Effects of reclamation of paddy fields on soil iron-bound organic carbon in Minjiang River estuarine wetland
-
摘要:
土壤铁氧化物结合态有机碳是有机碳长期维持的主要途径,但其机理研究仍较为薄弱。为探究河口湿地围垦稻田对土壤铁碳结合特征的影响,本研究选择福建省闽江河口天然芦苇湿地与围垦稻田为研究对象,对两种类型土壤中的铁结合态有机碳(Fe-OC)及其相关指标进行测定与分析。结果显示:① 芦苇湿地围垦稻田改变了土壤氧化还原过程,显著影响土壤中铁相的转化。围垦后土壤二价铁[Fe(Ⅱ)]、三价铁[Fe(Ⅲ)]、活性总铁含量(HCl-Fet)及Fe(Ⅲ)/Fe(Ⅱ)分别显著下降了24.68%、52.56%、51.45%、35.68% (P<0.05)。游离态氧化铁(Fed)与无定形态铁(Feo)含量分别显著下降了21.64% 和29.24%(P<0.05),络合态铁(Fep)含量则有所增加。② 芦苇湿地围垦稻田显著影响土壤碳固存,Fe-OC与土壤有机碳含量(SOC)在围垦稻田后分别显著下降了39.03% 和18.42%(P<0.05);芦苇湿地与稻田土壤Fe-OC均主要以吸附途径结合,稻田土壤Fe-OC对土壤有机碳的贡献率(fFe-OC)显著高于芦苇湿地(P<0.05)。③ 土壤全氮、含水量、电导率、铁以及土壤有机碳、溶解性有机碳与Fe-OC呈显著正相关(P<0.01)。本研究可为退耕还湿、土壤碳增汇提供科学参考。
Abstract:Iron oxide bound organic carbon is the main pathway for long-term stability of organic carbon. However, study of its mechanism remains weak. To understand the impact of estuarine wetland reclamation of paddy field on soil iron-carbon binding characteristics, we measured the soil iron-bound organic carbon (Fe-OC) and its related indicators in the natural reed (Phragmite australis) wetland and paddy field reclamation in Minjiang River estuary, Fujian Province. Results show that the wetland reclamation significantly affected the soil oxidation and reduction condition, and the redox process significantly affected the transformation of iron (Fe) phase in soil. After the wetland reclamation, the content of bivalent iron [Fe(Ⅱ)], trivalent iron [Fe(Ⅲ)], active total iron (HCl-Fet), and Fe(Ⅲ)/Fe(Ⅱ) in the soil significantly decreased by 24.68%, 52.56%, 51.45%, and 35.68%, respectively (P<0.05). The content of free Fe oxide (Fed) and amorphous iron (Feo) in the soil significantly decreased by 21.64% and 29.24%, respectively (P<0.05), but the content of complex iron (Fep) increased. In addition, the wetland reclamation significantly affected the soil carbon retention, and the content of Fe-OC and soil organic carbon (SOC) in the soil significantly decreased by 39.03% and 18.42% after the reclamation (P<0.05). In both reed wetland and paddy field, soil Fe-OC was combined dominantly through adsorption. The contribution rate of paddy field soil Fe-OC to SOC (fFe-OC) was significantly higher than that of reed wetland (P<0.05). Finally. there were significant positive correlations (P<0.01) between soil TN, water content, conductivity, Fe, SOC, dissolved organic carbon, and Fe-OC. This study provided scientific guidance for wetland restoration and increasing soil carbon sequestration.
