南海海马冷泉区沉积物孔隙水地球化学特征对冷泉活动的指示

孙国静, 管红香, 张志顺, 赵彦彦, 冯俊熙, 杨俊, 张广璐, 张雅茹, 魏浩天, 刘盛

孙国静,管红香,张志顺,等. 南海海马冷泉区沉积物孔隙水地球化学特征对冷泉活动的指示[J]. 海洋地质与第四纪地质,2024,44(1): 1-14. DOI: 10.16562/j.cnki.0256-1492.2023022301
引用本文: 孙国静,管红香,张志顺,等. 南海海马冷泉区沉积物孔隙水地球化学特征对冷泉活动的指示[J]. 海洋地质与第四纪地质,2024,44(1): 1-14. DOI: 10.16562/j.cnki.0256-1492.2023022301
SUN Guojing,GUAN Hongxiang,ZHANG Zhishun,et al. Geochemical characteristics of sediment pore water in Haima area of the South China Sea: An indication of cold seeps[J]. Marine Geology & Quaternary Geology,2024,44(1):1-14. DOI: 10.16562/j.cnki.0256-1492.2023022301
Citation: SUN Guojing,GUAN Hongxiang,ZHANG Zhishun,et al. Geochemical characteristics of sediment pore water in Haima area of the South China Sea: An indication of cold seeps[J]. Marine Geology & Quaternary Geology,2024,44(1):1-14. DOI: 10.16562/j.cnki.0256-1492.2023022301

南海海马冷泉区沉积物孔隙水地球化学特征对冷泉活动的指示

基金项目: 国家自然科学基金项目“冷泉系统甲烷消耗过程的氢利用及其生物地球化学记录”(42276053);泰山学者青年专家项目(tsqn202211069);中央高校基本科研业务费专项( 202172002,202172003)
详细信息
    作者简介:

    孙国静(1997—),女,硕士研究生,海洋地质专业,E-mail:sungj97@163.com

    通讯作者:

    管红香(1981—),女,博士,教授,主要从事冷泉生物地球化学研究,E-mail: guanhongxiang@ouc.edu.cn

    赵彦彦(1978—),女,博士,教授,主要从事海洋沉积化学研究,E-mail:zhaoyanyan@ouc.edu.cn

  • 中图分类号: P736.4

Geochemical characteristics of sediment pore water in Haima area of the South China Sea: An indication of cold seeps

  • 摘要:

    海马冷泉位于南海琼东南海域,是南海迄今发现的两个活动冷泉之一。我们对海马冷泉Rov2和PC3站位两个活塞重力柱沉积物孔隙水的阴阳离子、溶解无机碳(DIC)及其碳同位素组成和Sr、Ba含量等进行了分析。结果表明,两个站位孔隙水DIC含量(Rov2和PC3最大DIC含量分别为27.4 、8.5 mM)和δ13CDIC(Rov2和PC3站位最低值分别为−54.63‰和−48.93‰)具有明显的镜像关系。结合孔隙水硫酸盐浓度的变化特征,Rov2和PC3站位的硫酸盐-甲烷界面(SMI)分别位于约485和410 cm。通过模拟估算,Rov2和PC3站位向上甲烷通量分别为67.4和97.2 mol·m−2·ka−1,较浅的SMI深度与相对较高的甲烷通量相一致。SMI附近极低的孔隙水δ13CDIC值指示了AOM作用的发生及其对DIC的贡献。在Rov2站位,自生碳酸盐矿物以高镁方解石为主,阳离子Ca2+、Mg2+和Sr2+含量随深度增加并表现出与SO42−阴离子含量相似的变化特征。在SMI附近,随着SO42−的消耗、有机质的矿化将大量的Ba2+和PO43−释放进入孔隙水。因此,冷泉孔隙水地球化学特征的变化能帮助我们有效识别渗漏活动过程,对AOM作用下物质的迁移与转化具有重要的指示意义。

    Abstract:

    The Haima cold seeps are located in the southeastern part of Qiongdongnan Basin, which is one of the two active cold seeps found in the South China Sea. We analyzed the contents of anions and cations, dissolved inorganic carbon (DIC) and its carbon isotopic composition, and Sr and Ba contents of sediment pore water in two piston gravity columns at the Rov2 and PC3 cores in Haima Cold Seeps. Results show that the DIC contents and δ13CDIC values of pore water in the two cores had a significant "mirror" relationship. With the increase of depth, the DIC contents of the two cores gradually increased (Maximum DIC content of Rov2 and PC3: 27.4 and 8.5 mM, respectively). In contrast, the δ13CDIC values had a negative excursion (Minimum values for the two cores: −54.63‰ and −48.93‰, respectively). Combined with the sulfate depth profile characteristics of pore water, the sulfate-methane interface (SMI) in Rov2 and PC3 cores was located at ~485 and ~410 cm, respectively. The upward methane fluxes in Rov2 and PC3 cores were estimated to be 67.4 and 97.2 mol m−2 ka−1, respectively. The very low δ13CDIC values in pore water near SMI are indicative of the occurrence of AOM (anaerobic oxidation of methane) interaction and its contribution to DIC. In Rov2 core, authigenic carbonate minerals are dominated by high-Mg calcite, and the Ca2+, Mg2+ and Sr2+ showed similar trends to those of SO42−. Near the SMI, with the depletion of SO42−, the mineralization of organic matter released large amounts of Ba2+ and PO43− into the pore water. The geochemical characteristics of pore water could help us effectively identify the early diagenesis in seepage activity area, and are indicative of migration and transformation of materials under the influence of AOM.

  • 冲绳海槽位于东海和琉球群岛之间,具有过渡性地壳,是菲律宾海板块向欧亚板块俯冲形成的处于张裂阶段的年轻弧后盆地[1-7],其与琉球海沟、琉球岛弧构成了完整的沟-弧-盆体系,成为研究弧后扩张早期阶段的盆地演变、岩浆作用和壳幔过程的天然实验室,也是了解弧后盆地的发生和发展、地幔物质熔融及岩浆起源的一个罕见的“窗口”[8],对于认识海洋环境演化过程、了解气候环境的变化情况等具有重要意义。同时海槽内发育第四纪以来巨厚的连续沉积层,其保存并记录了陆源物质的输入、海平面变化、海洋环流等重要的沉积信息,加之其位于陆地向海洋的过渡地带,也是研究海陆相互作用及古环境变化的理想区域。特别是冲绳海槽南段是整个海槽中自全新世以来具最高沉积速率的地区[9],更成为了研究海洋环流和古气候演化的重要区域[10]

    1984年在冲绳海槽中部的伊平屋脊段发现海底热液活动以来[11],该区域便成为了中外学者研究热液活动的重点及热点地区。槽内火山和地震等构造活动剧烈,具有独特的区别于其他成熟弧后盆地的基底岩石、构造环境,发育着特殊的热液活动和成矿作用,形成了特殊的类似于陆地上古代Kuroko型火山成因的块状硫化物矿床[12]。不仅如此,由于热液活动在冲绳海槽中段和南段广泛发育,因此周围沉积物或多或少受到热液活动的影响,易在热液喷口附近区域或在离热液活动区较远的周围形成近喷口含金属沉积物或远端含金属沉积物[13-15],这些热液沉积物在元素组成上明显区别于正常远洋沉积物,主要以富集Fe、Mn、Cu、Pb、Zn、As等元素并亏损Al和Ti等元素[16-18]为主要特征。热液活动与沉积物之间通过元素交换等地球化学过程形成了紧密的联系,且海底热液区附近区域的热液沉积物是海底热液循环存在的证据, 同时也是研究海底热液系统形成与演化的重要窗口。

