journal of Environmental Quality, 2001, 30(2): 275-281. doi: 10.2134/jeq2001.302275x

    [6]

    Levin L A, Ekau W, Gooday A J, et al. Effects of natural and human-induced hypoxia on coastal benthos[J]. Biogeosciences, 2009, 6(10): 2063-2098. doi: 10.5194/bg-6-2063-2009

    [7]

    Penn J L, Deutsch C, Payne J L, et al. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction[J]. Science, 2018, 362(6419): eaat1327. doi: 10.1126/science.aat1327

    [8]

    Pohl A, Ridgwell A, Stockey R G, et al. Continental configuration controls ocean oxygenation during the Phanerozoic[J]. Nature, 2022, 608(7923): 523-527. doi: 10.1038/s41586-022-05018-z

    [9]

    Breitburg D L, Hondorp D W, Davias L A, et al. Hypoxia, nitrogen, and fisheries: integrating effects across local and global landscapes[J]. Annual Review of Marine Science, 2009, 1: 329-349. doi: 10.1146/annurev.marine.010908.163754

    [10]

    Fennel K, Testa J M. Biogeochemical controls on coastal hypoxia[J]. Annual Review of Marine Science, 2019, 11: 105-130. doi: 10.1146/annurev-marine-010318-095138

    [11]

    Keeling R F, Körtzinger A, Gruber N. Ocean deoxygenation in a warming world[J]. Annual Review of Marine Science, 2010, 2: 199-229. doi: 10.1146/annurev.marine.010908.163855

    [12]

    Pitcher G C, Aguirre-Velarde A, Breitburg D, et al. System controls of coastal and open ocean oxygen depletion[J]. Progress in Oceanography, 2021, 197: 102613. doi: 10.1016/j.pocean.2021.102613

    [13]

    Rabalais N N, Díaz R J, Levin L A, et al. Dynamics and distribution of natural and human-caused hypoxia[J]. Biogeosciences, 2010, 7(2): 585-619. doi: 10.5194/bg-7-585-2010

    [14]

    Algeo T J, Owens J D, Morford J L, et al. New developments in geochemical proxies for paleoceanographic research[J]. Geochimica et Cosmochimica Acta, 2020, 287: 1-7. doi: 10.1016/j.gca.2020.07.010

    [15]

    Fujisaki W, Sawaki Y, Yamamoto S, et al. Tracking the redox history and nitrogen cycle in the pelagic Panthalassic deep ocean in the Middle Triassic to Early Jurassic: insights from redox-sensitive elements and nitrogen isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 397-420. doi: 10.1016/j.palaeo.2016.01.039

    [16]

    Reckhardt A, Beck M, Greskowiak J, et al. Cycling of redox-sensitive elements in a sandy subterranean estuary of the southern North Sea[J]. Marine Chemistry, 2017, 188: 6-17. doi: 10.1016/j.marchem.2016.11.003

    [17]

    Guo X Y, Xu B C, Burnett W C, et al. A potential proxy for seasonal hypoxia: LA-ICP-MS Mn/Ca ratios in benthic foraminifera from the Yangtze River Estuary[J]. Geochimica et Cosmochimica Acta, 2019, 245: 290-303. doi: 10.1016/j.gca.2018.11.007

    [18]

    Goswami V, Singh S K, Bhushan R, et al. Spatial distribution of Mo and δ98Mo in waters of the northern Indian Ocean: role of suboxia and particle-water interactions on lighter Mo in the Bay of Bengal[J]. Geochimica et Cosmochimica Acta, 2022, 324: 174-193. doi: 10.1016/j.gca.2022.03.010

    [19]

    Nelsen T A, Blackwelder P, Hood T, et al. Time-based correlation of biogenic, lithogenic and authigenic sediment components with anthropogenic inputs in the Gulf of Mexico NECOP study area[J]. Estuaries, 1994, 17(4): 873-885. doi: 10.2307/1352755

    [20]

    Emmings J F, Poulton S W, Walsh J, et al. Pyrite mega-analysis reveals modes of anoxia through geological time[J]. Science Advances, 2022, 8(11): eabj5687. doi: 10.1126/sciadv.abj5687

    [21]