-
Keywords:
- iron /
- iron-bound organic carbon /
- reed wetland /
- paddy field /
- Minjiang River estuary
-
生物礁是固着底栖造礁生物原位生长而成的碳酸盐岩建隆[1],大型生物礁形成碳酸盐台地。南海自海底扩张以来,南北共轭大陆边缘沉积了厚度大、面积广的多个碳酸盐台地[2-3]。近年来生物礁碳酸盐台地的沉积过程与区域构造运动、相对海平面变化、气候变化、洋流变化等之间联系逐渐被揭示[2,4-10],突显了南海碳酸盐台地在南海大陆边缘构造地质演化、古海平面变化和古海洋气候环境研究中的重大科学意义。生物礁碳酸盐岩易形成有效圈闭成藏,因此碳酸盐台地沉积特征对油气勘探也具有重要意义[11-13]。
前人先后利用多口钻井资料研究了西沙海域碳酸盐台地的地层特征[14-20],Wu等结合钻井资料,利用高分辨率多道地震建立了西沙碳酸盐台地层序地层框架[21-22](图1)。西沙碳酸盐台地开始发育于晚渐新世,其发育演化过程主要受区域构造沉降和相对海平面变化的控制,中中新世碳酸盐岩沉积进入繁荣期,后因海平面快速上升,大多数台地逐渐被淹没,称淹没碳酸盐台地,仅宣德环礁和永乐环礁发育至今,形成现代岛礁。
对于西沙碳酸盐台地,近年来关注点主要为现代岛礁的沉积模式、发育演化及其控制因素[17-18,20,23-24]等方面。相比于现代岛礁,西沙广泛分布淹没碳酸盐台地,由于缺乏高分辨率多道地震,目前尚无西沙淹没台地层序地层相关研究,对其地层结构和沉积模式了解不足,也难以探讨台地淹没的机制。碳酸盐台地的生长发育和淹没消亡均与相对海平面变化和气候变化紧密相关,对比现代岛礁生长机制和淹没台地消亡机制,对重建西沙相对海平面变化及古气候变化均有积极作用。甘泉海台处于西沙隆起边缘,受水动力演变影响较深,本文选取甘泉海台作为研究靶区,利用最新获取的高分辨率多道地震,参考前人在西沙建立的层序地层框架[21],结合已有钻井资料和相对海平面变化资料,对甘泉海台地层开展地震层序和层序地层学研究,厘定和划分其地层结构特征,分析甘泉海台发育演化模式。
1. 地质背景
甘泉海台是呈NE-NW向展布的淹没碳酸盐台地,多波束测深数据显示甘泉海台平均水深约为600 m,坐落于南海北部西沙隆起之上(图2)。西沙隆起北部毗邻西沙海槽和琼东南盆地,西南部毗邻中建南盆地,东部以中沙海槽与中沙台地和西南次海盆相隔。西沙隆起由古新世期间两侧高角度断层界定的过度裂谷演变而来[25],在中生代之前暴露于地表,在渐新世晚期至中新世早期开始沉降,随后逐渐被海平面淹没,开始发育生物礁碳酸盐台地。钻探结果表明,西沙隆起基底由片麻岩、花岗岩和玄武岩等多种岩石组成,指示了晚中生代时期的区域变质作用和晚侏罗世、古近纪时期的岩浆活动[26-28]。最近的研究还记录了与晚中新世岩浆活动相关的热液系统[29]。
西沙海域自早中新世(或晚渐新世)开始盛行东亚季风,影响其气候和海洋环境[30]。5—9月,来自西南的夏季风占主导地位,11月至次年3月,来自东北的冬季季风占主导地位,4月和10月是夏季和冬季季风之间的过渡期。目前冬季风强于夏季风,控制着西沙现代生物礁碳酸盐台地的相带分布[31]。南海表层流受与东亚季风有关的季风驱动,夏季为反气旋性环流,冬季为气旋性环流[32]。
2. 数据和方法
2.1 数据采集及处理流程
使用数据为广州海洋地质调查局“海洋地质八号”在2022年7月采集的100 km高分辨率二维多道地震,数据采集采用单边放炮单边接收非零炮检距单缆观测系统进行采集,震源采用气枪震源,地震采集主要参数如表1所示。
表 1 二维地震采集参数Table 1. Parameters of seismic acquisition采集参数 数值 接收道数/道 720 道间距/m 6.25 电缆长度/m 4500 炮间距/m 25 覆盖次数/次 90 最小偏移距/m 175 记录长度/s 7 采样率/ms 2 震源容量/Cu.in. 4365 震源压力/P.S.I. 2000 震源阵列激发延时/ms 无 气枪沉放深度/m 5 电缆沉放深度/m 6 记录格式 SEG-D 8058 记录介质 IBM 3592磁带 利用地震资料处理系统对原始数据进行处理,主要包括噪音压制、多次波压制、速度分析、叠前时间偏移和叠后处理。噪声压制主要采用低截滤波压制强涌浪噪声和AAA技术衰减异常振幅噪音;多次波压制采用多步串联多次波压制方法(SRME+RADON变换+RES_DEMUL),该方法压制了大部分的多次波,极大地提高了剖面信噪比,有利于后续的偏移处理效果;处理过程中,进行3次迭代的速度分析,选取合适的去多次波速度、叠加和偏移速度,速度场变化符合地质体变化规律,遵循速度谱能量团拾取准确、道集同向轴拉平、与实际地层相匹配和成像聚焦效果好的原则;采用克希霍夫叠前时间偏移方法实现地层的准确归位;叠后处理主要内容是对偏移叠加剖面进行适当的处理,以改善剖面的面貌,处理以不损害有效波、不破坏剖面的波组特征、保幅处理为原则(图3)。
2.2 方法
层序地层学通过综合时间和海平面相对变化来跟踪岩相迁移,进而研究储层发育展布特点,已被认为是分析碳酸盐台地发育历史的有效方法。碳酸盐岩层序地层学与碎屑岩层序地层学有一定相似性,层序界面均有整合和不整合的接触关系,不整合的接触关系通常指示沉积间断,在剖面上显示超覆、切蚀等特征;也有一定差异性,南海碳酸盐台地沉积作用多为化学沉积作用和生物化学沉积作用,机械沉积作用主要发生在水动力较强区域,且搬运距离较近,因此在碳酸盐台地地震剖面中碳酸盐岩建造在地形和地貌上显示出与碎屑岩不同的样式。