    冲绳海槽作为一个热液活动发育的弧后盆地,前人已进行了大量与热液活动相关的研究工作,且主要集中于热液区地球物理特征、热液流体的物理化学性质、热液沉积物的矿物及地球化学特征、热液多金属硫化物堆积体的矿物及地球化学特征、热液喷口附近生物群落和基底岩石的类型及矿物学、地球化学特征的研究[8,12,19-33]。尽管如此,对于冲绳海槽南段沉积物的研究主要聚焦于矿物和化学组成方面的研究,缺少利用顺序提取法对沉积物分相态以进行元素赋存状态分析的相关研究。众所周知,通过顺序提取法进行赋存状态研究可以提供更多的元素总量难以反映的沉积物源及环境等信息,加之冲绳海槽南段构造活动较为频繁、沉积环境较为动荡以及多种来源沉积物混杂的特征导致了沉积物中的热液活动记录信号较弱。因此,本文基于Bayon[34-35]、Chester[36]、Gutjahr[37]等的顺序提取法实验,对冲绳海槽南部沉积物岩芯样品进行顺序提取实验、常量和微量元素组成分析,进而研究了沉积物中元素的赋存状态,以探讨热液活动对沉积物的元素组成及赋存状态的影响,寻找其中热液活动的沉积记录,并评估热液活动对沉积物的元素地球化学贡献和赋存状态的影响。

    冲绳海槽位于欧亚板块与太平洋板块之间的汇聚带上,是西太平洋活动大陆边缘的组成部分,受菲律宾海板块俯冲形成[38-39]。冲绳海槽的北段以日本的九州岛为界,南段以中国的台湾岛为界,整体呈向东南方向凸出的新月形,总体走向为北东-南西向,长约1200 km,宽约100~150 km。基于地形和构造演化的差异,Shinjo等[38]将冲绳海槽以Tukara和Miyako断层构造带为界分为北段、中段及南段。冲绳海槽的特征是高热通量,强烈的火山活动,大量的断层发育,较强的重力异常以及弱的负地磁异常,存在基底凹陷和上地幔隆起[40-41]。俯冲的菲律宾海板块在海槽中轴线以下约150~200 km,在海槽南轴线以下约150 km[42]。菲律宾海板块俯冲的速度在海槽南段约为7 cm/a,在海槽中段约为5 cm/a[43]。冲绳海槽南段地壳的厚度为13~16 km,向北逐渐增加,最高可达30 km,中段地区的地壳厚度为16~22 km[1,44]。槽内广泛分布了来自周围大陆和岛屿的厚层碎屑沉积物,以及与弧和弧后火山活动有关的火山碎屑沉积物[26,45]

    本文研究的沉积物岩芯HOBAB4-S2(长度24°52′49.906″N 、122°37′19.702″E,长度477 cm,)位于冲绳海槽南段的唐印热液区和第四与那国热液区之间(图1),取样水深1505 m,由中国科学院海洋研究所“科学”号考察船于2016年5月使用重力取样器采集。该岩芯沉积物主要由深灰色泥组成,偶尔可见淤泥和细砂层。作者以1 cm间隔进行取样获得了477个样品,选取了40个层位的样品进行了全岩常量、微量元素组成测试,选取了20个层位的样品进行了顺序提取实验,顺序提取法流程参考了Bayon[34]和Yu[47]等改进的实验方法,并采用李康[48]等的方法将沉积物分为碳酸盐相、铁锰氧化物相、有机结合相及残留相,并测定了各相的主量和微量元素组成。

    图  1  研究区构造地形图(a)及取样位置图(b)
    图1a底图引自文献 [46],图1b底图数据来自https://www.gebco.net/。
    Figure  1.  Tectonic topographic map of the study area (a) and sampling location (b)
    Base map of 1a is from reference [46]; base map data of 1b from https://www.gebco.net/.

    样品处理及分析流程:首先,将沉积物样品放置烘箱中于60℃下烘干24 h。然后,取出用玛瑙研钵研磨成200目的粉末以备全岩分析测试。取40 mg粉末,加入特氟龙消解罐中,向其中加入1.5 mL浓氢氟酸和0.5 mL浓硝酸后,密封并放置加热板于150℃加热24 h。放凉至液体不会喷出,打开盖子将剩余液体加热蒸干,然后加入1 mL浓硝酸和1 mL超纯水,密封后继续放置于150℃电热板上加热24 h至样品完全溶解,再加入超纯水定容至40 g。主量元素含量的测试在青岛斯八达分析测试有限公司使用美国瓦里安公司Vrian720ES型ICP-OES完成,相对标准偏差<2%;微量元素含量的测试在青岛斯八达分析测试有限公司使用美国瓦里安公司Varian820型电感耦合等离子体质谱仪(ICP-MS)完成,相对标准偏差<5%。测试过程中采用GBW07314、GBW07315、GBW07316以及美国地质调查局玄武岩标准物质BHVO-2作为标准样品。残留相的消解步骤与沉积物全岩相同,碳酸盐相、铁锰氧化物相、有机结合相在经过顺序提取分离后,分别将其置于特氟龙消解罐中,加入1.5 mL浓氢氟酸和0.5 mL浓硝酸后,不封盖放置于150℃电热板上加热蒸至近干,然后加入1 mL浓硝酸和1 mL超纯水,密封后继续放置于150℃电热板上加热12 h,冷却后加入超纯水转移至定容瓶中定容至40 g。各相主量元素和微量元素组成的测定方法同沉积物全样。

    HOBAB4-S2岩芯沉积物中主量及微量元素在各相态中的含量分布见图2,由图可见岩芯沉积物中元素在四种相态中的分布极不均匀,Al、Ti、K均表现为在残留相中的含量普遍高于其他相态。Fe在残留相中的含量最高,其次是碳酸盐相,其在铁锰氧化物相及有机结合相中的含量均较低。Mn在碳酸盐相中的含量明显高于其他相态。Cu在有机结合相中的含量高于其他三相,Pb在铁锰氧化物相中的含量高于其余相的,Zn、Co、Ni在碳酸盐相中含量明显高于其他相态。Al、Ti、K元素的总含量随岩芯深度变化不大,平均值分别为20.0%、0.9%、4.2%,较海槽表层沉积物[49]稍高。Fe元素含量随深度变化也不大,其总含量平均为16%,与海槽南段表层沉积物相比偏高。Mn元素总含量相较于海槽表层沉积物偏低,平均为0.48%。Cu、Zn、Pb元素总含量均比海槽沉积物高很多,随深度变化较大,且随深度变化趋势相同。Co、Ni元素总含量也较海槽沉积物更高,随深度变化不大,但变化趋势相同。

    图  2  岩芯沉积物中元素在各相态中含量的分布
    F1-碳酸盐相,F2-铁锰氧化物相,F3-有机结合相,F4-残留相(下同)。虚线表示冲绳海槽南部表层沉积物元素丰度,数据引自文献[49]。
    Figure  2.  Distribution of elemental contents of various phase states in core sediments
    F1: carbonate phase,F2: Fe-Mn oxide phase, F3: organic bound phase,F4: residual phase (same below). The dashed line indicates the elemental abundance of surface sediments in the southern of the Okinawa Trough. Data are obtained from reference [49].

    为进一步确定元素含量在各相态中的分布比例,采用元素在各相态中的含量与其在沉积物中的总含量之比,即用各相态的萃取比例作萃取比例分布图(图3)。由图可见,几乎全部的Al、K和Ti都赋存于残留相中,尤其是Al、Ti在整个岩芯各层位沉积物中的萃取比例均在90%以上,而K的萃取比例稍低,但平均在70%以上,且含量随深度变化微弱,另有小部分进入碳酸盐相中,基本不赋存于有机结合相及铁锰氧化物相中。Fe主要赋存于残留相,其平均萃取比例约为50%,次要赋存相为碳酸盐相,平均萃取比例为25%,另有少部分赋存在铁锰氧化物相与有机结合相中。Mn主要赋存于碳酸盐相,萃取比例平均为78%,且萃取比例随深度变化不大,而在其余三相中萃取比例均极低,特别是在有机结合相中,Mn萃取比例很低,平均为5%,在铁锰氧化物相中Mn萃取比例变化较为明显,但平均萃取比例也很低,约为12%。

    图  3  岩芯沉积物中各元素在不同相态中萃取比例的分布
    Figure  3.  Distribution of extraction ratios of elements in different phases in core sediments

