南海海马冷泉区沉积物孔隙水地球化学特征对冷泉活动的指示

孙国静, 管红香, 张志顺, 赵彦彦, 冯俊熙, 杨俊, 张广璐, 张雅茹, 魏浩天, 刘盛

孙国静,管红香,张志顺,等. 南海海马冷泉区沉积物孔隙水地球化学特征对冷泉活动的指示[J]. 海洋地质与第四纪地质,2024,44(1): 1-14. DOI: 10.16562/j.cnki.0256-1492.2023022301
引用本文: 孙国静,管红香,张志顺,等. 南海海马冷泉区沉积物孔隙水地球化学特征对冷泉活动的指示[J]. 海洋地质与第四纪地质,2024,44(1): 1-14. DOI: 10.16562/j.cnki.0256-1492.2023022301
SUN Guojing,GUAN Hongxiang,ZHANG Zhishun,et al. Geochemical characteristics of sediment pore water in Haima area of the South China Sea: An indication of cold seeps[J]. Marine Geology & Quaternary Geology,2024,44(1):1-14. DOI: 10.16562/j.cnki.0256-1492.2023022301
Citation: SUN Guojing,GUAN Hongxiang,ZHANG Zhishun,et al. Geochemical characteristics of sediment pore water in Haima area of the South China Sea: An indication of cold seeps[J]. Marine Geology & Quaternary Geology,2024,44(1):1-14. DOI: 10.16562/j.cnki.0256-1492.2023022301

南海海马冷泉区沉积物孔隙水地球化学特征对冷泉活动的指示

基金项目: 国家自然科学基金项目“冷泉系统甲烷消耗过程的氢利用及其生物地球化学记录”(42276053);泰山学者青年专家项目(tsqn202211069);中央高校基本科研业务费专项( 202172002,202172003)
详细信息
    作者简介:

    孙国静(1997—),女,硕士研究生,海洋地质专业,E-mail:sungj97@163.com

    通讯作者:

    管红香(1981—),女,博士,教授,主要从事冷泉生物地球化学研究,E-mail: guanhongxiang@ouc.edu.cn

    赵彦彦(1978—),女,博士,教授,主要从事海洋沉积化学研究,E-mail:zhaoyanyan@ouc.edu.cn

  • 中图分类号: P736.4

Geochemical characteristics of sediment pore water in Haima area of the South China Sea: An indication of cold seeps

  • 摘要:

    海马冷泉位于南海琼东南海域,是南海迄今发现的两个活动冷泉之一。我们对海马冷泉Rov2和PC3站位两个活塞重力柱沉积物孔隙水的阴阳离子、溶解无机碳(DIC)及其碳同位素组成和Sr、Ba含量等进行了分析。结果表明,两个站位孔隙水DIC含量(Rov2和PC3最大DIC含量分别为27.4 、8.5 mM)和δ13CDIC(Rov2和PC3站位最低值分别为−54.63‰和−48.93‰)具有明显的镜像关系。结合孔隙水硫酸盐浓度的变化特征,Rov2和PC3站位的硫酸盐-甲烷界面(SMI)分别位于约485和410 cm。通过模拟估算,Rov2和PC3站位向上甲烷通量分别为67.4和97.2 mol·m−2·ka−1,较浅的SMI深度与相对较高的甲烷通量相一致。SMI附近极低的孔隙水δ13CDIC值指示了AOM作用的发生及其对DIC的贡献。在Rov2站位,自生碳酸盐矿物以高镁方解石为主,阳离子Ca2+、Mg2+和Sr2+含量随深度增加并表现出与SO42−阴离子含量相似的变化特征。在SMI附近,随着SO42−的消耗、有机质的矿化将大量的Ba2+和PO43−释放进入孔隙水。因此,冷泉孔隙水地球化学特征的变化能帮助我们有效识别渗漏活动过程,对AOM作用下物质的迁移与转化具有重要的指示意义。

    Abstract:

    The Haima cold seeps are located in the southeastern part of Qiongdongnan Basin, which is one of the two active cold seeps found in the South China Sea. We analyzed the contents of anions and cations, dissolved inorganic carbon (DIC) and its carbon isotopic composition, and Sr and Ba contents of sediment pore water in two piston gravity columns at the Rov2 and PC3 cores in Haima Cold Seeps. Results show that the DIC contents and δ13CDIC values of pore water in the two cores had a significant "mirror" relationship. With the increase of depth, the DIC contents of the two cores gradually increased (Maximum DIC content of Rov2 and PC3: 27.4 and 8.5 mM, respectively). In contrast, the δ13CDIC values had a negative excursion (Minimum values for the two cores: −54.63‰ and −48.93‰, respectively). Combined with the sulfate depth profile characteristics of pore water, the sulfate-methane interface (SMI) in Rov2 and PC3 cores was located at ~485 and ~410 cm, respectively. The upward methane fluxes in Rov2 and PC3 cores were estimated to be 67.4 and 97.2 mol m−2 ka−1, respectively. The very low δ13CDIC values in pore water near SMI are indicative of the occurrence of AOM (anaerobic oxidation of methane) interaction and its contribution to DIC. In Rov2 core, authigenic carbonate minerals are dominated by high-Mg calcite, and the Ca2+, Mg2+ and Sr2+ showed similar trends to those of SO42−. Near the SMI, with the depletion of SO42−, the mineralization of organic matter released large amounts of Ba2+ and PO43− into the pore water. The geochemical characteristics of pore water could help us effectively identify the early diagenesis in seepage activity area, and are indicative of migration and transformation of materials under the influence of AOM.

  • 作为一种古海洋代用指标,浮游有孔虫壳体重量具体是指限定粒径范围内浮游有孔虫单种一定数量壳体的单枚平均重量,可代表样品中浮游有孔虫壳体的壳壁厚度。该指标首先由Lohmann[]提出,其发现特定海区内表层沉积物样品中浮游有孔虫壳体重量随着样品水深的增加而减小,认为壳体重量实际上反映了深海碳酸钙溶解作用,即浮游有孔虫壳体受到溶解作用影响后壳壁变薄,表现为壳体重量变轻。从原理上,深海碳酸钙溶解作用受海水碳酸钙饱和程度(Ω = [Ca2+][CO32-]/K*spK*sp为溶解常数)的控制,理论上当Ω<1时溶解作用发生[]。由于现代海水[Ca2+]基本保持恒定[],所以Ω可近似= [CO32-]/K*sp,因此,浮游有孔虫壳体重量可作为一种潜在的深海[CO32-]指标。海水[CO32-]与溶解无机碳含量(DIC)、碱度(ALK)等海洋碳酸盐系统参数相关,海水[CO32-]重建是目前量化海洋碳循环过程演化的主要手段之一[]

    Broecker等[]首次尝试建立浮游有孔虫壳体重量与深海[CO32-]的经验关系,通过对热带大洋表层沉积物样品进行研究,发现浮游有孔虫Pulleniatina obliquiloculataNeogloboquadrina dutertreiTrilobatus sacculifer壳体重量与当地深海碳酸根离子饱和程度(Δ[CO32-] = [CO32-] - [CO32-]/Ω)呈线性正相关,确证了浮游有孔虫壳体重量可作为一种深海[CO32-]代用指标。但是,上述现代过程校准结果也存在如下问题:在Δ[CO32-]高值时,壳体重量与其相关性较差;不同海区之间壳体重量与Δ[CO32-]的关系有偏差。这意味着沉积物中浮游有孔虫壳体重量还应受到其他因素的影响。