本次研究结合前人在西沙地层建立的层序地层格架[21],通过确定甘泉海台碳酸盐岩地层各层序界面的地震相特征来建立甘泉海台层序界面的识别标志,基于识别标志,对所采集的地震资料进行同相轴追踪和闭合,建立研究区的层序地层格架。
3. 甘泉海台层序地层特征
3.1 甘泉海台地震相及层序地层划分
不同地质体在地震剖面中显示的振幅、连续性、外形和内部特性等反射特征有差异,对甘泉海台地震剖面分析,识别出10个特殊地震相,其地震相特征如图4。台地区地震相主要为中等振幅、平行反射(SF1),台地内部主要以潟湖(SF2)沉积为主,也发育喀斯特(SF3),偶见由气体上移或热液上涌腐蚀而产生的烟囱(SF10)。台地深部边缘为进积斜坡(SF4),指示台地面积扩大,顶部台地边缘为退积斜坡(SF5),指示台地收缩。台地周缘沉积可分为3阶段,第一阶段以基底顶界面附近硅质碎屑与碳酸盐碎屑的混合沉积(SF9)及点礁、塔礁等生物礁(SF6)发育为主;第二阶段主要以半深海沉积(SF7)为主,物质来源于台地顶部被剥蚀的碳酸盐岩,以滑坡形式搬运至周缘沉积成岩;第三阶段以等深流沉积(SF8)为主,物质主要来源于台地碳酸盐岩碎屑,随海流搬运至周缘沉积成岩。
结合前人建立的西沙层序地层框架(图1)和海平面变化[18],对甘泉海台新采集的高分辨率多道地震进行层序地层分析,共识别4个层序界面,参考西沙宣德环礁西科1井资料[15](图5),认为其分别为下中新统底T60、中中新统底T50、上中新统底T40和上中新统顶面T30(图6)。其中T60界面整体频率较高,振幅较强,连续性较好。T50界面以中等频率、中弱振幅、连续性较好为主要特征。T40界面振幅较弱、连续性较好。T30界面斜坡区域频率较高、振幅中等、连续性较差,台地区域T30界面即为碳酸盐台地顶面,表现为强振幅且连续性好。
3.2 甘泉海台地层特征
经过对高分辨率地震剖面层序地层分析,结合西科1井钻井资料,揭示了甘泉海台台地区地层和台前斜坡区地层特征。
3.2.1 台地区地层特征
西科1井资料显示,西沙海域自中新世以来沉积了近1 300 m厚的碳酸盐岩地层,最新取样调查结果显示甘泉海台顶部零星区域有约4 m的松散沉积物,大多区域为碳酸盐岩地层裸露。结合甘泉海台地震剖面,认为T60之上地层均为碳酸盐岩地层。地震剖面显示,甘泉海台时间域发育了0.6 s碳酸盐岩地层,以2 500 m/s层速度[23]对台地区碳酸盐岩地层进行粗略时深转换,认为甘泉海台自中新世以来共生长约700 m生物礁碳酸盐岩地层。上新世期间相对海平面快速上升,生物礁逐渐处于透光带以下而死亡,碳酸盐岩停止产出(图7)。
对比西科1井资料和西沙相对海平面变化,剖面显示台地区主要呈潟湖相(SF2),在T40和T50处也发育喀斯特(SF3)。中中新世发育了厚层的碳酸盐岩,与该时期相对海平面稳定上升相关,早中新世和晚中新世碳酸盐岩地层相对较薄。气烟囱(SF10)指示台地内部中中新世以后发育流体上涌侵蚀。中新世之前,部分低洼区域开始沉积硅质碎屑与碳酸盐碎屑的混合沉积(SF9),深部地震相振幅较高,推测硅质碎屑含量高,浅部地震相振幅较低,推测碳酸盐岩碎屑含量较高。
3.2.2 斜坡区地层特征
地震剖面显示,西南部斜坡地势较缓,东北部斜坡地势较陡,两侧斜坡沉积结构差异较小(图8、9)。在早中新世期间斜坡主要以硅质-碳酸盐岩碎屑混合沉积(SF9)为主,台前斜坡也发育塔礁、点礁等生物礁(SF6);中中新世和晚中新世期间,远端斜坡主要以半深海沉积(SF7)为主,台前斜坡重力流沉积较发育,台地边缘生物礁被破坏产生的生物礁碎屑是重力流的主要沉积物来源;上新世以来,台地区已被淹没,生物礁停止生长,台地斜坡发育等深流沉积(SF8)。在西南部斜坡中中新统地层识别台地进积相(SF4),指示台地中中新世规模扩大(图8),在东北部斜坡上中新统地层识别台地退积相(SF5),指示台地收缩(图9)。
4. 西沙淹没台地发育演化模式
对比甘泉海台地层特征与西沙相对海平面变化,甘泉海台发育演化过程与相对海平面变化紧密相关。根据甘泉海台地层特征和演化过程,结合西沙构造背景,建立西沙淹没台地的发育演化模式,认为西沙淹没台地演化可分为4个时期:晚渐新世—早中新世碳酸盐岩开始沉积,逐渐形成台地,称为萌芽期;中中新世碳酸盐岩大量沉积,台地扩大加深,称为繁盛期;晚中新世碳酸盐岩减缓沉积,台地逐渐收缩,称为衰退期;上新世碳酸盐岩停止沉积,台地淹没消亡,称为淹没期(图10)。
4.1 晚渐新世—早中新世萌芽期
32 Ma以来随着南海扩张,西沙区域逐渐被海水淹没,远离陆源,开始沉积生物礁碳酸盐岩。随着构造活动趋于稳定,相对海平面逐渐上升,碳酸盐岩持续加积,形成碳酸盐台地。
晚渐新世,部分低洼区处于水下透光带,开始生长生物礁,构造高点的基岩仍暴露于海平面之上。强动力海流对低洼区的生物礁和高点处的基岩破坏侵蚀搬运,此时期以硅质-碳酸盐岩碎屑混合沉积为主。进入早中新世,西沙全区均被淹没,构造高点处于水下透光带,开始大规模生长生物礁,低洼地区处于透光带以下,停止原位生长生物礁,主要沉积由高点搬运而来的碳酸盐碎屑,混杂少量硅质碎屑。随着海平面持续稳定上升,高点处生物礁大量生长堆积,发育为碳酸盐台地,在早中新世末期,碳酸盐台地已初具规模。
4.2 中中新世繁盛期
中中新世时期,南海停止扩张,西沙全区热沉降,相对海平面持续稳定上升。早期发育的碳酸盐台地长期具备充足可容纳空间,台地规模发育加大,台地内部形成潟湖。台地周缘的斜坡-盆地逐渐进入半深海环境,开始接受大量以浊流形式搬运而来的重力流沉积,这些重力流沉积物主要来自台地剥蚀。