    Cu的赋存形态在不同的层位也具有较大的差异,整体上主要赋存于有机结合相中(51%),其次是碳酸盐相和残留相中,二者萃取比例基本相当,平均分别为24%和19%。而铁锰氧化物相的萃取比例很低,平均只有8%,但在某些层位变化较大。Pb的赋存状态较为特别,其主要赋存于铁锰氧化物相与碳酸盐相,且在铁锰氧化物相与碳酸盐相中的萃取比例随深度变化较大,两者萃取比例变化趋势呈现相反的特征,萃取比例的平均值分别为42%与47%,极少部分赋存于有机结合相与残留相中,且在其中的平均萃取比例均低于5%。

    Zn与Co、Ni元素的萃取比例分布很相似,均主要赋存于碳酸盐相中,平均萃取比例分别为33%、58%、47%,这3个元素中Co在碳酸盐相中的平均萃取比例最高。Co元素有少部分进入除碳酸盐相的其余三相中,且萃取比例随深度变化微弱。Zn和Ni元素的次要存在相均为残留相,在残留相中的萃取比例平均分别为28%和34%,且Zn元素在残留相中萃取比例的变化较Co元素的变化大。

    综上所述,在铁锰氧化物相与有机结合相中大部分金属元素含量较低甚至缺乏,除Cu大部分赋存于有机结合相中,Pb大部分赋存于铁锰氧化物相中之外,大部分元素在铁锰氧化物相及有机结合相中的萃取比例均较低,在铁锰氧化物相中的萃取比例均低于26%,在有机结合相中的萃取比例均低于25%。整体上看,各元素赋存状态极不均匀。除Al、Ti外,其余元素在碳酸盐相中均有所赋存,尤其以Mn、Co在该相中占比最高,其余元素占比的平均值均高于30%。除Al、Ti、K外其余元素在铁锰氧化物相中均有存在,但所占比例不高,除Pb外萃取比例均较低。除K、Mn、Pb有极少量存在于有机结合相中外,其余元素在有机结合相中均有存在,但所占比例均不高,除Cu在该相中萃取比例较高外其余元素在该相中萃取比例均较低。除Mn、Pb有极少量存在于残留相中外,其余元素在残留相中均有存在,Al、Ti、K、Fe、Ni均在残留相中占主要优势。

    残留相是所研究的主量元素中最主要的赋存形式,除Mn以外,残留相中各元素的含量及萃取比例一般均高于其余相态,尤其以Al、Ti最为典型,元素含量93%以上均赋存于残留相中。残留相中主要包括碎屑硫酸盐、铝硅酸盐和少量难溶硫化物或难溶有机质[50]。因此岩芯沉积物中多种元素主体赋存于残留相中的特征反映了这些元素在沉积物中主要以碎屑硅酸盐形式赋存,同时也反映了该区陆源或火山碎屑形式的供给对沉积物的元素聚集有着重要贡献。这与前人在该区的研究结果相一致[49]

    碳酸盐相是岩芯沉积物中元素的另一主要赋存形态,除Al、Ti之外其余元素在该相态中均有所赋存,且表现出岩芯沉积物该相态中K、Cu、Zn、Pb的元素含量与萃取比例变化趋势一致的特征,在该相态中Fe、Mn、Co、Ni元素的含量与萃取比例变化趋势呈大致相同的特征。

    值得注意的一点是,除Al、Ti、K外其余的金属元素在铁锰氧化物相中的萃取比例随深度变化趋势相同,且在该相态中Cu、Zn、Pb、Co、Ni、Fe、Mn元素的含量随深度变化趋势一致同时与萃取比例随深度变化情况基本相同(图4图5)。可见Cu、Zn、Pb、Co、Ni、Fe、Mn元素的萃取比例在78、190、294、420 cm层位处出现高值(图4图5)。Pb在铁锰氧化物相中的萃取比例变化范围极大,萃取比例最大可达61%,最低为19%。Cu、Zn、Co、Fe的萃取比例均在30%以内变化,Ni和Mn的萃取比例相对较低且均在20%以内变化。Pb的元素含量在岩芯铁锰氧化物相各层位中也是最高的,同时变化范围也很大,元素含量最高为511 μg/g,最低为42 μg/g,含量平均值为150 μg/g。岩芯铁锰氧化物相中Zn的元素含量在11~67 μg/g之间变化,平均值为41 μg/g。Cu的元素含量变化范围是3.3~40 μg/g,平均值为16.7 μg/g。Ni的元素含量变化区间为2.8~19.6 μg/g,平均值为9.4 μg/g。Co的元素含量变化范围为1.8~12.6 μg/g,平均值为6.3 μg/g。Fe、Mn的含量在铁锰氧化物相中均较低,其中Fe的元素含量变化范围为0.6%~3.9%,平均值为1.8%。元素Mn的含量在铁锰氧化物相中最低,变化范围为0.01%~0.06%,平均值为0.03%。

    图  4  铁锰氧化物相中几种金属元素萃取比例随深度变化
    Figure  4.  Variation of extraction ratio of several metal elements in Fe-Mn oxide phase with depth
    图  5  铁锰氧化物相中元素含量随深度变化
    Figure  5.  Variation of elemental content in Fe-Mn oxide phase with depth

    可以看出,岩芯铁锰氧化物相中稀土元素总量随深度变化趋势与Fe、Mn、Cu、Zn、Pb、Co、Ni元素在铁锰氧化物相中的萃取比例及含量随深度变化趋势一致(图6),稀土元素总量变化范围很大,最低只有15 μg/g,最高达到122 μg/g,平均值为55.3 μg/g。轻稀土元素(La—Eu)变化范围为12.8~104 μg/g,平均值46.9 μg/g。重稀土元素(Gd—Lu)总量变化范围为2.4~18.1 μg/g,平均值8.4 μg/g。轻稀土元素与重稀土元素均表现为统一的含量变化趋势,同时该相态中轻稀土元素明显较重稀土元素富集。

    图  6  铁锰氧化物相中稀土元素总量随深度变化
    Figure  6.  Variation of total rare earth elements in Fe-Mn oxide phase with depth

    岩芯各层位的铁锰氧化物相中稀土元素球粒陨石标准化配分模式图(图7)显示,其整体上呈现右倾趋势,具有明显Eu负异常(δEu平均为0.67),轻微Ce正异常(δCe平均为1.07),各个层位中铁锰氧化物相的稀土元素球粒陨石标准化配分模式大体一致,该特征与南大西洋受热液活动影响较小的沉积物[52]的铁锰氧化物相的稀土元素球粒陨石标准化配分模式相似(δEu=0.71,δCe=1.60),相较于南大西洋受热液活动影响较小的沉积物没有较为明显的Ce正异常,Eu的负异常则较为相似。

    图  7  铁锰氧化物相稀土元素球粒陨石标准化配分模式
    球粒陨石标准化值数据引自文献[51]。
    Figure  7.  Chondrite-normalized REE distribution patterns in the Fe-Mn oxide phase
    Normalization values are from reference [51].
    $$ {\delta }\text{Eu}=\frac{\text{E}{\text{u}}_{\text{N}}}{\sqrt{\text{S}{\text{m}}_{\text{N}}\times \text{G}{\text{d}}_{\text{N}}}}{\text ,}{\delta }\text{Ce}=\frac{\text{C}{\text{e}}_{\text{N}}}{\sqrt{\text{L}{\text{a}}_{\text{N}}\times P{r}_{\text{N}}}} $$

    由稀土元素在铁锰氧化物相和残留相中的萃取比例分布(图8),可以看出稀土元素在铁锰氧化物相中的萃取比例在10%~30%之间,稀土元素萃取比例平均值低于20%。而在残留相中,基本上所有稀土元素的萃取比例明显高于30%,个别稀土元素萃取比例可达70%以上,平均萃取比例为44%,对比发现稀土元素主要赋存于残留相中。所有的稀土元素均显示了同一变化趋势,反映了其极为相似的地球化学性质。

    图  8  铁锰氧化物相(a)和残留相(b)中稀土元素萃取比例分布图
    Figure  8.  Distribution of extraction ratio of rare earth elements in Fe-Mn oxide phase (a) and residual phase (b)