    随后,另一项现代过程校准工作指出了上述问题的症结所在[]。北大西洋表层沉积物中浮游有孔虫壳体重量与表层海水温度、碳酸盐系统参数存在显著相关性,认为此时壳体重量反映了浮游有孔虫在上层海洋生长过程中的钙化程度。海洋生物的钙化过程指浮游有孔虫、颗石藻等钙化生物根据方程Ca2++2HCO3-→CaCO3+CO2+H2O,形成 CaCO3壳体,钙化程度强弱也控制着浮游有孔虫壳体的壳壁厚度(即壳体重量)。于是,浮游有孔虫壳体重量开始被用作一种指示钙化程度的指标[-]。但是,在这一思路下利用该指标进行长时间尺度古海洋重建时又遇到了问题。现代北大西洋深海水团年龄较轻(含更少的呼吸CO2),其深海碳酸钙溶解作用较弱,表层沉积物中浮游有孔虫壳体重量更多反映其钙化程度。但是在地质历史中,碳酸钙溶解作用有可能剧烈下降,比如在约200~600 ka的中布容溶解事件中,北大西洋沉积物柱状样中Globigerina bulloides壳体重量明显下降,事件中壳体重量的变化实际上更多反映了深海溶解作用变化,而非浮游有孔虫的钙化程度[]

    无法区分沉积物中浮游有孔虫壳体重量中包含的钙化信息以及溶解信息,是限制该指标古海洋学应用的主要原因。浮游有孔虫在上层海洋生长钙化,死亡后沉降至深海沉积物中埋藏,其壳体重量中钙化信息即浮游有孔虫死亡沉降前的初始壳体重量,而溶解信息即初始壳体重量受到深海溶解作用后的减轻部分。浮游有孔虫壳体重量可作为一种古海洋指标(钙化程度或深海Δ[CO32-])的前提在于保证其在指定时间尺度下只受到初始壳体重量变化或深海溶解作用单一因素的影响。这需要回答以下核心科学问题:浮游有孔虫壳体开始受到溶解作用影响的环境条件是什么?浮游有孔虫壳体重量对钙化过程、溶解过程的响应敏感度是怎样的?

    基于表层沉积物的现代过程校准是建立古海洋指标的核心基础。目前,在中低纬海洋,互相之间可类比的能兼顾不同水深的表层沉积物浮游有孔虫壳体重量资料主要来自全球热带大洋——翁通爪哇海台(Ontong Java Plateau)[, ]、帕劳海脊(Palau Ridge)[]、东经九十度海脊(Ninetyeast Ridge)和塞阿拉高地(Ceara Rise)[]图1A),涉及的浮游有孔虫属种包括P. obliquiloculataN. dutertreiT. sacculifer,壳体的粒径范围为355~400 μm。首先来看P. obliquiloculata,毫无疑问,在全球范围内,其壳体重量与深海Δ[CO32-]存在线性关系,但是这一相关性(r = 0.52)并不高(图1B)。也就是说深海溶解作用只是控制P. obliquiloculata壳体重量的因素之一。细化到单一海区,翁通爪哇海台、帕劳海脊和东经九十度海脊区P. obliquiloculata壳体重量与深海Δ[CO32-]高度正相关(图1C),表明在上述单一海域,深海Δ[CO32-] / 溶解作用是控制表层沉积物中P. obliquiloculata壳体重量的唯一主导因素。而在大西洋塞阿拉高地,整体上壳体重量与深海Δ[CO32-]相关性并不好,原因在于大西洋深海的弱溶解作用(高Δ[CO32-]值)。当剔除深海Δ[CO32-] >20 μmol·kg−1的站位后,塞阿拉高地P. obliquiloculata壳体重量就和Δ[CO32-]呈现了明显正相关性(图1C)。

    图 1 全球热带大洋表层沉积物P. obliquiloculata壳体重量与深海Δ[CO32-]的关系[14]
    图  1  全球热带大洋表层沉积物P. obliquiloculata壳体重量与深海Δ[CO32-]的关系[]
    A: 表层沉积物站位图,B–C: 全球热带大洋以及单一海区中P. obliquiloculata壳体重量与深海Δ[CO32-]的关系。图C中阴影部分代表线性拟合的95 %置信区间。
    Figure  1.  Shell weights of P. obliquiloculata from global tropical surface-sediment samples versus deep-ocean Δ[CO32-] []
    A: sites of surface-sediment sampling, B-C: relationships between P. obliquiloculata shell weight and deep-ocean Δ[CO32-] in the global tropical oceans (B) and in specific regions (C). Shaded areas in (C) denote 95% confidence intervals.

    全球范围内P. obliquiloculata壳体重量与深海Δ[CO32-]的关系提供了以下关键信息。首先,Δ[CO32-] = 20 μmol·kg−1似乎是深海溶解作用开始影响浮游有孔虫壳体的阈值,与前人基于培养实验得出的结论一致[-]。理论上来说,海洋中碳酸钙质壳体应该在Ω<1(即Δ[CO32-]<0 μmol·kg−1)时才会开始受到溶解作用的影响。但是实际上,这一Δ[CO32-]阈值高达20 μmol·kg−1,其中的原因应在于浮游有孔虫壳体实际上不是纯CaCO3质,含有其他元素(特别是Mg)会导致其更容易受到溶解作用的影响[]。另外,样品涉及四个海区内P. obliquiloculata壳体重量与深海Δ[CO32-]的线性拟合方程体现了基本一致的斜率值(Δ[CO32-]每降低1 μmol·kg−1时壳体重量的下降值),只不过线性拟合方程的截距有显著差别。具体来说,当固定深海Δ[CO32-]值时,4个海区P. obliquiloculata壳体重量有着明显差别,从重到轻依次为翁通爪哇海台、帕劳海脊、塞阿拉高地和东经九十度海脊。以上说明,初始壳体重量不同是导致4个海区之间壳体重量-深海Δ[CO32-]关系差别的主要原因,而且,P. obliquiloculata初始壳体重量信息在受到溶解作用影响后依然能完好保留下来。简而言之,沉积物中P. obliquiloculata壳体重量应同时包含钙化作用信息和溶解作用信息。

    全球范围内N. dutertrei壳体重量与深海Δ[CO32-]同样存在显著的线性关系,不过其相关性(r=0.88)明显高于P. obliquiloculata的情况(r=0.52)(图2A)。类似的,单一海区内,N. dutertrei壳体重量与深海Δ[CO32-]的线性拟合方程体现了基本一致的斜率值,相比于P. obliquiloculata,线性拟合方程的截距差距较小。也就是说,对比P. obliquiloculata,沉积物中N. dutertrei壳体重量对深海Δ[CO32-] / 溶解作用的敏感度更高,原因应在于P. obliquiloculata的抗溶性高于N. dutertrei []。简而言之,沉积物中N. dutertrei壳体重量主要受到深海Δ[CO32-] / 溶解作用的控制,相对来说钙化作用控制的初始壳体重量变化对其影响较小,N. dutertrei壳体重量可作为一种潜在的深海Δ[CO32-] / 溶解作用代用指标。

    图 2 全球热带大洋(A)以及单一海区中(B)表层沉积物N. dutertrei壳体重量与深海Δ[CO32-]的关系[14]
    图  2  全球热带大洋(A)以及单一海区中(B)表层沉积物N. dutertrei壳体重量与深海Δ[CO32-]的关系[]
    图B中阴影部分代表线性拟合的95 %置信区间。
    Figure  2.  Relationships between shell weights of N. dutertrei in surface-sediment samples from global tropical (A) or specific regions (B) and deep-ocean Δ[CO32-] []
    Shaded areas in (B) denote 95% confidence intervals.