台地发育与次级相对海平面波动紧密相关,海平面上升时,碳酸盐台地纵向快速生长,且形成潟湖。海平面下降时,碳酸盐台地横向扩大。
4.3 晚中新世衰退期
晚中新世时期,西沙热沉降速率逐渐加剧[21],相对海平面快速上升,台地纵向生长,且开始收缩,斜坡进入半深海环境,碳酸盐台地发育成了孤立碳酸盐台地,台地顶部受强水动力侵蚀,碳酸盐岩碎屑常以重力流形式快速搬运至斜坡处沉积,因此斜坡沉积物较粗。
晚中新世早期,相对海平面稳定上升,台地纵向加积。随着后期海平面上升速率加快,台地边缘生物礁逐渐处于透光带以下,且东北季风作用加强[33],台地出现收缩,碳酸盐岩沉积效率也随之降低,台地逐渐显示被淹没趋势。
4.4 上新世至今的淹没期
上新世时期,相对海平面上升速率加快,台地全部处于透光带以下,生物礁死亡,碳酸盐岩停止沉积,碳酸盐台地被淹没。台地淹没后,海流持续侵蚀台地边缘和表面,台地顶部突出生物礁逐渐被剥蚀,台地表面趋于平坦。台地斜坡逐渐处于深水区,且鲜有大量碳酸盐岩碎屑重力流发育,斜坡处发育等深流,斜坡主要以较细粒的等深流沉积为主。
5. 结论
(1)在甘泉海台地震剖面中识别出10个特殊地震相,指示台地内部主要以潟湖沉积为主,台地周缘沉积以硅质碎屑与碳酸盐碎屑的混合沉积、半深海沉积和等深流沉积为主。识别出4个层序界面,其分别为下中新统底T60、中中新统底T50、上中新统底T40和上新统底T30。
(2)甘泉海台早中新世时期开始大规模生长生物礁,中新世期间发育了约700 m的碳酸盐台地,碳酸盐台地的发育演化主要受构造演化和海平面变化控制。中新世时期,碳酸盐台地产出高,大量碳酸盐岩被剥蚀、破坏,并被重力流搬运至台地周缘,碳酸盐台地成为周缘地层的主要沉积物来源。
(3)上新世相对海平面快速上升,甘泉海台被淹没,生物礁处于透光带以下而死亡,碳酸盐岩停止沉积,自台地搬运而来的碳酸盐岩碎屑减少,台地周缘斜坡逐渐处于深海区域,受等深流侵蚀,开始发育以细粒为主的等深流沉积。
(4)西沙海域发育了多个淹没碳酸盐台地,结合西沙构造背景和甘泉海台沉积过程,揭示了西沙淹没碳酸盐台地演化模式,可按地质历史时期分为晚渐新世—早中新世萌芽期、中中新世繁盛期,晚中新世衰退期和上新世至今的淹没期4个阶段。
-
图 1 芦苇湿地与稻田土壤铁含量特征
图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。
Figure 1. Characteristics of Fe contents in soil of P. australis wetland and paddy field
Different lowercase letters in the figure indicate that there is a significant difference between the same depth of soil at different sampling points (P<0.05), and different uppercase letters indicate that there is a significant difference between different depths of soil at the same sampling point (P<0.05).
图 2 芦苇湿地与稻田土壤氧化铁含量特征
图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。
Figure 2. Characteristics of Fe oxide content in soil of P. australis wetland and paddy field
Different lowercase letters in the figure indicate that there is a significant difference between the same depth of soil at different sampling points (P<0.05), and different uppercase letters indicate that there is a significant difference between different depths of soil at the same sampling point (P<0.05).
图 3 芦苇湿地与稻田土壤铁结合态有机碳及碳铁比特征
图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。
Figure 3. Characteristics of Fe–organic-carbon in soil and organic-carbon/Fe ratio in P. australis wetland and paddy field
Different lowercase letters in the figure indicate that there is a significant difference between the same depth of soil at different sampling points (P<0.05), and different uppercase letters indicate that there is a significant difference between different depths of soil at the same sampling point (P<0.05).