    前人的研究认为,铁锰氧化物通过对周围水体中元素的清扫作用,可以从周围海水捕获大量元素,同时通过前人对冲绳海槽中段热液区附近沉积物的顺序提取分析的研究可知,铁锰氧化物结合态是热液源组分在沉积物中的主要赋存形式[47]。冲绳海槽南段热液活动发育,岩芯沉积物周围有唐印热液区与第四与那国热液区,岩芯沉积物的取样位置距离东南部的第四与那国热液活动区大约10 km,距离西北部的唐印热液区大约20 km,岩芯沉积物取自于唐印热液区和第四与那国热液区之间(图1),指示了样品中很可能有热液来源物质的加入,因此推测岩芯在78、190、294、420 cm层位处的沉积物经历了热液活动的影响,并且改变了该层位沉积物中元素的赋存状态,从而影响岩芯沉积物整体的元素富集形式。对于唐印热液区的研究表明,热液羽流会在洋流作用下向南或东南方向迁移扩散[53]。深海沉积物中的热液组分主要通过两种方式形成:(1)热液物质从中性浮力羽流中扩散和沉降以及热液的横向扩散形成广泛分布的高Fe(20.01%~39.33%)、Mn(4.00%~13.65%)含量的热液沉积物[17,54-56],(2)在喷口附近形成的硫化物的大规模冲刷和侵蚀。前人的研究表明,热液羽流中的颗粒大小不超过70 μm[18],其中大多数颗粒的直径都小于2 μm,而硫化物颗粒的粒度大于63 μm,同时HOBAB4-S2岩芯中的Fe(2.66%~4.72%)、Mn(0.04%~0.05%)含量均低于由热液羽流扩散形成的热液沉积物的Fe、Mn含量,因此可以认为热液活动形成的硫化物颗粒会通过热液羽流的迁移和输送而在距离热液喷口的远端剧烈沉降至海底沉积。唐印热液区的热液沉淀物中富含Fe、Zn、Pb及自然硫,含金属沉积物中富含黄铁矿、闪锌矿、方铅矿和少量磁黄铁矿。第四与那国热液区中的硫化物主要包括闪锌矿和少量黄铁矿、黄铜矿。黄铁矿、黄铜矿、闪锌矿、方铅矿中富含Fe、Cu、Zn、Pb,而Yang 等[57]在岩芯沉积物中观察到了黄铁矿、方铅矿、黄铁矿和少量闪锌矿,其组成与唐印热液区硫化物更为相似因此认为热液组分来源于唐印热液区。因此可以确定沉积物受热液活动影响,且可能同时接受了来自唐印热液区及第四与那国热液区的热液硫化物的贡献,使Fe、Cu、Zn、Pb等元素在铁锰氧化物相中的含量及萃取比例在几个层位的明显偏高。通过浮游有孔虫的挑选及AMS 14C测年,测年结果通过Calib7.1软件校正后显示岩芯沉积物底部沉积年龄为624 aBP[58]。Fujiwara 等[59]从第四与那国热液区的热液硫化物矿床中提取的重晶石进行电子自旋共振(ESP)年龄研究时,发现取自活动的热液喷口烟囱体的样品年龄为580~990 aBP,来自活动的热液喷口的样品显示出较轻的年龄为200~260 aBP,均表明第四与那国热液区范围内近1 000年来发生过频繁的热液活动现象,因此沉积物岩芯沉积过程中受到频繁的热液活动影响是极为可能的。通过逐次线性内差法对表1中的年代学数据进行计算,发现本次研究中的4个受到热液活动影响的层位沉积年代分别为99、187、312、448 aBP。

    表  1  HOBAB4-S2岩芯碳同位素测年结果
    Table  1.  Results of carbon isotope dating for HOBAB4-S2 cores
    深度/cm材料AMS 14C
    年龄/aBP
    校正年龄/aBP数据来源
    中间年龄年龄范围/2σ
    74浮游有
    孔虫
    290±30350~70文献[58]
    125560±30159260~47
    283690±30304424~230
    387730±30346432~268
    4771090±30624682~541
    下载: 导出CSV 
    | 显示表格

    Hsu[60]等运用顺序提取法对冲绳海槽南段的热液活动区和非热液活动区沉积物中Fe、Mn、Al等元素进行对比研究,同样发现受热液活动影响的沉积物在铁锰氧化相中的Fe、Mn元素萃取比例比非热液影响的沉积物的萃取比例高,尤其是Mn的变化更为明显,而Al萃取比例则很低,亦变化不大。而与之不同的是,本次顺序提取分析中Pb在铁锰氧化物相的萃取比例变化最大,其萃取比例最高可达62%,最低只有18%,这可能是沉积物中热液来源的硫化物中方铅矿含量较高且热液活动强度的变化所导致的。

    通过对海槽南部第四与那国热液流体稀土元素的研究发现,随着流体喷出海底与海水的混合及扩散,流体中的正Eu异常越弱,而负Ce异常明显增加[61]。流体中溶解的Fe2+被氧化为氧化物或氢氧化物迅速沉积下来,而热液柱中的Fe氧羟化物则对热液流体及周围海水的稀土元素均具强烈的清扫作用。热液柱中Fe-Mn颗粒物的快速沉积及其对热液柱和海水中稀土元素的强烈清扫作用会对下覆沉积物中的稀土元素组成产生影响[62]。热液柱中也会携带一些硫化物或硫酸盐颗粒,这些颗粒物及Fe-Mn氧羟化物沉降到下覆沉积物中,也可能会对下覆沉积物中的元素组成产生影响[63]。在正常海水中Ce3+易在氧化还原条件下被氧化成Ce4+形成CeO2沉淀而使海水显示出明显的负Ce异常,而海洋自生作用形成的铁锰结核或结壳因吸附海水中的Ce及其他稀土元素,通常会表现出强烈的Ce正异常。因此HOBAB4-S2岩芯铁锰氧化物相态中出现非常轻微的Ce正异常,可以认为是热液活动形成的热液柱中的Fe-Mn氧化物等颗粒物对周围海水及热液柱中稀土元素的清扫,或者是受海水的影响加强所导致的。热液柱中的Fe-Mn颗粒物沉降到下覆沉积物后,会不断改变沉积物的REE配分模式,使沉积物的Ce出现正异常,出现类似于水成型铁锰结壳的REE配分模式,且同时由于铁锰氧化物对热液流体中稀土元素的清扫,沉积物铁锰氧化物相中的稀土元素球粒陨石标准化配分模式显示了热液流体中的轻稀土元素富集,重稀土元素亏损的特征,而其显示的Eu负异常与热液流体的强烈正异常明显区别,可能是距离热液喷口较远,热液流体离开喷口后形成的热液柱随着其远离热液喷口向远处扩散迁移时会逐渐显示海水的稀土元素特征[15,24],同时被铁锰氧化物吸附海水中的稀土元素,这与该区沉积环境动荡、沉积物组成以陆源物质为主掩盖了部分热液活动信息以及该区较快的沉积速率有极大的关系。

    众所周知,Cu与有机质如海藻等微生物分解的腐殖酸、代谢物具有很强的络合或生物化学反应能力,因此Cu在有机结合相中的高萃取比例表明有机质对Cu有着较强的吸附络合作用。而Pb主要赋存于铁锰氧化物相,表明热液活动产生的硫化物中方铅矿含量较高,对Pb的元素含量贡献较大。除陆源元素Al、Ti外的其余元素均在碳酸盐相有所赋存,Mn是碳酸盐相中萃取比例最高的元素,表明生物作用是本区的Mn、Co等金属元素进入沉积物的主要机制,Mn在碳酸盐相的萃取比例极高与生物化学作用形成的自生组分如锰结核有关。除典型的陆源代表元素Al、Ti、K外的金属元素在铁锰氧化物相均有存在但所占比例不大,则表明热液活动对这些元素均有一定的贡献。除Cu外的其他元素在有机结合相中的萃取比例明显较低,表明元素与有机质活性基团或硫离子结合的作用较低,与之对应的有机质对于各元素的吸附能力较弱。Mn、Pb在残留相中占比极低,Al、Ti、K、Fe、Ni均在残留相中占主要优势,由于Al可能以硅酸盐结晶矿物的形式存在,Ti可能以类质同相替代而存在于黏土矿物中,K可能以长石的形式存在,而残留相中的金属元素主要存在于黏土、长石、石英等硅酸盐矿物晶格中,因此,残留相中的元素主要来源于陆源碎屑中的硅酸盐、铝硅酸盐矿物。

