西湖凹陷平湖斜坡北段平湖组薄煤层与泥岩的微观岩石学特征及其沉积学意义

何贤科, 李文俊, 段冬平, 荣乘锐, 夏振通

何贤科,李文俊,段冬平,等. 西湖凹陷平湖斜坡北段平湖组薄煤层与泥岩的微观岩石学特征及其沉积学意义[J]. 海洋地质与第四纪地质,2024,44(2): 210-222. DOI: 10.16562/j.cnki.0256-1492.2023030701
引用本文: 何贤科,李文俊,段冬平,等. 西湖凹陷平湖斜坡北段平湖组薄煤层与泥岩的微观岩石学特征及其沉积学意义[J]. 海洋地质与第四纪地质,2024,44(2): 210-222. DOI: 10.16562/j.cnki.0256-1492.2023030701
HE Xianke,LI Wenjun,DUAN Dongping,et al. Micro-petrological characteristics and its sedimentological significance of thin coal seam and mudstone in Pinghu Formation in the northern part of Pinghu Slope, Xihu Sag[J]. Marine Geology & Quaternary Geology,2024,44(2):210-222. DOI: 10.16562/j.cnki.0256-1492.2023030701
Citation: HE Xianke,LI Wenjun,DUAN Dongping,et al. Micro-petrological characteristics and its sedimentological significance of thin coal seam and mudstone in Pinghu Formation in the northern part of Pinghu Slope, Xihu Sag[J]. Marine Geology & Quaternary Geology,2024,44(2):210-222. DOI: 10.16562/j.cnki.0256-1492.2023030701

西湖凹陷平湖斜坡北段平湖组薄煤层与泥岩的微观岩石学特征及其沉积学意义

基金项目: 中海石油(中国)有限公司重大科技专项“西湖凹陷在生产油气田中后期综合调整关键技术研究与实践”(CNOOC-KJ135ZDXM39SH03);中海石油(中国)有限公司上海分公司科技项目(KJZL-2023-SH01)
详细信息
    作者简介:

    何贤科(1981—),男,硕士,高级工程师,长期从事海上油气开发相关工作,E-mail:hexk@cnooc.com.cn

  • 中图分类号: P736

Micro-petrological characteristics and its sedimentological significance of thin coal seam and mudstone in Pinghu Formation in the northern part of Pinghu Slope, Xihu Sag

  • 摘要:

    西湖凹陷平湖斜坡北段平湖组受河流与潮汐作用共同影响,水动力条件复杂,分支流水道砂体与潮汐水道砂体的成因存在争议。通过煤层与泥岩的微观岩石学特征分析,探讨其岩石结构与矿物组成、泥岩中碎屑颗粒排列方式、水动力条件与水介质环境,进而划分岩性相类型,展开砂-泥岩一体化的微相划分与水动力分析。其中,薄煤层可分为封闭洼地含草莓状黄铁矿煤层、分支流间湾沼泽纯煤层与天然堤粉砂质纹层煤层;泥岩可分为封闭洼地水平纹层状菱铁矿、分支流间湾含结核状菱铁矿,以及砂岩中交错纹层状菱铁矿。泥岩中广泛发育的菱铁矿指示平湖组沉积时期,发育富铁的局限潟湖环境;泥岩中黏土矿物以高岭石与伊利石混合的黏土为主,指示淡水-海水混层的沉积水介质环境。泥岩中微古生物与煤的显微组分指示其互层的箱形、钟形砂体为三角洲背景下的水道沉积,砂体为多期水道叠置的复合体。薄煤层与碳质泥岩及相关砂岩的微观岩石学分析表明,平湖斜坡北部平湖组具有典型的缓坡局限浅水沉积背景,陆源有机质供给丰富,泥岩中普遍富含碳质,砂体以单向水流沉积作用为主。薄煤层与泥岩岩相分析为薄煤层与砂岩成因分析提供了新的沉积学信息,为砂体预测评价提供了新的依据。

    Abstract:

    The Pinghu Formation in the northern part of the Pinghu Slope is rive-tidal deposits. The hydrodynamic conditions were complex, and there is a controversy on the origin of sandbodies for distributary channels and tidal channels. Through the analysis of micro-petrological characteristics of coal seams and mudstones, the rock structure and mineral composition, the arrangement of clastic particles in mudstones, hydrodynamic conditions, and water medium environment were discussed, and the types of lithologic facies were divided, after which the sandstone microfacies were divided based on sandstone-mudstone integration, and hydrodynamics was analyzed. In particular, the thin coal seam can be categorized into the strawberry-shaped pyrite coal seam indicative of a closed-basin environment, the pure coal seam reflecting an interdistributary bay, and the silty laminated coal seam formed in natural levee. Mudstone can be categorized into horizontal lamellar siderite formed in a closed sag, siderite concretion formed in an interdistributary bay, and crisscrossed lamellar siderite in sandstone. The widely developed siderite in mudstone indicates that an iron-rich and restricted lagoon was developed during the deposition of Pinghu Formation in the north of Pinghu Slope. Minerals in mudstone are mainly clays mixed with kaolinite and illite, indicating a fresh-marine mixed water medium environment. The micropaleontological assemblage in mudstone and macerals of coal indicate that the interbedded box-shaped and bell-shaped sandbodies are channel deposits under delta background, and the sandbodies are the complex of multi-phase channel superposition. The microscopic petrological analysis of thin coal seams, mudstones, and related sandstones shows that the Pinghu Formation was formed in a typical gentle-slope water-restricted shallow background, in which terrigenous organic matter was rich, mudstones were carbon-abundant, and sandbodies were dominated by one-way flow sedimentation. This study provided new data and a reference for reconstructing the sedimentary framework, understanding the genesis, and predicting sand bodies and thin coal seams in the Pinghu Formation in the Xihu Sag.

  • 图  1   西湖凹陷构造单元与平湖构造带北部构造位置

    Figure  1.   The structural units of Xihu Sag and the structural position of the northern part of the Pinghu Slope

    图  2   KB8井平湖组岩性组合及其典型沉积构造与菱铁矿类型

    Figure  2.   Lithologic association, typical sedimentary structure, and siderite type of the Pinghu Formation in Well KB8

    图  3   平湖斜坡北段平湖组的地震反射特征

    Figure  3.   Seismic reflection profiles of the Pinghu Formation in the northern section of the Pinghu Slope

    图  4   KB8井平湖组典型薄煤层与泥岩岩屑图片

    Figure  4.   Typical pictures of coal seams and mudstones debris in the Pinghu Formation

    图  5   平湖组三种典型菱铁矿的形态特征

    Figure  5.   Morphological characteristics of three typical types of siderite in the Pinghu Formation

    图  6   平湖组典型煤层的显微岩石结构特征与硫化物

    a:草莓状黄铁矿与薄煤层,KB1井,P8砂组,背闪射;b:泥质煤中草莓状黄铁矿,KB1井,P8砂组,背闪射;c:泥质与碳质互层,KB1井,P8砂组,背闪射;d:颗粒表面的菱铁矿包壳,KB8井,P5砂组,背闪射;e:碳质粉砂岩,KB8井,P5砂组,背闪射;f:碳质纹层,KB9井,P3砂组,背闪射。

    Figure  6.   Microstructures and sulfide types in typical coal seams of the Pinghu Formation

    a: Strawberry-shaped pyrite and coal seam in P8 sand unit of Well KB1; back flash; b: strawberry-shaped pyrite in argillaceous coal in the P8 sand unit of Well KB1; back flash; c: argillaceous and carbonaceous interbed in the P8 sand unit of Well KB1, back flash; d: siderite cladding on particle surface in the P5 sand unit of Well KB8; back flash; e: carbonaceous siltstone in the P5 sand unit of Well KB8; back flash; f: carbonaceous lamina in the P3 sand unit of Well KB9; back flash.