    Raven M R, Fike D A, Bradley A S, et al. Paired organic matter and pyrite δ34S records reveal mechanisms of carbon, sulfur, and iron cycle disruption during Ocean Anoxic Event 2[J]. Earth and Planetary Science Letters, 2019, 512: 27-38. doi: 10.1016/j.jpgl.2019.01.048

    [22]

    Huang Y G, Chen Z Q, Algeo T J, et al. Two-stage marine anoxia and biotic response during the Permian–Triassic transition in Kashmir, northern India: pyrite framboid evidence[J]. Global and Planetary Change, 2019, 172: 124-139. doi: 10.1016/j.gloplacha.2018.10.002

    [23]

    Yin M L, Duan L Q, Song J M, et al. Bacteriohopanepolyols signature in sediments of the East China Sea and its indications for hypoxia and organic matter sources[J]. Organic Geochemistry, 2021, 158: 104268. doi: 10.1016/j.orggeochem.2021.104268

    [24]

    Li X X, Bianchi T S, Yang Z S, et al. Historical trends of hypoxia in Changjiang River estuary: applications of chemical biomarkers and microfossils[J]. Journal of Marine Systems, 2011, 86(3-4): 57-68. doi: 10.1016/j.jmarsys.2011.02.003

    [25]

    Zimmerman A R, Canuel E A. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition[J]. Marine Chemistry, 2000, 69(1-2): 117-137. doi: 10.1016/S0304-4203(99)00100-0

    [26]

    Elling F J, Hemingway J D, Kharbush J J, et al. Linking diatom-diazotroph symbioses to nitrogen cycle perturbations and deep-water anoxia: insights from Mediterranean sapropel events[J]. Earth and Planetary Science Letters, 2021, 571: 117110. doi: 10.1016/j.jpgl.2021.117110

    [27]

    van Kemenade Z R, Villanueva L, Hopmans E C, et al. Bacteriohopanetetrol-x: constraining its application as a lipid biomarker for marine anammox using the water column oxygen gradient of the Benguela upwelling system[J]. Biogeosciences, 2022, 19(1): 201-221. doi: 10.5194/bg-19-201-2022

    [28]

    Brinkmann I, Ni S, Schweizer M, et al. Foraminiferal Mn/Ca as bottom-water hypoxia proxy: an assessment of Nonionella stella in the Santa Barbara Basin, USA[J]. Paleoceanography and Paleoclimatology, 2021, 36(11): e2020PA004167.

    [29]

    Wang F F, Liu J, Qiu J D, et al. Historical evolution of hypoxia in the East China Sea off the Changjiang (Yangtze River) estuary for the last ~13, 000 years: evidence from the benthic foraminiferal community[J]. Continental Shelf Research, 2014, 90: 151-162. doi: 10.1016/j.csr.2014.02.013

    [30]

    Ren F H, Fan D D, Wu Y J, et al. The evolution of hypoxia off the Changjiang Estuary in the last 3000 years: evidence from benthic foraminifera and elemental geochemistry[J]. Marine Geology, 2019, 417: 106039. doi: 10.1016/j.margeo.2019.106039

    [31]

    Sen Gupta B K, Eugene Turner R, Rabalais N N. Seasonal oxygen depletion in continental-shelf waters of Louisiana: historical record of benthic foraminifers[J]. Geology, 1996, 24(3): 227-230. doi: 10.1130/0091-7613(1996)024<0227:SODICS>2.3.CO;2

    [32]

    van Dongen B E, Talbot H M, Schouten S, et al. Well preserved palaeogene and cretaceous biomarkers from the Kilwa area, Tanzania[J]. Organic Geochemistry, 2006, 37(5): 539-557. doi: 10.1016/j.orggeochem.2006.01.003

    [33]

    Rush D, Sinninghe Damsté J S, Poulton S W, et al. Anaerobic ammonium-oxidising bacteria: a biological source of the bacteriohopanetetrol stereoisomer in marine sediments[J]. Geochimica et Cosmochimica Acta, 2014, 140: 50-64. doi: 10.1016/j.gca.2014.05.014

    [34]

    Ourisson G, Albrecht P. Hopanoids. 1. Geohopanoids: the most abundant natural products on Earth?[J]. Accounts of Chemical Research, 1992, 25(9): 398-402. doi: 10.1021/ar00021a003

    [35]