    由铁锰氧化相和残留相中的稀土元素萃取比例对比,发现稀土元素主要赋存于残留相中,即残留相中赋存的陆源稀土元素明显高于铁锰氧化物相中的热液源稀土元素在沉积物总稀土元素含量中的占比,热液源的稀土元素对于沉积物中总的稀土元素的贡献并不占主导地位,而残留相中难溶的陆源碎屑物质本身存在的稀土元素或在沉积过程中进一步吸收周围海水中的稀土对于沉积物总的稀土元素贡献占明显优势。赋存于铁锰氧化物相中的热液源稀土元素总量较低且由于距离热液喷口较远而受热液活动的影响较小,而本身存在于热液来源硫化物中的Fe、Cu、Zn、Pb、Mn则主要赋存在铁锰氧化物相中,因此各元素含量及萃取比例在铁锰氧化物相中的的变化程度受热液活动强度变化的直接影响较大。

    (1)对冲绳海槽南部岩芯沉积物进行了顺序提取分析,结果表明残留相是该岩芯沉积物中元素Fe、Mn、Al、Ti、K、Cu、Zn、Pb、Co、Ni的最主要赋存态,碳酸盐相是次要赋存态,表明陆源碎屑沉积与生物碳酸盐沉积是该区的主要沉积作用方式,陆源物质与生源物质占沉积物来源的主导地位。

    (2)与热液活动相关的Cu、Zn、Pb、Fe、Mn等金属元素在铁锰氧化物相中的萃取比例与其含量以及稀土元素总量随深度变化趋势相同,且在4个层位出现异常高值,结合前人对于周围热液区的热液喷口喷发周期资料分析,认为热液活动对沉积物中元素组成及赋存状态有显著影响。

    (3)岩芯铁锰氧化物相的稀土元素球粒陨石标准化配分模式显示了极轻微的Ce正异常和明显的Eu负异常,以及轻稀土元素较重稀土元素更为富集的特征,这与南大西洋受热液活动影响较小的沉积物铁锰氧化物相的稀土元素配分模式类似,是热液柱中的铁锰氧化物吸附海水及热液柱中的稀土元素,且该处岩芯沉积物距离热液活动区较远、受热液活动影响较小所致。

    致谢:对中国科学院海洋研究所“科学号”考察船所有船上队员为采集样品、数据和资料所做出的贡献表示感谢。

  • 图  1   研究区域位置

    a: 南海北部区域测深图[43],红色虚线表示琼东南盆地边界,灰色区域为BSR分布区[44],橙色实线为海马冷泉区,红色矩形为研究区,位于琼东南盆地南部隆起;b: 研究区取样点水深图。

    Figure  1.   The location the study area

    a: Bathymetry map of the northern South China Sea region [43]. The dashed red line marks the boundary of the Qiongdongnan Basin. Bottom simulating reflector (BSR) distribution is mapped in the study area (shaded area) [44]. Solid orange line is the “Haima”cold seepage area. The study area (red rectangle) is situated at the southern uplift of the Qiongdongnan Basin; b: bathymetric map of two sampling sitesin the study area.

    图  2   Rov2和PC3岩芯孔隙水剖面DIC含量及δ13CDIC

    a: Rov2岩芯;b: PC3岩芯,红色线为DIC,黑色线为δ13CDIC

    Figure  2.   Profiles of DIC concentration and δ13CDIC value of Rov2 (a) and PC3 (b)

    The red line represents DIC and black line represents δ13CDIC.

    图  3   孔隙水阴阳离子深度剖面

    黑色线为Rov2站位,红色线为PC3站位。

    Figure  3.   Profiles of pore water geochemical parameters

    The black line represents the Rov2 core and red line is the PC3 core.

    图  4   Rov2孔隙水微量元素Sr2+、Ba2+与Sr2+/Ca2+、Mg2+/Ca2+

    Figure  4.   Variations of trace elements Sr2+, Ba2+ content and ratio Sr2+/Ca2+ and Mg2+/Ca2+ of pore water in Rov2 core

    图  5   Rov2和PC3岩芯中经碳酸盐沉淀校正的溶解无机碳生成量(ΔDIC+ΔCa2++ΔMg2+)与硫酸盐消耗量(ΔSO42−)的关系图(简写为RC:S

    以典型海水值(DIC为2.1 mM,Ca2+为10.3 mM,Mg2+为53.2 mM,SO42−为28.9 mM)为参考[12],计算产生的溶解无机碳量或消耗的硫酸盐量。对角线分别表示1∶1的AOM和2∶1的OSR。

    Figure  5.   Plot of dissolved inorganic carbon produced corrected for carbonate precipitation (ΔDIC+ΔCa2++ΔMg2+) versus sulfate consumed (ΔSO42−) in Rov2 and PC3 cores (abbreviated as RC:S)

    Typical seawater values (2.1 mM for DIC, 10.3 mM for Ca2+, 53.2 mM for Mg2+, and 28.9 mM for SO42−) were taken as references to calculate the amounts of dissolved inorganic carbon produced or sulfate consumed[12]. Diagonal lines indicate: the RC:S ratio is 1:1 for AOM and 2:1 for OSR, respectively. Gray square represents Rov2 core and red circle is PC3 core.

    图  6   Rov2站位(a)和PC3站位(b)的SMI估算值和甲烷扩散通量

    Figure  6.   Estimated depths of the SMI and the methane diffusive fluxes in Rov2 core (a) and PC3 core (b)

    图  7   δ13C×DIC与DIC线性拟合计算得到δ13Cadded

    a: Rov2岩芯,b: PC3岩芯。

    Figure  7.   δ13Cadde calculated using the linear regression of δ13C×DIC vs. DIC in cores Rov2 (a) and PC3 (b)

    图  8   Rov2站位孔隙水Sr2+/Ca2+与Mg2+/Ca2+

    两条直线表示文石或高镁方解石沉淀过程中孔隙水Sr2+/Ca2+与Mg2+/Ca2+相对于海水成分的变化关系。

    Figure  8.   Plot of pore water Sr2+/Ca2+ vs. Mg2+/Ca2+ ratio of Rov2 core

    The two lines indicate the changes in the Sr2+/Ca2+ to Mg2+/Ca2+ relationship in the pore water with respect to the composition of seawater that occur during precipitation of either aragonite or high Mg-calcite.

    表  1   南海各水合物区SMI深度与甲烷通量

    Table  1   Comparison of SMI depths and methane fluxes in each site in the South China Sea

    研究区域SMI深度/m甲烷通量/(mol·m−2·ka−1)
    Rov24.8567.4
    PC34.197.2
    神狐海域HS-A、HS-B[32, 72]10、1126.1、20.1
    神狐海域W19-15[66]7.613.8
    东沙海域D-F[70]735
    琼东南HM-2-6、HM-3-3[71]0.217、0.1321 882.5、2 110.6
    西沙隆起C14[14]14.414.3
    下载: 导出CSV
  • [1]

    Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 362-407. doi: 10.1016/j.palaeo.2005.06.018

    [2]

    Peckmann J, Thiel V. Carbon cycling at ancient methane–seeps [J]. Chemical Geology, 2004, 205(3-4): 443-467. doi: 10.1016/j.chemgeo.2003.12.025

    [3] 陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40

    CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates [J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40.