    图  7   平湖组典型煤层的显微岩石结构特征

    a:纯煤层,KB3井,P9砂组,单偏光;b:纯煤层,含草莓状黄铁矿,KB3井,P9砂组,反射光;c:泥质煤,KB3井,P7砂组,单偏光;d:粉砂质纹层煤,KB2井,P4砂组,单偏光;e:粉砂质纹层煤,KB8井,P4砂组,单偏光;f:碳质条带,KB7井,P9砂组,单偏光。

    Figure  7.   Microstructures of typical coal seams in the Pinghu Formation

    a: Pure coal seam in P9 sand unit of Well KB3; single polarized light; b: pure coal seam, strawberry-shaped pyrite in P9 sand unit of Well KB3; reflected light; c: argillaceous coal in P7 sand unit of Well KB3; single polarized light; d: silty laminated coal in P4 sand unit of Well KB2; single polarized light; e: silty laminated coal in P4 sand unit of Well KB8l; single polarized light; f: carbon strip in P9 sand unit of Well KB7; single polarized.

    图  8   KB1井泥岩中典型的滑塌变形构造与菱铁矿

    a:重力断层P8砂组,b:旋转纹层。

    Figure  8.   Typical structure of slumping deformation and siderite in mudstone of Well KB1

    a: Gravity fault in P8 sand unit, b: rotated laminae.

    图  9   KB3井单井相与泥岩岩屑颗粒的微观岩石学特征

    Figure  9.   Microfacies and micro-petrological characteristics of mudstone debris in Well KB3

    图  10   KB3井平湖组碳质泥岩中的黏土矿物能谱图

    a:碳质泥岩的背散射图片,X1为碳质纹层,X2为黏土质纹层;b:黏土质纹层的能谱。

    Figure  10.   Energy spectrum diagram of clay minerals in carbonaceous mudstone of the Pinghu Formation in Well KB3

    a: The backscatter image of carbonaceous mudstone; X1: carbonaceous laminae, X2: clay laminae; b: energy spectrum of clayey laminae.

    图  11   平湖斜坡北段平湖组沉积模式图

    Figure  11.   Sedimentary model of the Pinghu Formation in the northern section of the Pinghu Slope

    表  1   西湖凹陷新生代地层层序与演化阶段

    Table  1   Table1 The Cenozoic stratigraphic sequence, tectonic evolution stage of the Xihu Sag

    下载: 导出CSV

    表  2   平湖组泥岩与煤层的微观岩石学类型及古地理指示意义

    Table  2   Paleogeographic implications of micro-petrology of mudstone and coal seams in the Pinghu Formation

    菱铁矿与煤层、碳质泥岩类型微观岩石学特征古环境
    粉砂质纹层泥岩与薄煤层、菱铁矿交错纹理层理泥质、碳质纹层与粉砂质纹层互层,
    长英质碎屑颗粒表面覆盖菱铁矿膜
    天然堤与分支流水道砂体
    富硫化物薄煤层、结核状菱铁矿泥岩纯的薄煤层、含菱铁矿结核的碳质泥岩分支流间湾静水沉积环境
    富含草莓状黄铁矿薄煤层与碳质泥岩、纹层状菱铁矿碳质纹层与菱铁矿纹层交互,富含草莓状黄铁矿浪基面下静水潟湖环境
    下载: 导出CSV
  • [1] 彭伟欣. 东海油气勘探成果回顾及开发前景展望[J]. 海洋石油, 2001, 21(3):1-6 doi: 10.3969/j.issn.1008-2336.2001.03.001

    PENG Weixin. Prospects for developments and retrospects for oil/gas exploratory results in the East China Sea [J]. Offshore Oil, 2001, 21(3): 1-6. doi: 10.3969/j.issn.1008-2336.2001.03.001

    [2] 叶加仁, 顾惠荣, 贾健谊. 东海西湖凹陷油气地质条件及其勘探潜力[J]. 海洋地质与第四纪地质, 2008, 28(4):111-116

    YE Jiaren, GU Huirong, JIA Jianyi. Petroleum geological condition and exploration potential of Xihu Depression, East China sea [J]. Marine Geology & Quaternary Geology, 2008, 28(4): 111-116.

    [3] 陈琳琳, 王丽顺. 东海西湖凹陷始新统平湖组沉积层序特征及控相机制讨论[J]. 上海地质, 1990(2):51-61

    CHEN Linlin, WANG Lishun. Analysis of depositional sequence and controlling Facies Mechanism in Pinghu Formation, Xihu Sag, East China Sea [J]. Shanghai Land & Resources, 1990(2): 51-61.