    T. sacculifer是典型的易溶种,其抗溶性远弱于P. obliquiloculataN. dutertrei[]。不出意料,T. sacculifer壳体重量与深海Δ[CO32-]的相关性最好(剔除深海Δ[CO32-]>20 μmol·kg−1的站位后)(图3)。单一海区内,T. sacculifer壳体重量与深海Δ[CO32-]的线性拟合方程体现了基本一致的斜率值,更重要的是,四个海区的线性拟合方程的截距几乎没有差别(图3B)。这四个海区不同的上层海洋环境必定导致T. sacculifer的初始壳体重量不同,证据一是这些海区中P. obliquiloculataN. dutertrei的初始壳体重量就存在显著差距(图1-2),证据二则是当Δ[CO32-]>20 μmol·kg−1时(此时壳体重量等同于初始壳体重量),T. sacculifer的(初始)壳体重量存在明显的变化幅度(图3)。但是,一旦T. sacculifer壳体开始受到溶解作用(Δ[CO32-]<20 μmol·kg−1),其初始壳体重量信号几乎被迅速抹除。也就是说,易溶种T. sacculifer的壳体对深海Δ[CO32-] / 溶解作用极其敏感,在深海Δ[CO32-]<20 μmol·kg−1的情况下,其壳体重量基本只反映溶解信号。也就是说,T. sacculifer壳体重量是一种绝佳的深海Δ[CO32-] / 溶解作用代用指标。

    图 3 全球热带大洋(A)及单一海区中(B)表层沉积物T. sacculifer壳体重量与深海Δ[CO32-]的关系
    图  3  全球热带大洋(A)及单一海区中(B)表层沉积物T. sacculifer壳体重量与深海Δ[CO32-]的关系
    图B中阴影部分代表线性拟合的95%置信区间。
    Figure  3.  Relationships between shell weights of T. sacculifer from global tropical (A) surface-sediment or specific regions (B) and deep-ocean Δ[CO32-] []
    Shaded areas in (B) denote 95% confidence intervals.

    浮游有孔虫Neogloboquadrina pachyderma(sinistral)是一种典型的中高纬度种,在南大洋是当地的绝对优势种[]。基于阿蒙森海(Amundsen Sea)、罗斯海(Ross Sea)和普里兹湾(Prydz Bay)表层沉积物的现代过程校准工作评估了南大洋南极带浮游有孔虫N. pachyderma(sin.)壳体重量指标的环境指示意义[]。出乎意料的是,校准结果与前述热带大洋浮游有孔虫P. obliquiloculataN. dutertreiT. sacculifer的情况并不完全一致。当站位深海Δ[CO32-]>20 μmol·kg−1时, 三个海区N. pachyderma(sin.)壳体重量变化幅度较大(图4),表明其记录了复杂的上层海洋钙化作用信号,这和热带大洋的研究结果一致。但是,当站位深海Δ[CO32-]<20 μmol·kg−1时,除了300~355 μm壳体粒径范围以外,N. pachyderma(sin.)壳体重量与深海Δ[CO32-]并无显著相关性。甚至在300~355 μm壳体粒径范围内,由于统计范围内只包含3个数据点,其形成的壳体重量-Δ[CO32-]线性拟合关系也并不十分可靠。

    图 4 南大洋南极带表层沉积物N. pachyderma(sin.)壳体重量与深海Δ[CO32-]的关系[17]
    图  4  南大洋南极带表层沉积物N. pachyderma(sin.)壳体重量与深海Δ[CO32-]的关系[]
    A:表层沉积物站位图,B-D:分别为3种不同粒径范围200~250、250~300和300~355 μm的结果。
    Figure  4.  Relationships between shell weights of N. pachyderma (sin.) from Antarctic Zone surface-sediment samples and deep-ocean Δ[CO32-] []
    A: sites of surface-sediment samples; B–D: results for three different shell size ranges 200~250 μm (B), 250~300 μm (C), and 300~355 μm (D)

    由此可以推断,南大洋南极带沉积物中N. pachyderma(sin.)壳体重量主要显示了上层海洋的钙化过程信号,而非深海的碳酸钙溶解作用。其中的原因可能是:相比于热带大洋,高纬海洋环境并不适宜浮游有孔虫的生长钙化,具体表现为高纬海洋浮游有孔虫的数量以及分异度都显著低于中低纬,在这种极端环境下,浮游有孔虫对上层海洋生长环境变化更加敏感;另外,南极带极端海洋环境下N. pachyderma(sin.)初始壳体比较脆弱(壳壁薄、重量轻),当其受到溶解作用影响后极易破碎,这导致沉积物中剩余的完整壳体可能并不具备整体代表性(只有少数重量偏重的壳体能保存下来),因此,壳体重量与深海溶解作用的相关性不高。以上可能共同导致南大洋南极带沉积物中N. pachyderma(sin.)壳体重量主要反映初始壳体重量,因此,可作为钙化程度指标。

    基于上述现代过程校准结果:深海溶解作用开始影响沉积物中浮游有孔虫壳体重量的阈值为Δ[CO32-] = 20 μmol·kg−1,因此当地质历史中研究站位的深海Δ[CO32-]始终>20 μmol·kg−1时,壳体重量可作为浮游有孔虫钙化程度指标;在受到溶解作用影响后(Δ[CO32-]<20 μmol·kg−1),不同浮游有孔虫种壳体重量对Δ[CO32-]响应敏感度并不一致,相对来说,易溶种,比如T. sacculifer,其壳体重量更适合作为深海Δ[CO32-]代用指标。

    浮游有孔虫、颗石藻等海洋生物的钙化过程以1∶2的比例消耗上层海水中的DIC和ALK,总体将导致上层海水pH下降、pCO2上升[],因此该过程在海洋碳循环领域具有重要的研究意义。目前使用浮游有孔虫壳体重量作为钙化程度指标的研究多位于大西洋,因为大西洋深海的Δ[CO32-]较高、碳酸钙溶解作用较弱。因此大西洋基于壳体重量的古海洋研究多探讨浮游有孔虫钙化程度的受控机制。

    末次冰期以来北大西洋浮游有孔虫G. bulloides壳体重量随着大气pCO2升高/海洋酸化而下降,意味着该种的钙化过程可能受控海水碳酸盐系统[]。这一结论得到了一系列培养实验和现代过程调查的支持[, -],这些研究均发现特定浮游有孔虫钙化程度变化与其生活水深的海水pH/[CO32-]正相关,因此在海-气CO2平衡海区,大气pCO2升高引发的上层海洋酸化会导致浮游有孔虫钙化程度减弱,反映为壳体重量下降。然而,随着在全球各海区针对不同浮游有孔虫种开展研究,逐渐认识到无论是在现代还是地质历史中,浮游有孔虫钙化过程机制远比我们想象的复杂,除了海水碳酸盐系统,海水温度[, , ]、盐度[-]以及营养盐浓度[]等其他环境参数也是潜在的影响因素,其中温度的影响甚至被认为和海水碳酸盐系统的影响相当[]。比如,利用深海Δ[CO32-]校正得到的P. obliquiloculata初始壳体重量结果显示无论在现代还是地质历史中,P. obliquiloculata钙化程度变化均与上层海水温度显著正相关,而和海水碳酸盐系统参数并无关联[]。类似地,在南大洋南极带,表层沉积物中N. pachyderma(sin.)的初始壳体重量也与现代上层海水温度呈正相关[]。这些研究指出,至少对于P. obliquiloculataN. pachyderma(sin.),其钙化程度主要受控于海水温度而非海洋酸化。以上可以看出,浮游有孔虫钙化作用对海洋环境要素的响应方式应存在明显的种间差异。