    [4]

    Dickens G R, O’Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene [J]. Paleoceanography, 1995, 10(6): 965-971. doi: 10.1029/95PA02087

    [5]

    Kastner M, Claypool G, Robertson G. Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon, northern Gulf of Mexico [J]. Marine and Petroleum Geology, 2008, 25(9): 860-872. doi: 10.1016/j.marpetgeo.2008.01.022

    [6]

    Cicerone R J, Oremland R S. Biogeochemical aspects of atmospheric methane [J]. Global Biogeochemical Cycles, 1988, 2(4): 299-327. doi: 10.1029/GB002i004p00299

    [7]

    Niu M Y, Liang W Y, Wang F P. Methane biotransformation in the ocean and its effects on climate change: a review [J]. Science China Earth Sciences, 2018, 61(12): 1697-1713. doi: 10.1007/s11430-017-9299-4

    [8]

    Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    [9]

    Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective [J]. Earth-Science Reviews, 2011, 106(1-2): 105-130. doi: 10.1016/j.earscirev.2011.01.002

    [10]

    Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chemical Geology, 2004, 205(3-4): 219-238. doi: 10.1016/j.chemgeo.2003.12.019

    [11]

    Hensen C, Zabel M, Pfeifer K, et al. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments [J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2631-2647. doi: 10.1016/S0016-7037(03)00199-6

    [12]

    Chen Y F, Ussler III W, Haflidason H, et al. Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway [J]. Chemical Geology, 2010, 275(3-4): 127-138. doi: 10.1016/j.chemgeo.2010.04.013

    [13]

    Malinverno A, Pohlman J W. Modeling sulfate reduction in methane hydrate-bearing continental margin sediments: does a sulfate-methane transition require anaerobic oxidation of methane? [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(7): Q07006.

    [14]

    Luo M, Chen L Y, Wang S H, et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea [J]. Marine and Petroleum Geology, 2013, 48: 247-259. doi: 10.1016/j.marpetgeo.2013.08.018

    [15]

    Hu Y, Luo M, Chen L Y, et al. Methane source linked to gas hydrate system at hydrate drilling areas of the South China Sea: porewater geochemistry and numerical model constraints [J]. Journal of Asian Earth Sciences, 2018, 168: 87-95. doi: 10.1016/j.jseaes.2018.04.028

    [16]

    Masuzawa T, Handa N, Kitagawa H, et al. Sulfate reduction using methane in sediments beneath a bathyal "cold seep" giant clam community off Hatsushima Island, Sagami Bay, Japan [J]. Earth and Planetary Science Letters, 1992, 110(1-4): 39-50. doi: 10.1016/0012-821X(92)90037-V

    [17]

    Borowski W S, Paull C K, Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    [18]

    Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir [J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 529-543. doi: 10.1016/S0016-7037(00)00556-1

    [19]

    Wang X D, Li N, Feng D, et al. Using chemical compositions of sediments to constrain methane seepage dynamics: a case study from Haima cold seeps of the South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 137-144. doi: 10.1016/j.jseaes.2018.11.011

    [20]

    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572

    [21]

    Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea [J]. Marine Geology, 2001, 177(1-2): 129-150. doi: 10.1016/S0025-3227(01)00128-1

    [22]

    Haese R R, Meile C, Van Cappellen P, et al. Carbon geochemistry of cold seeps: methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea [J]. Earth and Planetary Science Letters, 2003, 212(3-4): 361-375. doi: 10.1016/S0012-821X(03)00226-7

    [23]

    Feng D, Roberts H H. Initial results of comparing cold-seep carbonates from mussel- and tubeworm-associated environments at Atwater Valley lease block 340, northern Gulf of Mexico [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2010, 57(21-23): 2030-2039. doi: 10.1016/j.dsr2.2010.05.004

    [24]

    Chen D F, Cathles III L M, Roberts H H. The geochemical signatures of variable gas venting at gas hydrate sites [J]. Marine and Petroleum Geology, 2004, 21(3): 317-326. doi: 10.1016/j.marpetgeo.2003.12.003

    [25]

    Yang T, Jiang S Y, Yang J H, et al. Dissolved inorganic carbon (DIC) and its carbon isotopic composition in sediment pore waters from the Shenhu area, northern South China Sea [J]. Journal of Oceanography, 2008, 64(2): 303-310. doi: 10.1007/s10872-008-0024-2

    [26]

    Ussler III W, Paull C K. Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles [J]. Earth and Planetary Science Letters, 2008, 266(3-4): 271-287. doi: 10.1016/j.jpgl.2007.10.056

    [27]

    Treude T, Niggemann J, Kallmeyer J, et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin [J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2767-2779. doi: 10.1016/j.gca.2005.01.002

    [28]

    Snyder G T, Hiruta A, Matsumoto R, et al. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2007, 54(11-13): 1216-1239. doi: 10.1016/j.dsr2.2007.04.001

    [29]

    Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008

    [30] 邬黛黛, 吴能友, 付少英, 等. 南海北部东沙海域水合物区浅表层沉积物的地球化学特征[J]. 海洋地质与第四纪地质, 2010, 30(5):41-51

    WU Daidai, WU Nengyou, FU Shaoying, et al. Geochemical characteristics of shallow sediments in the gas hydrate distribution area of Dongsha, the northern South China Sea [J]. Marine Geology & Quaternary Geology, 2010, 30(5): 41-51.

    [31]

    Sassen R, Roberts H H, Carney R, et al. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes [J]. Chemical Geology, 2004, 205(3-4): 195-217. doi: 10.1016/j.chemgeo.2003.12.032

    [32]

    Yang T, Jiang S Y, Ge L, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence [J]. Chinese Science Bulletin, 2010, 55(8): 752-760. doi: 10.1007/s11434-009-0312-2

    [33] 杨涛, 蒋少涌, 杨竞红, 等. 孔隙水中NH4+和HPO42-浓度异常: 一种潜在的天然气水合物地球化学勘查新指标[J]. 现代地质, 2005, 19(1):55-60

    YANG Tao, JIANG Shaoyong, YANG Jinghong, et al. Anomaly of ammonia and phosphate concentration in pore waters: a potential geochemical indicator for prospecting marine gas hydrate [J]. Geoscience, 2005, 19(1): 55-60.

    [34]

    Torres M E, Brumsack H J, Bohrmann G, et al. Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts [J]. Chemical Geology, 1996, 127(1-3): 125-139. doi: 10.1016/0009-2541(95)00090-9

    [35]

    Castellini D G, Dickens G R, Snyder G T, et al. Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico [J]. Chemical Geology, 2006, 226(1-2): 1-30. doi: 10.1016/j.chemgeo.2005.08.008

    [36]

    McQuay E L, Torres M E, Collier R W, et al. Contribution of cold seep barite to the barium geochemical budget of a marginal basin [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2008, 55(6): 801-811. doi: 10.1016/j.dsr.2008.03.001

    [37]

    Torres M E, McManus J, Huh C A. Fluid seepage along the San Clemente Fault scarp: basin-wide impact on barium cycling [J]. Earth and Planetary Science Letters, 2002, 203(1): 181-194. doi: 10.1016/S0012-821X(02)00800-2

    [38]

    Riedinger N, Kasten S, Gröger J, et al. Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 876-887. doi: 10.1016/j.jpgl.2005.10.032

    [39] 赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118

    ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea [J]. Geochimica, 2020, 49(1): 108-118.

    [40]

    Lin Q, Wang J S, Taladay K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate–methane transition zone (SMTZ) in the northern South China Sea [J]. Journal of Asian Earth Sciences, 2016, 115: 547-556. doi: 10.1016/j.jseaes.2015.11.001

    [41] 吴庐山, 杨胜雄, 梁金强, 等. 南海北部琼东南海域HQ-48PC站位地球化学特征及对天然气水合物的指示意义[J]. 现代地质, 2010, 24(3):534-544

    WU Lushan, YANG Shengxiong, LIANG Jinqiang, et al. Geochemical characteristics of sediments at Site HQ-48PC in Qiongdongnan Area, the north of the South China Sea, and their implication for gas hydrates [J]. Geoscience, 2010, 24(3): 534-544.

    [42] 孙甜甜, 邬黛黛, 潘梦迪, 等. 南海北部琼东南盆地浅表层沉积物的地球化学特征及对沉积环境的指示[J]. 热带海洋学报, 2018, 37(4):70-80

    SUN Tiantian, WU Daidai, PAN Mengdi, et al. Geochemical characteristics of surface sediments in the southern Qiongdongnan Basin of the northern South China Sea and its implication for sedimentary environment [J]. Journal of Tropical Oceanography, 2018, 37(4): 70-80.