    [4] 张建培, 徐发, 钟韬, 等. 东海陆架盆地西湖凹陷平湖组-花港组层序地层模式及沉积演化[J]. 海洋地质与第四纪地质, 2012, 32(1):35-41

    ZHANG Jianpei, XU Fa, ZHONG Tao, et al. Sequence stratigraphic models and sedimentary evolution of Pinghu and Huagang Formations in Xihu trough [J]. Marine Geology & Quaternary Geology, 2012, 32(1): 35-41.

    [5] 魏恒飞, 陈践发, 郭旺, 等. 西湖凹陷平湖组层序地层划分和聚煤特征[J]. 吉林大学学报:地球科学版, 2013, 43(3):669-679

    WEI Hengfei, CHEN Jianfa, GUO Wang, et al. Concentrating coal characteristics and sequences stratigraphic division of Pinghu Formation in Xihu Depression [J]. Journal of Jilin University:Earth Science Edition, 2013, 43(3): 669-679.

    [6] 刘成鑫. 东海平湖油气田平湖组沉积相研究[J]. 海洋石油, 2010, 30(2):9-13 doi: 10.3969/j.issn.1008-2336.2010.02.009

    LIU Chengxin. Study on sedimentary Facies for Pinghu Formation in Pinghu oil and gas field in East China Sea Basin [J]. Offshore Oil, 2010, 30(2): 9-13. doi: 10.3969/j.issn.1008-2336.2010.02.009

    [7] 吴嘉鹏, 万丽芬, 张兰, 等. 西湖凹陷平湖组岩相类型及沉积相分析[J]. 岩性油气藏, 2017, 29(1):27-34 doi: 10.3969/j.issn.1673-8926.2017.01.004

    WU Jiapeng, WAN Lifen, ZHANG Lan, et al. Lithofacies types and sedimentary Facies of Pinghu Formation in Xihu Depression [J]. Lithologic Reservoirs, 2017, 29(1): 27-34. doi: 10.3969/j.issn.1673-8926.2017.01.004

    [8] 周瑞琦, 傅恒, 徐国盛, 等. 东海陆架盆地西湖凹陷平湖组—花港组沉积层序[J]. 沉积学报, 2018, 36(1):132-141

    ZHOU Ruiqi, FU Heng, XU Guosheng, et al. Eocene Pinghu Formation-Oligocene Huagang Formation sequence stratigraphy and depositional model of Xihu Sag in East China Sea Basin [J]. Acta Sedimentologica Sinica, 2018, 36(1): 132-141.

    [9] 王果寿, 周卓明, 肖朝辉, 等. 西湖凹陷春晓区带下第三系平湖组、花港组沉积特征[J]. 石油与天然气地质, 2002, 23(3):257-261,265

    WANG Guoshou, ZHOU Zhuoming, XIAO Chaohui, et al. Sedimentary characteristics of Eogene Pinghu Formation and Huagang Formation in Chunxiao zone of Xihu Lake Depression [J]. Oil & Gas Geology, 2002, 23(3): 257-261,265.

    [10] 胡明毅, 沈娇, 胡蝶. 西湖凹陷平湖构造带平湖组砂岩储层特征及其主控因素[J]. 石油与天然气地质, 2013, 34(2):185-191

    HU Mingyi, SHEN Jiao, HU Die. Reservoir characteristics and its main controlling factors of the Pinghu Formation in Pinghu Structural Belt, Xihu Depression [J]. Oil & Gas Geology, 2013, 34(2): 185-191.

    [11] 杨彩虹, 高兆红, 蒋一鸣, 等. 西湖凹陷平湖斜坡带始新统平湖组碎屑沉积体系再认识[J]. 石油天然气学报(江汉石油学院学报), 2013, 35(9):11-14

    YANG Caihong, GAO Zhaohong, JIANG Yiming, et al. Reunderstanding of clastic rock sedimentary facies of Eocene Pinghu Formation in Pinghu Slope of Xihu Sag [J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2013, 35(9): 11-14.