    海水碳酸盐系统中[CO32-]反映了海水ALK和DIC的变化,ALK代表海水碳酸盐系统的缓冲能力,DIC则代表当前海水储碳量状况。目前,古深海[CO32-]指标是探索海洋碳储库演化的主要手段之一。正如前文(1.2节和1.3节)所述,当深海Δ[CO32-]<20 μmol·kg−1时,浮游有孔虫N. dutertreiT. sacculifer壳体重量可作为可靠的Δ[CO32-]代用指标。于是,Qin等[]基于全球热带大洋表层沉积物样品建立了N. dutertreiT. sacculifer的壳体重量-深海Δ[CO32-]经验校准公式(图5)。

    图 5 T. sacculifer和N. dutertrei的壳体重量-深海Δ[CO32-]的经验校准公式[28]
    图  5  T. sacculiferN. dutertrei的壳体重量-深海Δ[CO32-]的经验校准公式[]
    壳体重量数据来自355~400 μm粒径范围[]
    Figure  5.  Empirical calibration equations of shell weight and deep-ocean Δ[CO32-] of T. sacculifer and N. dutertrei from the 355~400 μm size range[]

    正是通过N. dutertreiT. sacculifer壳体重量,重建了热带西太平洋上新世以来不同时间尺度上深海Δ[CO32-]变化[, -]。热带太平洋适合开展该指标古海洋学应用的原因在于:该海区沉积物中含有丰富的浮游有孔虫;另外太平洋的深海Δ[CO32-]足够低,至少可以保证上新世以来Δ[CO32-]始终显著低于20 μmol·kg−1。基于Δ[CO32-] ≈ ALK – DIC的关系[],深海Δ[CO32-]记录可用来探讨地质历史中深海碳储库/碳循环演化过程。热带西太平洋这一系列深海Δ[CO32-]记录揭示了如下结论:冰期旋回中太平洋深海碳酸盐系统通过碳酸钙补偿机制响应海平面控制的陆架珊瑚礁碳酸钙埋藏量变化[, ];量化了中布容溶解事件中太平洋深海Δ[CO32-]的下降幅度[];中更新世气候转型期间太平洋深海DIC储库显著增强[, ];南极冰盖/海冰扩张有利于太平洋深海储碳,而AMOC主要调节大西洋和太平洋深海的DIC分配模式[]等。

    当用来反映钙化程度,浮游有孔虫壳体重量指标的应用前提为保证样品始终不受到溶解作用的影响,即需要深海Δ[CO32-]>20 μmol·kg−1图1可以看到,即使对于典型抗溶种P. obliquiloculata,一旦Δ[CO32-]<20 μmol·kg−1,其壳体重量会开始显著下降。因此,在指标使用中,可通过底栖有孔虫B/Ca比值等手段恢复研究时段内深海Δ[CO32-]变化;或者基于站位现代深海Δ[CO32-]数据以及预估研究时段中Δ[CO32-]的可能变化幅度,来校准或排除溶解作用的干扰。

    目前成熟的深海Δ[CO32-]代用指标主要包括特定浮游有孔虫壳体重量和底栖有孔虫B/Ca比值[],两者均基于全球大洋表层沉积物建立的经验校准公式。底栖有孔虫B/Ca比值指标的优势在于其Δ[CO32-]适用范围高达−20~80 μmol·kg−1,该指标几乎可应用于所有海区,特别是Δ[CO32-]普遍较高的大西洋。相比之下,浮游有孔虫壳体重量指标的Δ[CO32-]适用范围只有−20~20 μmol·kg−1,目前来看,该指标适合于全球平均深海Δ[CO32-]最低的太平洋,以及其他海域水深较深的站位。壳体重量指标的优势则在于浮游有孔虫(相较于底栖有孔虫)的易获取性,这意味着在有孔虫含量丰富的站位,该指标可形成高分辨率的重建记录。

    以上关于浮游有孔虫壳体重量指标的认识主要来自于表层沉积物的现代过程校准结果,未来建议进一步加强基于现场观测、实验室培养等方式的浮游有孔虫生长钙化和溶解过程机制研究。比如,浮游有孔虫在生长钙化过程中会在壳体内以及周围形成一个独特的“微环境”,并能通过生命效应以提高微环境中pH以及[CO32-]来促进生长钙化[],这种生命效应过程目前对学界而言仍是一个“黑盒子”;浮游有孔虫在不同生长阶段的钙化过程对海洋环境的响应方式可能存在显著差异,处于成长期(小尺寸)时由于只能吸收有限体积海水中的离子进行钙化,其钙化作用反而会在高DIC浓度(低pH值)环境下增强[];现代观测研究指出相当一部分上层海洋生产的CaCO3会在浅水透光层被溶解,其机制可能与透光层大量有机碳降解导致的海洋酸化有关[-],而这一特殊溶解机制对沉积物中浮游有孔虫壳体的影响尚不清楚。上述这些细节问题无疑需要更加精细的观测与培养研究来解决。

    基于目前已有的全球大洋表层沉积物数据,综述了浮游有孔虫壳体重量作为钙化程度或者深海Δ[CO32-]指标的现代过程校准结果。深海溶解作用开始影响浮游有孔虫壳体的阈值是Δ[CO32-]=20 μmol·kg−1,在此阈值以上,壳体重量可用来反映浮游有孔虫钙化程度变化。在此阈值以下,浮游有孔虫易溶种T. sacculiferN. dutertrei的壳体重量可作为深海Δ[CO32-]代用指标。目前基于浮游有孔虫壳体重量指标的古海洋研究显示:在钙化过程受控机制方面,海水碳酸盐系统和温度是影响浮游有孔虫钙化作用的主导因素,不同浮游有孔虫种钙化过程对海洋环境要素的响应方式存在明显差异;在深海Δ[CO32-]重建方面,海平面、南大洋冰盖/海冰以及全球温盐环流变化是控制上新世以来太平洋深海碳循环的主导因素。

  • 图  1   研究区域位置

    a: 南海北部区域测深图[43],红色虚线表示琼东南盆地边界,灰色区域为BSR分布区[44],橙色实线为海马冷泉区,红色矩形为研究区,位于琼东南盆地南部隆起;b: 研究区取样点水深图。

    Figure  1.   The location the study area

    a: Bathymetry map of the northern South China Sea region [43]. The dashed red line marks the boundary of the Qiongdongnan Basin. Bottom simulating reflector (BSR) distribution is mapped in the study area (shaded area) [44]. Solid orange line is the “Haima”cold seepage area. The study area (red rectangle) is situated at the southern uplift of the Qiongdongnan Basin; b: bathymetric map of two sampling sitesin the study area.