    [43]

    Wang J L, Wu S G, Kong X, et al. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 17-26. doi: 10.1016/j.jseaes.2018.06.001

    [44]

    Wang X, Wu S, Yuan S, et al. Geophysical signatures associated with fluid flow and gas hydrate occurrence in a tectonically quiescent sequence, Qiongdongnan Basin, South China Sea [J]. Geofluids, 2010, 10(3): 351-368. doi: 10.1111/j.1468-8123.2010.00292.x

    [45]

    Feng D, Chen D F. Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 122: 74-83. doi: 10.1016/j.dsr2.2015.02.003

    [46]

    Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea: an overview [J]. Journal of Asian Earth Sciences, 2018, 168: 3-16. doi: 10.1016/j.jseaes.2018.09.021

    [47] 何家雄, 夏斌, 孙东山, 等. 琼东南盆地油气成藏组合、运聚规律与勘探方向分析[J]. 石油勘探与开发, 2006, 33(1):53-58 doi: 10.3321/j.issn:1000-0747.2006.01.012

    HE Jiaxiong, XIA Bin, SUN Dongshan, et al. Hydrocarbon accumulation, migration and play targets in the Qiongdongnan Basin, South China Sea [J]. Petroleum Exploration and Development, 2006, 33(1): 53-58. doi: 10.3321/j.issn:1000-0747.2006.01.012

    [48] 邬黛黛. 南海天然气水合物的早期成岩作用和地球化学特性研究[D]. 浙江大学博士学位论文, 2008

    WU Daidai. Early diagenesis records and geochemical characteristics of gas hydrate in the South China Sea[D]. Doctor Dissertation of Zhejiang University, 2008.

    [49]

    Zhu W L, Huang B J, Mi L J, et al. Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan basins, South China Sea [J]. AAPG Bulletin, 2009, 93(6): 741-761. doi: 10.1306/02170908099

    [50] 张启明, 胡忠良. 莺-琼盆地高温高压环境及油气运移机制[J]. 中国海上油气(地质), 1992, 6(1):1-9

    ZHANG Qiming, HU Zhongliang. Hot, geopressured Yinggehai-Qiongdongnan Basin, its hydrocarbon migration [J]. China Offshore oil and Gas (Geology), 1992, 6(1): 1-9.

    [51] 刘建章, 王存武. 莺-琼盆地热流体及油气地质意义[J]. 天然气勘探与开发, 2004, 27(1):12-15,7

    LIU Jianzhang, WANG Cunwu. Thermal fluid in Ying-Qiong Basin and its significance of oil-gas geology [J]. Natural Gas Exploration & Development, 2004, 27(1): 12-15,7.

    [52]

    Ye J L, Wei J G, Liang J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea [J]. Marine and Petroleum Geology, 2019, 104: 29-39. doi: 10.1016/j.marpetgeo.2019.03.023

    [53] 拜阳, 宋海斌, 关永贤, 等. 利用反射地震和多波束资料研究南海西北部麻坑的结构特征与成因[J]. 地球物理学报, 2014, 57(7):2208-2222

    BAI Yang, SONG Haibin, GUAN Yongxian, et al. Structural characteristics and genesis of pockmarks in the northwest of the South China Sea derived from reflective seismic and multibeam data [J]. Chinese Journal of Geophysics, 2014, 57(7): 2208-2222.

    [54] 刘斌, 刘胜旋. 南海北部陆坡气泡羽状流的发现: 多波束水体数据[J]. 海洋学报, 2017, 39(9):83-89

    LIU Bin, LIU Shengxuan. Gas bubble plumes observed at north slope of South China Sea from multi-beam water column data [J]. Haiyang Xuebao, 2017, 39(9): 83-89.

    [55] 杨力, 刘斌, 徐梦婕, 等. 南海北部琼东南海域活动冷泉特征及形成模式[J]. 地球物理学报, 2018, 61(7):2905-2914 doi: 10.6038/cjg2018L0374

    YANG Li, LIU Bin, XU Mengjie, et al. Characteristics of active cold seepages in Qiongdongnan Sea area of the northern South China Sea [J]. Chinese Journal of Geophysics, 2018, 61(7): 2905-2914. doi: 10.6038/cjg2018L0374

    [56] 赵斌, 刘胜旋, 李丽青, 等. 南海冷泉分布特征及油气地质意义[J]. 海洋地质前沿, 2018, 34(10):32-43

    ZHAO Bin, LIU Shengxuan, LI Liqing, et al. Distribution pattern of cold seeps in South China Sea and its geological significance [J]. Marine Geology Frontiers, 2018, 34(10): 32-43.

    [57]

    Huang Y Y, Feng J C, Xie Y, et al. Phase equilibrium characteristics of natural gas hydrate formation at the deep-water environment of “Haima” cold seep [J]. Energy Reports, 2022, 8: 5501-5509. doi: 10.1016/j.egyr.2022.04.011

    [58]

    Liang Q Y, Hu Y, Feng D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 124: 31-41. doi: 10.1016/j.dsr.2017.04.015

    [59]

    Fang Y X, Wei J G, Lu H L, et al. Chemical and structural characteristics of gas hydrates from the Haima cold seeps in the Qiongdongnan Basin of the South China Sea [J]. Journal of Asian Earth Sciences, 2019, 182: 103924. doi: 10.1016/j.jseaes.2019.103924

    [60] 陈多福, 李绪宣, 夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报, 2004, 47(3):483-489

    CHEN Duofu, LI Xuxuan, XIA Bin. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan basin of the South China Sea [J]. Chinese Journal of Geophysics, 2004, 47(3): 483-489.

    [61] 杨涛, 蒋少涌, 赖鸣远, 等. 海洋沉积物孔隙水中溶解无机碳(DIC)的碳同位素分析方法[J]. 地球学报, 2005, 26(S1):51-52

    YANG Tao, JIANG Shaoyong, LAI Mingyuan, et al. An analytical method for carbon isotopic composition of dissolved inorganic carbon (DIC) in pore waters from marine sediments [J]. Acta Geoscientica Sinica, 2005, 26(S1): 51-52.

    [62] 杨涛, 蒋少涌, 赖鸣远, 等. 连续流同位素质谱测定水中溶解无机碳含量和碳同位素组成的方法研究[J]. 地球化学, 2006, 35(6):675-680

    YANG Tao, JIANG Shaoyong, LAI Mingyuan, et al. Analytical method for concentration and carbon isotopic composition of dissolved inorganic carbon (DIC) by continuous flow-isotope ratio mass spectrometer [J]. Geochimica, 2006, 35(6): 675-680.

    [63]

    Schulz H D. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin Heidelberg: Springer, 2006.

    [64]

    Hu Y, Luo M, Liang Q Y, et al. Pore fluid compositions and inferred fluid flow patterns at the Haima cold seeps of the South China Sea [J]. Marine and Petroleum Geology, 2019, 103: 29-40. doi: 10.1016/j.marpetgeo.2019.01.007

    [65]

    Feng J X, Yang S X, Wang H B, et al. Methane source and turnover in the shallow sediments to the west of Haima cold seeps on the northwestern slope of the South China Sea [J]. Geofluids, 2019, 2019: 1010824.