    [12] 蒋海军, 胡明毅, 胡忠贵, 等. 西湖凹陷古近系沉积环境分析: 以微体古生物化石为主要依据[J]. 岩性油气藏, 2011, 23(1):74-78 doi: 10.3969/j.issn.1673-8926.2011.01.013

    JIANG Haijun, HU Mingyi, HU Zhonggui, et al. Sedimentary environment of Paleogene in Xihu Sag: microfossil as the main foundation [J]. Lithologic Reservoirs, 2011, 23(1): 74-78. doi: 10.3969/j.issn.1673-8926.2011.01.013

    [13] 蒋一鸣, 邵龙义, 李帅, 等. 西湖凹陷平湖构造带平湖组沉积体系及层序地层研究[J]. 现代地质, 2020, 34(1):141-153

    JIANG Yiming, SHAO Longyi, LI Shuai, et al. Deposition system and stratigraphy of Pinghu Formation in Pinghu Tectonic Belt, Xihu Sag [J]. Geoscience, 2020, 34(1): 141-153.

    [14] 吴峰, 任培罡, 谈明轩, 等. 东海西湖凹陷孔雀亭地区平湖组沉积相演变及其主控因素分析[J]. 海洋地质与第四纪地质, 2022, 42(2):119-130

    WU Feng, REN Peigang, TAN Mingxuan, et al. Facies evolution and its controlling factors of the Pinghu Formation in the Kongqueting area of Xihu Depression, the East China Sea [J]. Marine Geology & Quaternary Geology, 2022, 42(2): 119-130.

    [15] 张志垚, 张昌民, 侯国伟, 等. 东海盆地某凹陷P井区平湖组沉积微相及沉积模式[J]. 地质与资源, 2020, 29(2):142-151,160 doi: 10.3969/j.issn.1671-1947.2020.02.005

    ZHANG Zhiyao, ZHANG Changmin, HOU Guowei, et al. Microfacies distribution and sedimentary model of Pinghu Formation in P well area, East China Sea Basin [J]. Geology and Resources, 2020, 29(2): 142-151,160. doi: 10.3969/j.issn.1671-1947.2020.02.005

    [16] 王泽宇, 徐清海, 侯国伟, 等. 东海陆架盆地西湖凹陷W井区平湖组潮汐沉积模式[J]. 海相油气地质, 2021, 26(2):159-169 doi: 10.3969/j.issn.1672-9854.2021.02.008

    WANG Zeyu, XU Qinghai, HOU Guowei, et al. Tidal depositional model of Pinghu Formation in W well block of Xihu Sag, East China Sea Shelf Basin [J]. Marine Origin Petroleum Geology, 2021, 26(2): 159-169. doi: 10.3969/j.issn.1672-9854.2021.02.008

    [17] 陈忠云, 杜学斌, 李帅. 东海西湖凹陷平湖斜坡带平湖组沉积体系平面分区特征及差异性展布[J]. 石油实验地质, 2022, 44(5):780-789

    CHEN Zhongyun, DU Xuebin, LI Shuai. Distributional signatures of depositional system of Pinghu Formation, Pinghu slope, Xihu Sag, East China Sea Shelf Basin [J]. Petroleum Geology & Experiment, 2022, 44(5): 780-789.

    [18] 刘思琦, 张昌民, 朱锐, 等. 东海陆架盆地西湖凹陷平湖组潮汐韵律与潮汐周期分析[J]. 中南大学学报:自然科学版, 2021, 52(10):3703-3716

    LIU Siqi, ZHANG Changmin, ZHU Rui, et al. Analysis of tidal rhythmites and tidal cycle of Pinghu Formation in Xihu Sag, East China Sea Shelf Basin [J]. Journal of Central South University: Science and Technology, 2021, 52(10): 3703-3716.

    [19] 刘英辉, 蔡华, 段冬平, 等. 西湖凹陷平湖地区平湖组海侵体系域潮控三角洲-潮坪沉积特征及模式[J]. 海洋地质前沿, 2022, 38(1):33-40

    LIU Yinghui, CAI Hua, DUAN Dongping, et al. The sedimentary characteristics of tidal delta and tidal flat in transgressive system tract of Pinghu Formation in Pinghu area, Xihu Sag [J]. Marine Geology Frontiers, 2022, 38(1): 33-40.