    Ourisson G, Rohmer M. Hopanoids. 2. Biohopanoids: a novel class of bacterial lipids[J]. Accounts of Chemical Research, 1992, 25(9): 403-408. doi: 10.1021/ar00021a004

    [36]

    Kusch S, Rush D. Revisiting the precursors of the most abundant natural products on Earth: a look back at 30+ years of bacteriohopanepolyol (BHP) research and ahead to new frontiers[J]. Organic Geochemistry, 2022, 172: 104469. doi: 10.1016/j.orggeochem.2022.104469

    [37]

    Ourisson G, Rohmer M, Poralla K. Prokaryotic hopanoids and other polyterpenoid sterol surrogates[J]. Annual Review of Microbiology, 1987, 41: 301-333. doi: 10.1146/annurev.mi.41.100187.001505

    [38]

    Rohmer M, Bouvier-Nave P, Ourisson G. Distribution of hopanoid triterpenes in prokaryotes[J]. Microbiology, 1984, 130(5): 1137-1150. doi: 10.1099/00221287-130-5-1137

    [39]

    Sáenz J P, Sezgin E, Schwille P, et al. Functional convergence of hopanoids and sterols in membrane ordering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(35): 14236-14240.

    [40]

    Cooke M P, Talbot H M, Farrimond P. Bacterial populations recorded in bacteriohopanepolyol distributions in soils from Northern England[J]. Organic Geochemistry, 2008, 39(9): 1347-1358. doi: 10.1016/j.orggeochem.2008.05.003

    [41] 尹美玲, 段丽琴, 宋金明, 等. 藿类生物标志物及其对海洋碳氮循环过程的指示[J]. 中国环境科学, 2022, 42(8): 3890-3902 doi: 10.3969/j.issn.1000-6923.2022.08.048

    YIN Meiling, DUAN Liqin, SONG Jinming, et al. Hopanoids biomarkers and their indications in the marine carbon and nitrogen cycles[J]. China Environmental Science, 2022, 42(8): 3890-3902.] doi: 10.3969/j.issn.1000-6923.2022.08.048

    [42]

    Talbot H M, Farrimond P. Bacterial populations recorded in diverse sedimentary biohopanoid distributions[J]. Organic Geochemistry, 2007, 38(8): 1212-1225. doi: 10.1016/j.orggeochem.2007.04.006

    [43]

    Förster H J, Biemann K, Haigh W G, et al. The structure of novel C35 pentacyclic terpenes from Acetobacter xylinum[J]. Biochemical Journal, 1973, 135(1): 133-143. doi: 10.1042/bj1350133

    [44]

    Matys E D, Sepúlveda J, Pantoja S, et al. Bacteriohopanepolyols along redox gradients in the Humboldt Current System off northern Chile[J]. Geobiology, 2017, 15(6): 844-857. doi: 10.1111/gbi.12250

    [45]

    Talbot H M, Summons R E, Jahnke L L, et al. Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings[J]. Organic Geochemistry, 2008, 39(2): 232-263. doi: 10.1016/j.orggeochem.2007.08.006

    [46]

    Summons R E, Jahnke L L, Hope J M, et al. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis[J]. Nature, 1999, 400(6744): 554-557. doi: 10.1038/23005

    [47]

    Naafs B D A, Bianchini G, Monteiro F M, et al. The occurrence of 2-methylhopanoids in modern bacteria and the geological record[J]. Geobiology, 2022, 20(1): 41-59. doi: 10.1111/gbi.12465

    [48]

    Blumenberg M, Berndmeyer C, Moros M, et al. Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea[J]. Biogeosciences, 2013, 10(4): 2725-2735. doi: 10.5194/bg-10-2725-2013

    [49]

    Rush D, Villanueva L, van der Meer M T J, et al. Aerobic methanotrophy in North Sea sediment and Baltic Sea water column as revealed by bacteriohopanepolyol lipids and genomic approaches[C]//Proceedings of the 29th International Meeting on Organic Geochemistry. Gothenburg: European Association of Geoscientists & Engineers, 2019.