    图  2   Rov2和PC3岩芯孔隙水剖面DIC含量及δ13CDIC

    a: Rov2岩芯;b: PC3岩芯,红色线为DIC,黑色线为δ13CDIC

    Figure  2.   Profiles of DIC concentration and δ13CDIC value of Rov2 (a) and PC3 (b)

    The red line represents DIC and black line represents δ13CDIC.

    图  3   孔隙水阴阳离子深度剖面

    黑色线为Rov2站位,红色线为PC3站位。

    Figure  3.   Profiles of pore water geochemical parameters

    The black line represents the Rov2 core and red line is the PC3 core.

    图  4   Rov2孔隙水微量元素Sr2+、Ba2+与Sr2+/Ca2+、Mg2+/Ca2+

    Figure  4.   Variations of trace elements Sr2+, Ba2+ content and ratio Sr2+/Ca2+ and Mg2+/Ca2+ of pore water in Rov2 core

    图  5   Rov2和PC3岩芯中经碳酸盐沉淀校正的溶解无机碳生成量(ΔDIC+ΔCa2++ΔMg2+)与硫酸盐消耗量(ΔSO42−)的关系图(简写为RC:S

    以典型海水值(DIC为2.1 mM,Ca2+为10.3 mM,Mg2+为53.2 mM,SO42−为28.9 mM)为参考[12],计算产生的溶解无机碳量或消耗的硫酸盐量。对角线分别表示1∶1的AOM和2∶1的OSR。

    Figure  5.   Plot of dissolved inorganic carbon produced corrected for carbonate precipitation (ΔDIC+ΔCa2++ΔMg2+) versus sulfate consumed (ΔSO42−) in Rov2 and PC3 cores (abbreviated as RC:S)

    Typical seawater values (2.1 mM for DIC, 10.3 mM for Ca2+, 53.2 mM for Mg2+, and 28.9 mM for SO42−) were taken as references to calculate the amounts of dissolved inorganic carbon produced or sulfate consumed[12]. Diagonal lines indicate: the RC:S ratio is 1:1 for AOM and 2:1 for OSR, respectively. Gray square represents Rov2 core and red circle is PC3 core.

    图  6   Rov2站位(a)和PC3站位(b)的SMI估算值和甲烷扩散通量

    Figure  6.   Estimated depths of the SMI and the methane diffusive fluxes in Rov2 core (a) and PC3 core (b)

    图  7   δ13C×DIC与DIC线性拟合计算得到δ13Cadded

    a: Rov2岩芯,b: PC3岩芯。

    Figure  7.   δ13Cadde calculated using the linear regression of δ13C×DIC vs. DIC in cores Rov2 (a) and PC3 (b)

    图  8   Rov2站位孔隙水Sr2+/Ca2+与Mg2+/Ca2+

    两条直线表示文石或高镁方解石沉淀过程中孔隙水Sr2+/Ca2+与Mg2+/Ca2+相对于海水成分的变化关系。

    Figure  8.   Plot of pore water Sr2+/Ca2+ vs. Mg2+/Ca2+ ratio of Rov2 core

    The two lines indicate the changes in the Sr2+/Ca2+ to Mg2+/Ca2+ relationship in the pore water with respect to the composition of seawater that occur during precipitation of either aragonite or high Mg-calcite.

    表  1   南海各水合物区SMI深度与甲烷通量

    Table  1   Comparison of SMI depths and methane fluxes in each site in the South China Sea

    研究区域SMI深度/m甲烷通量/(mol·m−2·ka−1)
    Rov24.8567.4
    PC34.197.2
    神狐海域HS-A、HS-B[32, 72]10、1126.1、20.1
    神狐海域W19-15[66]7.613.8
    东沙海域D-F[70]735
    琼东南HM-2-6、HM-3-3[71]0.217、0.1321 882.5、2 110.6
    西沙隆起C14[14]14.414.3
    下载: 导出CSV
  • [1]

    Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 362-407. doi: 10.1016/j.palaeo.2005.06.018

    [2]

    Peckmann J, Thiel V. Carbon cycling at ancient methane–seeps [J]. Chemical Geology, 2004, 205(3-4): 443-467. doi: 10.1016/j.chemgeo.2003.12.025

    [3] 陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40

    CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates [J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40.

    [4]

    Dickens G R, O’Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene [J]. Paleoceanography, 1995, 10(6): 965-971. doi: 10.1029/95PA02087

    [5]

    Kastner M, Claypool G, Robertson G. Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon, northern Gulf of Mexico [J]. Marine and Petroleum Geology, 2008, 25(9): 860-872. doi: 10.1016/j.marpetgeo.2008.01.022

    [6]

    Cicerone R J, Oremland R S. Biogeochemical aspects of atmospheric methane [J]. Global Biogeochemical Cycles, 1988, 2(4): 299-327. doi: 10.1029/GB002i004p00299

    [7]

    Niu M Y, Liang W Y, Wang F P. Methane biotransformation in the ocean and its effects on climate change: a review [J]. Science China Earth Sciences, 2018, 61(12): 1697-1713. doi: 10.1007/s11430-017-9299-4

    [8]

    Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    [9]

    Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective [J]. Earth-Science Reviews, 2011, 106(1-2): 105-130. doi: 10.1016/j.earscirev.2011.01.002

    [10]

    Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chemical Geology, 2004, 205(3-4): 219-238. doi: 10.1016/j.chemgeo.2003.12.019

    [11]

    Hensen C, Zabel M, Pfeifer K, et al. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments [J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2631-2647. doi: 10.1016/S0016-7037(03)00199-6

    [12]

    Chen Y F, Ussler III W, Haflidason H, et al. Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway [J]. Chemical Geology, 2010, 275(3-4): 127-138. doi: 10.1016/j.chemgeo.2010.04.013

    [13]

    Malinverno A, Pohlman J W. Modeling sulfate reduction in methane hydrate-bearing continental margin sediments: does a sulfate-methane transition require anaerobic oxidation of methane? [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(7): Q07006.

    [14]

    Luo M, Chen L Y, Wang S H, et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea [J]. Marine and Petroleum Geology, 2013, 48: 247-259. doi: 10.1016/j.marpetgeo.2013.08.018

    [15]

    Hu Y, Luo M, Chen L Y, et al. Methane source linked to gas hydrate system at hydrate drilling areas of the South China Sea: porewater geochemistry and numerical model constraints [J]. Journal of Asian Earth Sciences, 2018, 168: 87-95. doi: 10.1016/j.jseaes.2018.04.028

    [16]

    Masuzawa T, Handa N, Kitagawa H, et al. Sulfate reduction using methane in sediments beneath a bathyal "cold seep" giant clam community off Hatsushima Island, Sagami Bay, Japan [J]. Earth and Planetary Science Letters, 1992, 110(1-4): 39-50. doi: 10.1016/0012-821X(92)90037-V

    [17]

    Borowski W S, Paull C K, Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    [18]

    Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir [J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 529-543. doi: 10.1016/S0016-7037(00)00556-1

    [19]

    Wang X D, Li N, Feng D, et al. Using chemical compositions of sediments to constrain methane seepage dynamics: a case study from Haima cold seeps of the South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 137-144. doi: 10.1016/j.jseaes.2018.11.011

    [20]

    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572

    [21]

    Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea [J]. Marine Geology, 2001, 177(1-2): 129-150. doi: 10.1016/S0025-3227(01)00128-1

    [22]

    Haese R R, Meile C, Van Cappellen P, et al. Carbon geochemistry of cold seeps: methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea [J]. Earth and Planetary Science Letters, 2003, 212(3-4): 361-375. doi: 10.1016/S0012-821X(03)00226-7

    [23]

    Feng D, Roberts H H. Initial results of comparing cold-seep carbonates from mussel- and tubeworm-associated environments at Atwater Valley lease block 340, northern Gulf of Mexico [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2010, 57(21-23): 2030-2039. doi: 10.1016/j.dsr2.2010.05.004

    [24]

    Chen D F, Cathles III L M, Roberts H H. The geochemical signatures of variable gas venting at gas hydrate sites [J]. Marine and Petroleum Geology, 2004, 21(3): 317-326. doi: 10.1016/j.marpetgeo.2003.12.003

    [25]

    Yang T, Jiang S Y, Yang J H, et al. Dissolved inorganic carbon (DIC) and its carbon isotopic composition in sediment pore waters from the Shenhu area, northern South China Sea [J]. Journal of Oceanography, 2008, 64(2): 303-310. doi: 10.1007/s10872-008-0024-2

    [26]

    Ussler III W, Paull C K. Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles [J]. Earth and Planetary Science Letters, 2008, 266(3-4): 271-287. doi: 10.1016/j.jpgl.2007.10.056

    [27]

    Treude T, Niggemann J, Kallmeyer J, et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin [J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2767-2779. doi: 10.1016/j.gca.2005.01.002

    [28]

    Snyder G T, Hiruta A, Matsumoto R, et al. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2007, 54(11-13): 1216-1239. doi: 10.1016/j.dsr2.2007.04.001

    [29]

    Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008

    [30] 邬黛黛, 吴能友, 付少英, 等. 南海北部东沙海域水合物区浅表层沉积物的地球化学特征[J]. 海洋地质与第四纪地质, 2010, 30(5):41-51

    WU Daidai, WU Nengyou, FU Shaoying, et al. Geochemical characteristics of shallow sediments in the gas hydrate distribution area of Dongsha, the northern South China Sea [J]. Marine Geology & Quaternary Geology, 2010, 30(5): 41-51.

    [31]

    Sassen R, Roberts H H, Carney R, et al. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes [J]. Chemical Geology, 2004, 205(3-4): 195-217. doi: 10.1016/j.chemgeo.2003.12.032

    [32]

    Yang T, Jiang S Y, Ge L, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence [J]. Chinese Science Bulletin, 2010, 55(8): 752-760. doi: 10.1007/s11434-009-0312-2

    [33] 杨涛, 蒋少涌, 杨竞红, 等. 孔隙水中NH4+和HPO42-浓度异常: 一种潜在的天然气水合物地球化学勘查新指标[J]. 现代地质, 2005, 19(1):55-60

    YANG Tao, JIANG Shaoyong, YANG Jinghong, et al. Anomaly of ammonia and phosphate concentration in pore waters: a potential geochemical indicator for prospecting marine gas hydrate [J]. Geoscience, 2005, 19(1): 55-60.

    [34]

    Torres M E, Brumsack H J, Bohrmann G, et al. Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts [J]. Chemical Geology, 1996, 127(1-3): 125-139. doi: 10.1016/0009-2541(95)00090-9

    [35]

    Castellini D G, Dickens G R, Snyder G T, et al. Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico [J]. Chemical Geology, 2006, 226(1-2): 1-30. doi: 10.1016/j.chemgeo.2005.08.008

    [36]

    McQuay E L, Torres M E, Collier R W, et al. Contribution of cold seep barite to the barium geochemical budget of a marginal basin [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2008, 55(6): 801-811. doi: 10.1016/j.dsr.2008.03.001

    [37]

    Torres M E, McManus J, Huh C A. Fluid seepage along the San Clemente Fault scarp: basin-wide impact on barium cycling [J]. Earth and Planetary Science Letters, 2002, 203(1): 181-194. doi: 10.1016/S0012-821X(02)00800-2

    [38]

    Riedinger N, Kasten S, Gröger J, et al. Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 876-887. doi: 10.1016/j.jpgl.2005.10.032

    [39] 赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118

    ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea [J]. Geochimica, 2020, 49(1): 108-118.

    [40]

    Lin Q, Wang J S, Taladay K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate–methane transition zone (SMTZ) in the northern South China Sea [J]. Journal of Asian Earth Sciences, 2016, 115: 547-556. doi: 10.1016/j.jseaes.2015.11.001

    [41] 吴庐山, 杨胜雄, 梁金强, 等. 南海北部琼东南海域HQ-48PC站位地球化学特征及对天然气水合物的指示意义[J]. 现代地质, 2010, 24(3):534-544

    WU Lushan, YANG Shengxiong, LIANG Jinqiang, et al. Geochemical characteristics of sediments at Site HQ-48PC in Qiongdongnan Area, the north of the South China Sea, and their implication for gas hydrates [J]. Geoscience, 2010, 24(3): 534-544.

    [42] 孙甜甜, 邬黛黛, 潘梦迪, 等. 南海北部琼东南盆地浅表层沉积物的地球化学特征及对沉积环境的指示[J]. 热带海洋学报, 2018, 37(4):70-80

    SUN Tiantian, WU Daidai, PAN Mengdi, et al. Geochemical characteristics of surface sediments in the southern Qiongdongnan Basin of the northern South China Sea and its implication for sedimentary environment [J]. Journal of Tropical Oceanography, 2018, 37(4): 70-80.

    [43]

    Wang J L, Wu S G, Kong X, et al. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 17-26. doi: 10.1016/j.jseaes.2018.06.001

    [44]

    Wang X, Wu S, Yuan S, et al. Geophysical signatures associated with fluid flow and gas hydrate occurrence in a tectonically quiescent sequence, Qiongdongnan Basin, South China Sea [J]. Geofluids, 2010, 10(3): 351-368. doi: 10.1111/j.1468-8123.2010.00292.x

    [45]

    Feng D, Chen D F. Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 122: 74-83. doi: 10.1016/j.dsr2.2015.02.003

    [46]

    Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea: an overview [J]. Journal of Asian Earth Sciences, 2018, 168: 3-16. doi: 10.1016/j.jseaes.2018.09.021

    [47] 何家雄, 夏斌, 孙东山, 等. 琼东南盆地油气成藏组合、运聚规律与勘探方向分析[J]. 石油勘探与开发, 2006, 33(1):53-58 doi: 10.3321/j.issn:1000-0747.2006.01.012

    HE Jiaxiong, XIA Bin, SUN Dongshan, et al. Hydrocarbon accumulation, migration and play targets in the Qiongdongnan Basin, South China Sea [J]. Petroleum Exploration and Development, 2006, 33(1): 53-58. doi: 10.3321/j.issn:1000-0747.2006.01.012

    [48] 邬黛黛. 南海天然气水合物的早期成岩作用和地球化学特性研究[D]. 浙江大学博士学位论文, 2008

    WU Daidai. Early diagenesis records and geochemical characteristics of gas hydrate in the South China Sea[D]. Doctor Dissertation of Zhejiang University, 2008.