表 1 芦苇湿地与稻田土壤氧化铁参数特征
Table 1 Characteristics of parameters of Fe oxide in soil in P. australis wetland and paddy field
指标 采样时间 土层深度/cm 样地类型 芦苇湿地 稻田 活化度/% 春 0~10 67.28 ± 6.84Ba 63.84 ± 1.75Aa 10~20 69.79 ± 6.47Ba 68.42 ± 5.15Aa 20~30 75.04 ± 3.71Aa 53.21 ± 2.07Bb 冬 0~10 51.52 ± 5.66Aa 59.11 ± 7.75Aa 10~20 46.43 ± 3.29Bb 51.57 ± 3.71Aa 20~30 64.31 ± 4.90Aa 27.82 ± 3.73Bb 络合度/% 春 0~10 7.17 ± 0.72Ab 13.02±1.22Aa 10~20 7.80 ± 0.73Ab 9.63±0.22Ba 20~30 7.11 ± 0.88Aa 4.03±1.17Cb 冬 0~10 10.32 ± 1.76Aa 12.82±0.85Aa 10~20 7.85 ±2.36Bb 10.82±0.77Aa 20~30 5.70 ± 0.50Ca 4.08±1.11Ba 晶质氧化铁
/(g·kg-1)春 0~10 4.42±0.91Aa 4.35±0.20Ba 10~20 4.35±0.93Aa 3.68±0.64Ba 20~30 3.87±0.76Ab 7.06±1.40Aa 冬 0~10 6.85±0.77Aa 4.45±0.72Bb 10~20 7.73±0.56Aa 5.10±0.51Bb 20~30 5.25±0.95Ba 7.97±0.51Ab 晶胶率 春 0~10 0.53±0.15Aa 0.57±0.04Ba 10~20 0.48±0.17Aa 0.49±0.13Ba 20~30 0.34±0.07Bb 0.89±0.07Aa 冬 0~10 1.01±0.20Aa 0.79±0.26Bb 10~20 1.19±0.15Aa 0.97±0.13Ba 20~30 0.58±0.13Bb 2.14±0.11Aa 注:图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。 -
[1] Sasmito S D, Taillardat P, Clendenning J N, et al. Effect of land-use and land-cover change on mangrove blue carbon: a systematic review [J]. Global Change Biology, 2019, 25(12): 4291-4302. doi: 10.1111/gcb.14774
[2] Krause L, Klumpp E, Nofz I, et al. Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols [J]. Geoderma, 2020, 374: 114421. doi: 10.1016/j.geoderma.2020.114421
[3] Xia S P, Song Z L, Li Q, et al. Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C: N ratio, δ13C-δ15N, and lignin biomarker [J]. Global Change Biology, 2021, 27(2): 417-434. doi: 10.1111/gcb.15403
[4] Fluet-Chouinard E, Stocker B D, Zhang Z, et al. Extensive global wetland loss over the past three centuries [J]. Nature, 2023, 614(7947): 281-286. doi: 10.1038/s41586-022-05572-6
[5] Galford G L, Melillo J, Mustard J F, et al. The Amazon frontier of land-use change: croplands and consequences for greenhouse gas emissions [J]. Earth Interactions, 2010, 14(15): 1-24. doi: 10.1175/2010EI327.1
[6] Girsang S S, Correa T Q, Quilty J R, et al. Soil aeration and relationship to inorganic nitrogen during aerobic cultivation of irrigated rice on a consolidated land parcel [J]. Soil and Tillage Research, 2020, 202: 104647. doi: 10.1016/j.still.2020.104647