    [50]

    van Winden J F, Talbot H M, Kip N, et al. Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss[J]. Geochimica et Cosmochimica Acta, 2012, 77: 52-61. doi: 10.1016/j.gca.2011.10.026

    [51]

    Kusch S, Wakeham S G, Sepúlveda J. Diverse origins of “soil marker” bacteriohopanepolyols in marine oxygen deficient zones[J]. Organic Geochemistry, 2021, 151: 104150. doi: 10.1016/j.orggeochem.2020.104150

    [52]

    Zhu C, Talbot H M, Wagner T, et al. Intense aerobic methane oxidation in the Yangtze Estuary: a record from 35-aminobacteriohopanepolyols in surface sediments[J]. Organic Geochemistry, 2010, 41(9): 1056-1059. doi: 10.1016/j.orggeochem.2010.03.015

    [53]

    Zhu C, Talbot H M, Wagner T, et al. Distribution of hopanoids along a land to sea transect: implications for microbial ecology and the use of hopanoids in environmental studies[J]. Limnology and Oceanography, 2011, 56(5): 1850-1865. doi: 10.4319/lo.2011.56.5.1850

    [54]

    Cooke M P, Talbot H M, Wagner T. Tracking soil organic carbon transport to continental margin sediments using soil-specific hopanoid biomarkers: a case study from the Congo fan (ODP site 1075)[J]. Organic Geochemistry, 2008, 39(8): 965-971. doi: 10.1016/j.orggeochem.2008.03.009

    [55]

    Kusch S, Sepúlveda J, Wakeham S G. Origin of sedimentary BHPs along a mississippi river–gulf of mexico export transect: insights from spatial and density distributions[J]. Frontiers in Marine Science, 2019, 6: 729. doi: 10.3389/fmars.2019.00729

    [56]

    Schwartz-Narbonne R, Schaeffer P, Hopmans E C, et al. A unique bacteriohopanetetrol stereoisomer of marine anammox[J]. Organic Geochemistry, 2020, 143: 103994. doi: 10.1016/j.orggeochem.2020.103994

    [57]

    Sáenz J P, Wakeham S G, Eglinton T I, et al. New constraints on the provenance of hopanoids in the marine geologic record: bacteriohopanepolyols in marine suboxic and anoxic environments[J]. Organic Geochemistry, 2011, 42(11): 1351-1362. doi: 10.1016/j.orggeochem.2011.08.016

    [58]

    Rush D, Talbot H M, van der Meer M T J, et al. Biomarker evidence for the occurrence of anaerobic ammonium oxidation in the eastern Mediterranean Sea during Quaternary and Pliocene sapropel formation[J]. Biogeosciences, 2019, 16(12): 2467-2479. doi: 10.5194/bg-16-2467-2019

    [59]

    Sinninghe Damsté J S, Rijpstra W I C, Schouten S, et al. The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record[J]. Organic Geochemistry, 2004, 35(5): 561-566. doi: 10.1016/j.orggeochem.2004.01.013

    [60]

    Blumenberg M, Seifert R, Michaelis W. Aerobic methanotrophy in the oxic–anoxic transition zone of the Black Sea water column[J]. Organic Geochemistry, 2007, 38(1): 84-91. doi: 10.1016/j.orggeochem.2006.08.011

    [61]

    Talbot H M, Sidgwick F R, Bischoff J, et al. Analysis of non-derivatised bacteriohopanepolyols by ultrahigh-performance liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2016, 30(19): 2087-2098. doi: 10.1002/rcm.7696

    [62]

    Hopmans E C, Smit N T, Schwartz-Narbonne R, et al. Analysis of non-derivatized bacteriohopanepolyols using UHPLC-HRMS reveals great structural diversity in environmental lipid assemblages[J]. Organic Geochemistry, 2021, 160: 104285. doi: 10.1016/j.orggeochem.2021.104285

    [63]

    Lengger S K, Rush D, Mayser J P, et al. Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM)[J]. Global Biogeochemical Cycles, 2019, 33(12): 1715-1732. doi: 10.1029/2019GB006282

    [64]

    Rush D, Sinninghe Damsté J S. Lipids as paleomarkers to constrain the marine nitrogen cycle[J]. Environmental Microbiology, 2017, 19(6): 2119-2132. doi: 10.1111/1462-2920.13682

    [65] 尹美玲, 段丽琴, 宋金明, 等. 长江口邻近海域表层沉积物中的细菌藿多醇及对低氧区的响应判别[J]. 环境科学, 2021, 42(3): 1343-1353 doi: 10.13227/j.hjkx.202007244