    [66]

    Hu Y, Feng D, Peckmann J, et al. The impact of diffusive transport of methane on pore-water and sediment geochemistry constrained by authigenic enrichments of carbon, sulfur, and trace elements: a case study from the Shenhu area of the South China Sea [J]. Chemical Geology, 2020, 553: 119805. doi: 10.1016/j.chemgeo.2020.119805

    [67]

    Borowski W S, Paull C K, Ussler III W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates [J]. Marine Geology, 1999, 159(1-4): 131-154. doi: 10.1016/S0025-3227(99)00004-3

    [68]

    Thomas C J, Blair N E, Alperin M J, et al. Organic carbon deposition on the North Carolina continental slope off Cape Hatteras (USA) [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2002, 49(20): 4687-4709. doi: 10.1016/S0967-0645(02)00135-2

    [69]

    Feng J X, Yang S X, Liang J Q, et al. Methane seepage inferred from the porewater geochemistry of shallow sediments in the Beikang Basin of the southern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 77-86. doi: 10.1016/j.jseaes.2018.02.005

    [70]

    Hu Y, Feng D, Liang Q Y, et al. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 122: 84-94. doi: 10.1016/j.dsr2.2015.06.012

    [71]

    Liu W N, Wu Z J, Xu S N, et al. Pore-water dissolved inorganic carbon sources and cycling in the shallow sediments of the Haima cold seeps, South China Sea [J]. Journal of Asian Earth Sciences, 2020, 201: 104495. doi: 10.1016/j.jseaes.2020.104495

    [72]

    Wu L S, Yang S X, Liang J Q, et al. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu Area, the South China Sea [J]. Science China Earth Sciences, 2013, 56(4): 530-540. doi: 10.1007/s11430-012-4545-6

    [73]

    Borowski W S, Hoehler T M, Alperin M J, et al. Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates[M]//Paull C K, Matsumoto R, Wallace P J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 164. College Station: Ocean Drilling Program, 2000: 87-99.

    [74]

    Chatterjee S, Dickens G R, Bhatnagar G, et al. Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems: a numerical modeling perspective [J]. Journal of Geophysical Research:Solid Earth, 2011, 116(B9): B09103.

    [75]

    Hong W L, Torres M E, Kim J H, et al. Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach [J]. Geochimica et Cosmochimica Acta, 2014, 140: 127-141. doi: 10.1016/j.gca.2014.05.032

    [76] 陈法锦, 陈建芳, 金海燕, 等. 南海表层沉积物与沉降颗粒物中有机碳的δ13C对比研究及其古环境再造意义[J]. 沉积学报, 2012, 30(2):340-345

    CHEN Fajin, CHEN Jianfang, JIN Haiyan, et al. Correlation of δ13Corg in surface sediments with sinking particulate matter in South China Sea and implication for reconstructing Paleo-environment [J]. Acta Sedimentologica Sinica, 2012, 30(2): 340-345.

    [77]

    Huang B J, Xiao X M, Li X X. Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan basins, offshore South China Sea [J]. Organic Geochemistry, 2003, 34(7): 1009-1025. doi: 10.1016/S0146-6380(03)00036-6

    [78]

    Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J]. Chemical Geology, 1999, 161(1-3): 291-314. doi: 10.1016/S0009-2541(99)00092-3

    [79] 苏新, 陈芳, 于兴河, 等. 南海陆坡中新世以来沉积物特性与气体水合物分布初探[J]. 现代地质, 2005, 19(1):1-13

    SU Xin, CHEN Fang, YU Xinghe, et al. A pilot study on miocene through Holocene sediments from the continental slope of the South China Sea in correlation with possible distribution of gas hydrates [J]. Geoscience, 2005, 19(1): 1-13.

    [80]

    Hu X P, Cai W J, Wang Y C, et al. Pore-water geochemistry of two contrasting brine-charged seep sites in the northern Gulf of Mexico continental slope [J]. Marine Chemistry, 2010, 118(3-4): 99-107. doi: 10.1016/j.marchem.2009.11.006

    [81]

    Martin W R, McNichol A P, McCorkle D C. The radiocarbon age of calcite dissolving at the sea floor: estimates from pore water data [J]. Geochimica et Cosmochimica Acta, 2000, 64(8): 1391-1404. doi: 10.1016/S0016-7037(99)00424-X

    [82]

    Hu X P, Burdige D J. Enriched stable carbon isotopes in the pore waters of carbonate sediments dominated by seagrasses: evidence for coupled carbonate dissolution and reprecipitation [J]. Geochimica et Cosmochimica Acta, 2007, 71(1): 129-144. doi: 10.1016/j.gca.2006.08.043

    [83]

    Cangemi M, Di Leonardo R, Bellanca A, et al. Geochemistry and mineralogy of sediments and authigenic carbonates from the Malta Plateau, Strait of Sicily (Central Mediterranean): relationships with mud/fluid release from a mud volcano system [J]. Chemical Geology, 2010, 276(3-4): 294-308. doi: 10.1016/j.chemgeo.2010.06.014

    [84]

    Gontharet S, Pierre C, Blanc-Valleron M M, et al. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea) [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2007, 54(11-13): 1292-1311. doi: 10.1016/j.dsr2.2007.04.007

    [85]

    Haas A, Peckmann J, Elvert M, et al. Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan [J]. Marine Geology, 2010, 268(1-4): 129-136. doi: 10.1016/j.margeo.2009.10.027

    [86]

    Hovland M, Svensen H, Forsberg C F, et al. Complex pockmarks with carbonate-ridges off mid-Norway: products of sediment degassing [J]. Marine Geology, 2005, 218(1-4): 191-206. doi: 10.1016/j.margeo.2005.04.005

    [87]

    Kastner M, Elderfield H, Martin J B, et al. 25. Diagenesis and interstitial-water chemistry at the peruvian continental margin-major constituents and strontium isotopes[M]//Suess E, von Huene R. Proceedings of the Ocean Drilling Program, Scientific Results vol. 112. College Station: Ocean Drilling Porgramm, 1990.

    [88]

    Meister P, Mckenzie J A, Vasconcelos C, et al. Dolomite formation in the dynamic deep biosphere: results from the Peru Margin [J]. Sedimentology, 2007, 54(5): 1007-1032. doi: 10.1111/j.1365-3091.2007.00870.x

    [89]

    Burton E A. Controls on marine carbonate cement mineralogy: review and reassessment [J]. Chemical Geology, 1993, 105(1-3): 163-179. doi: 10.1016/0009-2541(93)90124-2

    [90]

    Mazzini A, Svensen H, Hovland M, et al. Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea [J]. Marine Geology, 2006, 231(1-4): 89-102. doi: 10.1016/j.margeo.2006.05.012

    [91]

    Monnin C, Wheat C G, Dupre B, et al. Barium geochemistry in sediment pore waters and formation waters of the oceanic crust on the eastern flank of the Juan de Fuca Ridge (ODP Leg 168) [J]. Geochemistry, Geophysics, Geosystems, 2001, 2(1): 2000GC000073.

    [92] 冯东, 陈多福. 海底沉积物孔隙水钡循环对天然气渗漏的指示[J]. 地球科学进展, 2007, 22(1):49-57 doi: 10.3321/j.issn:1001-8166.2007.01.007

    FENG Dong, CHEN Duofu. Barium cycling in pore water of seafloor sediment: indicator of methane fluxes [J]. Advances in Earth Science, 2007, 22(1): 49-57. doi: 10.3321/j.issn:1001-8166.2007.01.007

    [93] 冯俊熙, 杨胜雄, 梁金强, 等. 南海北部神狐东南海域沉积物孔隙水地球化学特征及其对天然气水合物的指示[J]. 海洋地质前沿, 2017, 33(7):32-44

    FENG Junxi, YANG Shengxiong, LIANG Jinqiang, et al. Pore water geochemistry in shallow sediments from southeastern Shenhu Area of northern South China Sea and their implications for gas hydrate occurrence [J]. Marine Geology Frontiers, 2017, 33(7): 32-44.

    [94]

    Paull C K, Matsumoto R, Wallace P J. Proceedings of the ocean drilling program[R]. College Station: Ocean Drilling Program, 1996.

    [95] 邬黛黛, 叶瑛, 吴能友, 等. 琼东南盆地与甲烷渗漏有关的早期成岩作用和孔隙水化学组分异常[J]. 海洋学报, 2009, 31(2):86-96

    WU Daidai, YE Ying, WU Nengyou, et al. Early diagenesis records and chemical composition abnormalities in pore water for methane-seep in sediments from the southern Qiongdong Basin [J]. Acta Oceanologica Sinica, 2009, 31(2): 86-96.

图(8)  /  表(1)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  3
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-04-02
  • 刊出日期:  2024-02-27

目录

/

返回文章
返回