[7] 崔保山, 谢湉, 王青, 等. 大规模围填海对滨海湿地的影响与对策[J]. 中国科学院院刊, 2017, 32(4):418-425 CUI Baoshan, XIE Tian, WANG Qing, et al. Impact of large-scale reclamation on coastal wetlands and implications for ecological restoration, compensation, and sustainable exploitation framework [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(4): 418-425.
[8] Xia S P, Song Z L, Van Zwieten L, et al. Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China [J]. Global Change Biology, 2022, 28(20): 6065-6085. doi: 10.1111/gcb.16325
[9] Tan L S, Ge Z M, Ji Y H, et al. Land use and land cover changes in coastal and inland wetlands cause soil carbon and nitrogen loss [J]. Global Ecology and Biogeography, 2022, 31(12): 2541-2563. doi: 10.1111/geb.13597
[10] 张鑫磊, 宋怡轩, 张洁, 等. 围垦植稻对崇明东滩湿地产甲烷微生物的影响[J]. 农业环境科学学报, 2020, 39(2):411-417 ZHANG Xinlei, SONG Yixuan, ZHANG Jie, et al. Effects of reclamation and cultivating rice on CH4-producing microorganisms in Chongming Dongtan Wetland, China [J]. Journal of Agro-Environment Science, 2020, 39(2): 411-417.
[11] Wang F, Wang T, Gustave W, et al. Spatial-temporal patterns of organic carbon sequestration capacity after long-term coastal wetland reclamation [J]. Agriculture, Ecosystems & and Environment, 2023, 341: 108209.
[12] 王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展[J]. 土壤学报, 2018, 55(5):1041-1050 WANG Luying, QIN Lei, LÜ Xianguo, et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon [J]. Acta Pedologica Sinica, 2018, 55(5): 1041-1050.
[13] 段勋, 李哲, 刘淼, 等. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 2022, 37(2):202-211 DUAN Xun, LI Zhe, LIU Miao, et al. Progress of the iron-mediated soil organic carbon preservation and mineralization [J]. Advances in Earth Science, 2022, 37(2): 202-211.
[14] Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron [J]. Nature, 2012, 483(7388): 198-200. doi: 10.1038/nature10855
[15] Duan X, Yu X F, Li Z, et al. Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands [J]. Soil Biology and Biochemistry, 2020, 149: 107949. doi: 10.1016/j.soilbio.2020.107949
[16] Wan D, Ye T H, Lu Y, et al. Iron oxides selectively stabilize plant-derived polysaccharides and aliphatic compounds in agricultural soils [J]. European Journal of Soil Science, 2019, 70(6): 1153-1163.