    YIN Meiling, DUAN Liqin, SONG Jinming, et al. Response of bacteriohopanepolyols to hypoxic conditions in the surface sediments of the Yangtze Estuary and its adjacent areas[J]. Environmental Science, 2021, 42(3): 1343-1353.] doi: 10.13227/j.hjkx.202007244

    [66]

    Pitcher A, Villanueva L, Hopmans E C, et al. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone[J]. The ISME Journal, 2011, 5(12): 1896-1904. doi: 10.1038/ismej.2011.60

    [67]

    Blumenberg M, Mollenhauer G, Zabel M, et al. Decoupling of bio- and geohopanoids in sediments of the Benguela Upwelling System (BUS)[J]. Organic Geochemistry, 2010, 41(10): 1119-1129. doi: 10.1016/j.orggeochem.2010.06.005

    [68]

    Berndmeyer C, Thiel V, Schmale O, et al. Biomarkers for aerobic methanotrophy in the water column of the stratified Gotland Deep (Baltic Sea)[J]. Organic Geochemistry, 2013, 55: 103-111. doi: 10.1016/j.orggeochem.2012.11.010

    [69]

    Wakeham S G, Turich C, Schubotz F, et al. Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 63: 133-156. doi: 10.1016/j.dsr.2012.01.005

    [70]

    Jaeschke A, Ziegler M, Hopmans E C, et al. Molecular fossil evidence for anaerobic ammonium oxidation in the Arabian Sea over the last glacial cycle[J]. Paleoceanography, 2009, 24(2): PA2202.

    [71]

    Hemingway J D, Kusch S, Shah Walter S R, et al. A novel method to measure the 13C composition of intact bacteriohopanepolyols[J]. Organic Geochemistry, 2018, 123: 144-147. doi: 10.1016/j.orggeochem.2018.07.002

    [72]

    Talbot H M, Watson D F, Murrell J C, et al. Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry[J]. Journal of Chromatography A, 2001, 921(2): 175-185. doi: 10.1016/S0021-9673(01)00871-8

    [73]

    Talbot H M, Squier A H, Keely B J, et al. Atmospheric pressure chemical ionisation reversed-phase liquid chromatography/ion trap mass spectrometry of intact bacteriohopanepolyols[J]. Rapid Communications in Mass Spectrometry, 2003, 17(7): 728-737. doi: 10.1002/rcm.974

    [74]

    Talbot H M, Rohmer M, Farrimond P. Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(6): 880-892. doi: 10.1002/rcm.2911

    [75]

    Zindorf M, Rush D, Jaeger J, et al. Reconstructing oxygen deficiency in the glacial Gulf of Alaska: combining biomarkers and trace metals as paleo-redox proxies[J]. Chemical Geology, 2020, 558: 119864. doi: 10.1016/j.chemgeo.2020.119864

    [76]

    Kusch S, Wakeham S G, Dildar N, et al. Bacterial and archaeal lipids trace chemo(auto)trophy along the redoxcline in Vancouver Island fjords[J]. Geobiology, 2021, 19(5): 521-541. doi: 10.1111/gbi.12446

    [77]

    Berndmeyer C, Thiel V, Schmale O, et al. Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea)[J]. Biogeosciences, 2014, 11(23): 7009-7023. doi: 10.5194/bg-11-7009-2014

    [78]

    Kharbush J J, Ugalde J A, Hogle S L, et al. Composite bacterial hopanoids and their microbial producers across oxygen gradients in the water column of the California Current[J]. Applied and Environmental Microbiology, 2013, 79(23): 7491-7501. doi: 10.1128/AEM.02367-13

    [79]

    Kusch S, Wakeham S G, Sepúlveda J. Bacteriohopanepolyols across the Black Sea redoxcline trace diverse bacterial metabolisms[J]. Organic Geochemistry, 2022, 172: 104462. doi: 10.1016/j.orggeochem.2022.104462

    [80]

    Yin M L, Song J M, Duan L Q, et al. North-south differences in hypoxia and nitrogen cycle of the East China Sea over the last century indicated by sedimentary bacteriohopanepolyols[J]. Chemical Geology, 2023, 620: 121340. doi: 10.1016/j.chemgeo.2023.121340

图(4)  /  表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  1
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 修回日期:  2023-04-06
  • 刊出日期:  2024-12-27

目录

/

返回文章
返回