    [20] 刘书会, 王宝言, 刘成鑫. 西湖凹陷平湖地区平湖组沉积相的再认识[J]. 油气地质与采收率, 2009, 16(3):1-3 doi: 10.3969/j.issn.1009-9603.2009.03.001

    LIU Shuhui, WANG Baoyan, LIU Chengxin. The recognition about sedimentary facies in Pinghu Formation of Pinghu region [J]. Petroleum Geology and Recovery Efficiency, 2009, 16(3): 1-3. doi: 10.3969/j.issn.1009-9603.2009.03.001

    [21] 于兴河, 李顺利, 曹冰, 等. 西湖凹陷渐新世层序地层格架与沉积充填响应[J]. 沉积学报, 2017, 35(2):299-314

    YU Xinghe, LI Shunli, CAO Bing, et al. Oligocene sequence framework and depositional response in the Xihu Depression, East China Sea shelf Basin [J]. Acta Sedimentologica Sinica, 2017, 35(2): 299-314.

    [22] 赵洪, 蒋一鸣, 常吟善, 等. 西湖凹陷平湖组基于沉积相标志的沉积特征研究[J]. 上海国土资源, 2018, 39(1):88-92

    ZHAO Hong, JIANG Yiming, CHANG Yinshan, et al. Study on sedimentary characteristics of the Pinghu Formation based on sedimentary facies markers in Xihu Sag, East China Sea Basin [J]. Shanghai Land & Resources, 2018, 39(1): 88-92.

    [23] 于水. 西湖凹陷西斜坡平湖组烃源岩沉积成因分析[J]. 地球科学, 2020, 45(5):1722-1736

    YU Shui. Depositional genesis analysis of source rock in Pinghu Formation of western Slope, Xihu Depression [J]. Earth Science, 2020, 45(5): 1722-1736.

    [24] 王欣, 李峰, 沈娇, 等. 西湖凹陷杭州斜坡带平湖组沉积体系及演化[J]. 油气地质与采收率, 2022, 29(4):57-68

    WANG Xin, LI Feng, SHEN Jiao, et al. Evolution of sedimentary system of Pinghu Formation in Hangzhou slope belt, Xihu Sag [J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 57-68.

    [25]

    Willis B J. Deposits of tide-influenced river deltas[M]//Giosan L, Bhattacharya J P. River Deltas—Concepts, Models, and Examples. Tulsa: SEPM Special Publication, 2005: 87-129.

    [26]

    Williams G E. Late Precambrian tidal rhythmites in South Australia and the history of the Earth's rotation [J]. Journal of the Geological Society, 1989, 146(1): 97-111. doi: 10.1144/gsjgs.146.1.0097

    [27]

    Tessier B, Gigot P. A vertical record of different tidal cyclicities: an example from the Miocene Marine Molasse of Digne (Haute Provence, France) [J]. Sedimentology, 1989, 36(5): 767-776. doi: 10.1111/j.1365-3091.1989.tb01745.x

    [28]

    Kvale E P, Archer A W. Tidal deposits associated with low-sulfur coals, Brazil Fm. (Lower Pennsylvanian), Indiana [J]. Journal of Sedimentary Research, 1990, 60(4): 563-574.

    [29]

    Li S L, Yu X H, Steel R, et al. Change from tide-influenced deltas in a regression-dominated set of sequences to tide-dominated estuaries in a transgression-dominated sequence set, East China Sea Shelf Basin [J]. Sedimentology, 2018, 65(7): 2312-2338. doi: 10.1111/sed.12466

    [30]

    Longhitano S G, Mellere D, Steel R J, et al. Tidal depositional systems in the rock record: a review and new insights [J]. Sedimentary Geology, 2012, 279: 2-22. doi: 10.1016/j.sedgeo.2012.03.024

    [31]

    Boldt K V, Nittrouer C A, Ogston A S. Seasonal transfer and net accumulation of fine sediment on a muddy tidal flat: Willapa Bay, Washington [J]. Continental Shelf Research, 2013, 60: S157-S172. doi: 10.1016/j.csr.2012.08.012

    [32] 何将启, 梁世友, 陈拥锋, 等. 东海盆地西湖凹陷新生代构造演化对油气的控制作用: 以平湖组油气响应为例[J]. 石油实验地质, 2008, 30(3):221-226 doi: 10.3969/j.issn.1001-6112.2008.03.002