[17] Zhao Q, Poulson S. R, Obrist D, et al. Iron-bound organic carbon in forest soils: quantification and characterization [J]. Biogeosciences, 2016, 13(16): 4777-4788. doi: 10.5194/bg-13-4777-2016
[18] 仝川, 黄佳芳, 王维奇, 等. 闽江口半咸水芦苇潮汐沼泽湿地甲烷动态[J]. 地理学报, 2012, 67(9):1165-1180 TONG Chuan, HUANG Jianfang, WANG Weiqi, et al. Methane dynamics of a brackish-water tidal Phragmites australis marsh in the Minjiang River Estuary [J]. Acta Geographica Sinica, 2012, 67(9): 1165-1180.
[19] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000 LU Rukun. Analysis Methods of Soil Science and Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
[20] Song L, Tian P, Zhang J B, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of Northeast China [J]. Science of the Total Environment, 2017, 609: ,1303-1311. doi: 10.1016/j.scitotenv.2017.08.017
[21] Murphy D V, Macdonald A J, Stockdale E A, et al. Soluble organic nitrogen in agricultural soils [J]. Biology and Fertility of Soils, 2000, 30(5): 374-387.
[22] Blair G J, Lefroy R D, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466. doi: 10.1071/AR9951459
[23] Kostka J E, Luther III G W. Partitioning and speciation of solid phase iron in saltmarsh sediments [J]. Geochimica et Cosmochimica Acta, 1994, 58(7): 1701-1710. doi: 10.1016/0016-7037(94)90531-2
[24] Chen C M, Dynes J J, Wang J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption [J]. Environmental Science & and Technology, 2014, 48(23): 13751-13759.
[25] 陈留美, 赵东波, 韩光中, 等. 中国稻田土壤铁流失及其环境意义[J]. 中国科学:地球科学, 2022, 5265(7):127753-129167 CHEN Liumei, ZHAO Dongbo, HAN Guangzhong, et al. Iron loss of paddy soil in China and its environmental implications [J]. Science China:Earth Sciences, 2022, 5265(7): 127753-129167.
[26] Giannetta B, Siebecker M G, Zaccone C, et al. Iron (Ⅲ) fate after complexation with soil organic matter in fine silt and clay fractions: an EXAFS spectroscopic approach [J]. Soil and Tillage Research, 2020, 200: 104617. doi: 10.1016/j.still.2020.104617
[27] Longman J, Faust J C, Bryce C, et al. Organic carbon burial with reactive iron across global environments [J]. Global Biogeochemical Cycles, 2022, 36(11): e2022GB007447. doi: 10.1029/2022GB007447
[28] Li Y, Fu C C, Zeng L, et al. Black carbon contributes substantially to allochthonous carbon storage in deltaic vegetated coastal habitats [J]. Environmental Science and & Technology, 2021, 55(9): 6495-6504.
[29] Shields M R, Bianchi T S, Gélinas Y, et al. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments [J]. Geophysical Research Letters, 2016, 43(3): 1149-1157. doi: 10.1002/2015GL067388
[30] Jones M E, Beckler J S, Taillefert M. The flux of soluble organic-iron (Ⅲ) complexes from sediments represents a source of stable iron (Ⅲ) to estuarine waters and to the continental shelf [J]. Limnology and Oceanography, 2011, 56(5): 1811-1823. doi: 10.4319/lo.2011.56.5.1811
[31] Chen N, Fu Q L, Wu T L, et al. Active iron phases regulate the abiotic transformation of organic carbon during redox fluctuation cycles of paddy soil [J]. Environmental Science and & Technology, 2021, 55(20): 14281-14293.