    [49]

    Zhu W L, Huang B J, Mi L J, et al. Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan basins, South China Sea [J]. AAPG Bulletin, 2009, 93(6): 741-761. doi: 10.1306/02170908099

    [50] 张启明, 胡忠良. 莺-琼盆地高温高压环境及油气运移机制[J]. 中国海上油气(地质), 1992, 6(1):1-9

    ZHANG Qiming, HU Zhongliang. Hot, geopressured Yinggehai-Qiongdongnan Basin, its hydrocarbon migration [J]. China Offshore oil and Gas (Geology), 1992, 6(1): 1-9.

    [51] 刘建章, 王存武. 莺-琼盆地热流体及油气地质意义[J]. 天然气勘探与开发, 2004, 27(1):12-15,7

    LIU Jianzhang, WANG Cunwu. Thermal fluid in Ying-Qiong Basin and its significance of oil-gas geology [J]. Natural Gas Exploration & Development, 2004, 27(1): 12-15,7.

    [52]

    Ye J L, Wei J G, Liang J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea [J]. Marine and Petroleum Geology, 2019, 104: 29-39. doi: 10.1016/j.marpetgeo.2019.03.023

    [53] 拜阳, 宋海斌, 关永贤, 等. 利用反射地震和多波束资料研究南海西北部麻坑的结构特征与成因[J]. 地球物理学报, 2014, 57(7):2208-2222

    BAI Yang, SONG Haibin, GUAN Yongxian, et al. Structural characteristics and genesis of pockmarks in the northwest of the South China Sea derived from reflective seismic and multibeam data [J]. Chinese Journal of Geophysics, 2014, 57(7): 2208-2222.

    [54] 刘斌, 刘胜旋. 南海北部陆坡气泡羽状流的发现: 多波束水体数据[J]. 海洋学报, 2017, 39(9):83-89

    LIU Bin, LIU Shengxuan. Gas bubble plumes observed at north slope of South China Sea from multi-beam water column data [J]. Haiyang Xuebao, 2017, 39(9): 83-89.

    [55] 杨力, 刘斌, 徐梦婕, 等. 南海北部琼东南海域活动冷泉特征及形成模式[J]. 地球物理学报, 2018, 61(7):2905-2914 doi: 10.6038/cjg2018L0374

    YANG Li, LIU Bin, XU Mengjie, et al. Characteristics of active cold seepages in Qiongdongnan Sea area of the northern South China Sea [J]. Chinese Journal of Geophysics, 2018, 61(7): 2905-2914. doi: 10.6038/cjg2018L0374

    [56] 赵斌, 刘胜旋, 李丽青, 等. 南海冷泉分布特征及油气地质意义[J]. 海洋地质前沿, 2018, 34(10):32-43

    ZHAO Bin, LIU Shengxuan, LI Liqing, et al. Distribution pattern of cold seeps in South China Sea and its geological significance [J]. Marine Geology Frontiers, 2018, 34(10): 32-43.

    [57]

    Huang Y Y, Feng J C, Xie Y, et al. Phase equilibrium characteristics of natural gas hydrate formation at the deep-water environment of “Haima” cold seep [J]. Energy Reports, 2022, 8: 5501-5509. doi: 10.1016/j.egyr.2022.04.011

    [58]

    Liang Q Y, Hu Y, Feng D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 124: 31-41. doi: 10.1016/j.dsr.2017.04.015

    [59]

    Fang Y X, Wei J G, Lu H L, et al. Chemical and structural characteristics of gas hydrates from the Haima cold seeps in the Qiongdongnan Basin of the South China Sea [J]. Journal of Asian Earth Sciences, 2019, 182: 103924. doi: 10.1016/j.jseaes.2019.103924

    [60] 陈多福, 李绪宣, 夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报, 2004, 47(3):483-489

    CHEN Duofu, LI Xuxuan, XIA Bin. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan basin of the South China Sea [J]. Chinese Journal of Geophysics, 2004, 47(3): 483-489.

    [61] 杨涛, 蒋少涌, 赖鸣远, 等. 海洋沉积物孔隙水中溶解无机碳(DIC)的碳同位素分析方法[J]. 地球学报, 2005, 26(S1):51-52

    YANG Tao, JIANG Shaoyong, LAI Mingyuan, et al. An analytical method for carbon isotopic composition of dissolved inorganic carbon (DIC) in pore waters from marine sediments [J]. Acta Geoscientica Sinica, 2005, 26(S1): 51-52.

    [62] 杨涛, 蒋少涌, 赖鸣远, 等. 连续流同位素质谱测定水中溶解无机碳含量和碳同位素组成的方法研究[J]. 地球化学, 2006, 35(6):675-680

    YANG Tao, JIANG Shaoyong, LAI Mingyuan, et al. Analytical method for concentration and carbon isotopic composition of dissolved inorganic carbon (DIC) by continuous flow-isotope ratio mass spectrometer [J]. Geochimica, 2006, 35(6): 675-680.

    [63]

    Schulz H D. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin Heidelberg: Springer, 2006.

    [64]

    Hu Y, Luo M, Liang Q Y, et al. Pore fluid compositions and inferred fluid flow patterns at the Haima cold seeps of the South China Sea [J]. Marine and Petroleum Geology, 2019, 103: 29-40. doi: 10.1016/j.marpetgeo.2019.01.007

    [65]

    Feng J X, Yang S X, Wang H B, et al. Methane source and turnover in the shallow sediments to the west of Haima cold seeps on the northwestern slope of the South China Sea [J]. Geofluids, 2019, 2019: 1010824.

    [66]

    Hu Y, Feng D, Peckmann J, et al. The impact of diffusive transport of methane on pore-water and sediment geochemistry constrained by authigenic enrichments of carbon, sulfur, and trace elements: a case study from the Shenhu area of the South China Sea [J]. Chemical Geology, 2020, 553: 119805. doi: 10.1016/j.chemgeo.2020.119805

    [67]

    Borowski W S, Paull C K, Ussler III W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates [J]. Marine Geology, 1999, 159(1-4): 131-154. doi: 10.1016/S0025-3227(99)00004-3

    [68]

    Thomas C J, Blair N E, Alperin M J, et al. Organic carbon deposition on the North Carolina continental slope off Cape Hatteras (USA) [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2002, 49(20): 4687-4709. doi: 10.1016/S0967-0645(02)00135-2

    [69]

    Feng J X, Yang S X, Liang J Q, et al. Methane seepage inferred from the porewater geochemistry of shallow sediments in the Beikang Basin of the southern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 77-86. doi: 10.1016/j.jseaes.2018.02.005

    [70]

    Hu Y, Feng D, Liang Q Y, et al. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 122: 84-94. doi: 10.1016/j.dsr2.2015.06.012

    [71]

    Liu W N, Wu Z J, Xu S N, et al. Pore-water dissolved inorganic carbon sources and cycling in the shallow sediments of the Haima cold seeps, South China Sea [J]. Journal of Asian Earth Sciences, 2020, 201: 104495. doi: 10.1016/j.jseaes.2020.104495

    [72]

    Wu L S, Yang S X, Liang J Q, et al. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu Area, the South China Sea [J]. Science China Earth Sciences, 2013, 56(4): 530-540. doi: 10.1007/s11430-012-4545-6

    [73]

    Borowski W S, Hoehler T M, Alperin M J, et al. Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates[M]//Paull C K, Matsumoto R, Wallace P J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 164. College Station: Ocean Drilling Program, 2000: 87-99.