    HE Jiangqi, LIANG Shiyou, CHEN Yongfeng, et al. Control on petroleum by Cenozoic tectonic evolution in the Xihu Sag, the East China Sea Basin: taking petroleum response of the Pinghu Formation as an example [J]. Petroleum Geology & Experiment, 2008, 30(3): 221-226. doi: 10.3969/j.issn.1001-6112.2008.03.002

    [33] 李云波, 姜波, 赵志刚, 等. 西湖凹陷构造发育及其对平湖组煤系的控制: 与黄县盆地对比分析[J]. 中国矿业大学学报, 2014, 43(3):432-441

    LI Yunbo, JIANG Bo, ZHAO Zhigang, et al. Tectonic development characteristics and their influence on coal seam distribution characteristics in Xihu Sag, East China Sea: comparative analysis to the Huangxian Basin in Shandong province [J]. Journal of China University of Mining & Technology, 2014, 43(3): 432-441.

    [34] 李居云, 姜波, 屈争辉, 等. 东海西湖凹陷构造演化及控煤作用[J]. 煤田地质与勘探, 2016, 44(5):22-27

    LI Juyun, JIANG Bo, QU Zhenghui, et al. Tectonic evolution and control of coal in Donghai Xihu Sag [J]. Coal Geology & Exploration, 2016, 44(5): 22-27.

    [35] 谢国梁. 西湖凹陷平北地区平湖组聚煤规律[D]. 中国矿业大学硕士学位论文, 2014: 119.

    XIE Guoliang. The coal accumulation patterns of Pinghu Formation in Pingbei area, Xihu Depression[D]. Master Dissertation of China University of Mining and Technology, 2014: 119.

    [36] 杨秀清, 毛景文, 张作衡, 等. 条带状铁建造: 特征、成因及其对地球环境的制约[J]. 矿床地质, 2020, 39(4):697-727

    YANG Xiuqing, MAO Jingwen, ZHANG Zuoheng, et al. Banded iron formations: their characteristics, genesis and implications for ancient Earth’s environment [J]. Mineral Deposits, 2020, 39(4): 697-727.

    [37] 张一杰, 沈玉林, 杨天洋, 等. 层序格架制约下的菱铁矿发育特征: 以黔西盘关地区晚二叠世煤系为例[J]. 煤炭学报, 2020, 45(S2):976-985

    ZHANG Yijie, SHEN Yulin, YANG Tianyang, et al. Development characteristics of siderite in the constraint of sequence frame: a case study of Late Permian coal measures in Panguan area [J]. Journal of China Coal Society, 2020, 45(S2): 976-985.

    [38] 杨秀清, 张旭升. 北祁连埃迪卡拉纪菱铁矿铁建造成因及其对海洋环境的约束[J]. 科学通报, 2021, 66(23):3032-3044 doi: 10.1360/TB-2020-1213

    YANG Xiuqing, ZHANG Xusheng. The genesis of Ediacaran siderite-rich iron formations in North Qilian, and its constraints on ancient oceanic conditions [J]. Chinese Science Bulletin, 2021, 66(23): 3032-3044. doi: 10.1360/TB-2020-1213

    [39]

    Raiswell R, Canfield D E. The iron biogeochemical cycle past and present [J]. Geochemical Perspectives, 2012, 1(1): 1-2. doi: 10.7185/geochempersp.1.1

    [40]

    Li J W, Peng X T, Bai S J, et al. Biogeochemical processes controlling authigenic carbonate Formation within the sediment column from the Okinawa Trough [J]. Geochimica et Cosmochimica Acta, 2018, 222: 363-382. doi: 10.1016/j.gca.2017.10.029

    [41]

    Ye J R, Qing H R, Bend S L, et al. Petroleum systems in the offshore Xihu Basin on the continental shelf of the East China Sea [J]. AAPG Bulletin, 2007, 91(8): 1167-1188. doi: 10.1306/02220705158

图(11)  /  表(2)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  49
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-04-16
  • 录用日期:  2023-04-12
  • 网络出版日期:  2023-09-07
  • 刊出日期:  2024-04-23

目录

    /

    返回文章
    返回