[32] Wei L, Zhu Z K, Razavi B S, et al. Visualization and quantification of carbon “rusty sink” by rice root iron plaque: mechanisms, functions, and global implications [J]. Global Change Biology, 2022, 28(22): 6711-6727. doi: 10.1111/gcb.16372
[33] Yao Y, Wang L L, Peduruhewa J G, et al. The coupling between iron and carbon and iron reducing bacteria control carbon sequestration in paddy soils [J]. Catena, 2023, 223: 106937. doi: 10.1016/j.catena.2023.106937
[34] Riedel T, Zak D, Biester H, et al. T. Iron traps terrestrially derived dissolved organic matter at redox interfaces [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 10101-10105. doi: 10.1073/pnas.1221487110
[35] Wang W, Sardans J, Zeng C, et al. Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland [J]. Geoderma, 2014, 232-234: 459-470. doi: 10.1016/j.geoderma.2014.06.004
[36] Howard J, Sutton-Grier A, Herr D, et al. Clarifying the role of coastal and marine systems in climate mitigation [J]. Frontiers in Ecology and the Environment, 2017, 15(1): 42-50. doi: 10.1002/fee.1451
[37] Button E S, Chadwick D R, Jones D L. Addition of iron to agricultural topsoil and subsoil is not an effective C sequestration strategy [J]. Geoderma, 2022, 409: 115646. doi: 10.1016/j.geoderma.2021.115646
[38] Rowley M C, Grand S, Verrecchia É P. Calcium-mediated stabilisation of soil organic carbon [J]. Biogeochemistry, 2018, 137(1-2): 27-49. doi: 10.1007/s10533-017-0410-1
[39] Faust J C, Tessin A, Fisher B J, et al. Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments [J]. Nature Communications, 2021, 12(1): 275-284. doi: 10.1038/s41467-020-20550-0
[40] Setia R, Smith P, Marschner P, Gottschalk, P, et al. Simulation of salinity effects on past, present, and future soil organic carbon stocks [J]. Environmental Science and & Technology, 2012, 46(3): 1624-1631.
[41] Wagai R, Mayer L M. Sorptive stabilization of organic matter in soils by hydrous iron oxides [J]. Geochimica et Cosmochimica Acta, 2007, 71(1): 25-35. doi: 10.1016/j.gca.2006.08.047
[42] Duan X, Li Z, Li Y H, et al. Iron-organic carbon associations stimulate carbon accumulation in paddy soils by decreasing soil organic carbon priming [J]. Soil Biology and Biochemistry, 2023, 179: 108972. doi: 10.1016/j.soilbio.2023.108972
[43] Jiang Z H, Liu Y Z, Lin J D, et al. Conversion from double-rice to maize-rice increases iron-bound organic carbon by “iron gate” and “enzyme latch” mechanisms [J]. Soil and Tillage Research, 2021, 211: 105014. doi: 10.1016/j.still.2021.105014
[44] 林于蓝, 陈钰, 尹晓雷, 等. 围垦养殖与退塘还湿对闽江河口湿地土壤铁碳结合特征的影响[J]. 环境科学学报, 2022, 42(7):466-477 LIN Yulan, CHEN Yu, YIN Xiaolei, et al. Effects of reclamation and pond returning on iron-bound organic carbon characteristics in the soil of Minjiang estuarine wetland [J]. Acta Scientiae Circumstantiae, 2022, 42(7): 466-477.
[45] Jiang Z H, Liu Y Z, Lin J D, et al. Conversion from double-rice to maize-rice increases iron-bound organic carbon by “iron gate” and “enzyme latch” mechanisms [J]. Soil and Tillage Research, 2021, 211: 105014. doi: 10.1016/j.still.2021.105014
[46] Zhao Y P, Xiang W, Ma M, et al. The role of laccase in stabilization of soil organic matter by iron in various plant-dominated peatlands: degradation or sequestration? [J]. Plant and Soil, 2019, 443(1-2): 575-590. doi: 10.1007/s11104-019-04245-0
[47] Wang Y Y, Wang H, He J S, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland [J]. Nature Communications, 2017, 8(1): 15972-9. doi: 10.1038/ncomms15972
[48] Mu C C, Zhang T J, Zhao Q, et al. Soil organic carbon stabilization by iron in permafrost regions of the Qinghai-Tibet Plateau [J]. Geophysical Research Letters, 2016, 43(19): 10-286-10294.
[49] Huang X Y, Liu X W, Liu J L, et al. Iron-bound organic carbon and their determinants in peatlands of China [J]. Geoderma, 2021, 391: 114974. doi: 10.1016/j.geoderma.2021.114974
[50] 杨颖, 吴福忠, 吴秋霞, 等. 陆地生态系统土壤铁结合态有机碳: 含量, 分布与调控[J]. 科学通报, 2023, 68(6):695-704 doi: 10.1360/TB-2022-0728 YANG Ying, WU Fuzhong, WU Qiuxia, et al. Soil organic carbon associated with iron oxides in terrestrial ecosystems: content, distribution and control [J]. Chinese Science Bulletin, 2023, 68(6): 695-704. doi: 10.1360/TB-2022-0728