    [74]

    Chatterjee S, Dickens G R, Bhatnagar G, et al. Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems: a numerical modeling perspective [J]. Journal of Geophysical Research:Solid Earth, 2011, 116(B9): B09103.

    [75]

    Hong W L, Torres M E, Kim J H, et al. Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach [J]. Geochimica et Cosmochimica Acta, 2014, 140: 127-141. doi: 10.1016/j.gca.2014.05.032

    [76] 陈法锦, 陈建芳, 金海燕, 等. 南海表层沉积物与沉降颗粒物中有机碳的δ13C对比研究及其古环境再造意义[J]. 沉积学报, 2012, 30(2):340-345

    CHEN Fajin, CHEN Jianfang, JIN Haiyan, et al. Correlation of δ13Corg in surface sediments with sinking particulate matter in South China Sea and implication for reconstructing Paleo-environment [J]. Acta Sedimentologica Sinica, 2012, 30(2): 340-345.

    [77]

    Huang B J, Xiao X M, Li X X. Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan basins, offshore South China Sea [J]. Organic Geochemistry, 2003, 34(7): 1009-1025. doi: 10.1016/S0146-6380(03)00036-6

    [78]

    Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J]. Chemical Geology, 1999, 161(1-3): 291-314. doi: 10.1016/S0009-2541(99)00092-3

    [79] 苏新, 陈芳, 于兴河, 等. 南海陆坡中新世以来沉积物特性与气体水合物分布初探[J]. 现代地质, 2005, 19(1):1-13

    SU Xin, CHEN Fang, YU Xinghe, et al. A pilot study on miocene through Holocene sediments from the continental slope of the South China Sea in correlation with possible distribution of gas hydrates [J]. Geoscience, 2005, 19(1): 1-13.

    [80]

    Hu X P, Cai W J, Wang Y C, et al. Pore-water geochemistry of two contrasting brine-charged seep sites in the northern Gulf of Mexico continental slope [J]. Marine Chemistry, 2010, 118(3-4): 99-107. doi: 10.1016/j.marchem.2009.11.006

    [81]

    Martin W R, McNichol A P, McCorkle D C. The radiocarbon age of calcite dissolving at the sea floor: estimates from pore water data [J]. Geochimica et Cosmochimica Acta, 2000, 64(8): 1391-1404. doi: 10.1016/S0016-7037(99)00424-X

    [82]

    Hu X P, Burdige D J. Enriched stable carbon isotopes in the pore waters of carbonate sediments dominated by seagrasses: evidence for coupled carbonate dissolution and reprecipitation [J]. Geochimica et Cosmochimica Acta, 2007, 71(1): 129-144. doi: 10.1016/j.gca.2006.08.043

    [83]

    Cangemi M, Di Leonardo R, Bellanca A, et al. Geochemistry and mineralogy of sediments and authigenic carbonates from the Malta Plateau, Strait of Sicily (Central Mediterranean): relationships with mud/fluid release from a mud volcano system [J]. Chemical Geology, 2010, 276(3-4): 294-308. doi: 10.1016/j.chemgeo.2010.06.014

    [84]

    Gontharet S, Pierre C, Blanc-Valleron M M, et al. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea) [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2007, 54(11-13): 1292-1311. doi: 10.1016/j.dsr2.2007.04.007

    [85]

    Haas A, Peckmann J, Elvert M, et al. Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan [J]. Marine Geology, 2010, 268(1-4): 129-136. doi: 10.1016/j.margeo.2009.10.027

    [86]

    Hovland M, Svensen H, Forsberg C F, et al. Complex pockmarks with carbonate-ridges off mid-Norway: products of sediment degassing [J]. Marine Geology, 2005, 218(1-4): 191-206. doi: 10.1016/j.margeo.2005.04.005

    [87]

    Kastner M, Elderfield H, Martin J B, et al. 25. Diagenesis and interstitial-water chemistry at the peruvian continental margin-major constituents and strontium isotopes[M]//Suess E, von Huene R. Proceedings of the Ocean Drilling Program, Scientific Results vol. 112. College Station: Ocean Drilling Porgramm, 1990.

    [88]

    Meister P, Mckenzie J A, Vasconcelos C, et al. Dolomite formation in the dynamic deep biosphere: results from the Peru Margin [J]. Sedimentology, 2007, 54(5): 1007-1032. doi: 10.1111/j.1365-3091.2007.00870.x

    [89]

    Burton E A. Controls on marine carbonate cement mineralogy: review and reassessment [J]. Chemical Geology, 1993, 105(1-3): 163-179. doi: 10.1016/0009-2541(93)90124-2

    [90]

    Mazzini A, Svensen H, Hovland M, et al. Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea [J]. Marine Geology, 2006, 231(1-4): 89-102. doi: 10.1016/j.margeo.2006.05.012

    [91]

    Monnin C, Wheat C G, Dupre B, et al. Barium geochemistry in sediment pore waters and formation waters of the oceanic crust on the eastern flank of the Juan de Fuca Ridge (ODP Leg 168) [J]. Geochemistry, Geophysics, Geosystems, 2001, 2(1): 2000GC000073.

    [92] 冯东, 陈多福. 海底沉积物孔隙水钡循环对天然气渗漏的指示[J]. 地球科学进展, 2007, 22(1):49-57 doi: 10.3321/j.issn:1001-8166.2007.01.007

    FENG Dong, CHEN Duofu. Barium cycling in pore water of seafloor sediment: indicator of methane fluxes [J]. Advances in Earth Science, 2007, 22(1): 49-57. doi: 10.3321/j.issn:1001-8166.2007.01.007

    [93] 冯俊熙, 杨胜雄, 梁金强, 等. 南海北部神狐东南海域沉积物孔隙水地球化学特征及其对天然气水合物的指示[J]. 海洋地质前沿, 2017, 33(7):32-44

    FENG Junxi, YANG Shengxiong, LIANG Jinqiang, et al. Pore water geochemistry in shallow sediments from southeastern Shenhu Area of northern South China Sea and their implications for gas hydrate occurrence [J]. Marine Geology Frontiers, 2017, 33(7): 32-44.

    [94]

    Paull C K, Matsumoto R, Wallace P J. Proceedings of the ocean drilling program[R]. College Station: Ocean Drilling Program, 1996.

    [95] 邬黛黛, 叶瑛, 吴能友, 等. 琼东南盆地与甲烷渗漏有关的早期成岩作用和孔隙水化学组分异常[J]. 海洋学报, 2009, 31(2):86-96

    WU Daidai, YE Ying, WU Nengyou, et al. Early diagenesis records and chemical composition abnormalities in pore water for methane-seep in sediments from the southern Qiongdong Basin [J]. Acta Oceanologica Sinica, 2009, 31(2): 86-96.

  • 期刊类型引用(2)

    1. 宋婉婷, 黄宝琦. 浮游有孔虫壳体钙化的影响因素及壳体重量研究进展. 微体古生物学报(中英文). 2025(02) 百度学术
    2. 秦秉斌,熊志方,贾奇,郭景腾,李铁刚. 浮游有孔虫Neogloboquadrina dutertrei钙化作用及其海洋酸化指示意义. 第四纪研究. 2025(02): 588-599 . 百度学术

    其他类型引用(0)

图(8)  /  表(1)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  5
  • PDF下载量:  49
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-04-02
  • 刊出日期:  2024-02-27

目录

LIU Sheng

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回