基于常规测井的变质岩裂缝识别方法研究

廖海博, 刘红岐, 崔云江, 汪瑞宏, 李枝林, 陈东, 刘伟

廖海博,刘红岐,崔云江,等. 基于常规测井的变质岩裂缝识别方法研究[J]. 海洋地质与第四纪地质,2023,43(4): 189-198. DOI: 10.16562/j.cnki.0256-1492.2023021601
引用本文: 廖海博,刘红岐,崔云江,等. 基于常规测井的变质岩裂缝识别方法研究[J]. 海洋地质与第四纪地质,2023,43(4): 189-198. DOI: 10.16562/j.cnki.0256-1492.2023021601
LIAO Haibo,LIU Hongqi,CUI Yunjiang,et al. Research on fractures identification method of metamorphic rock based on conventional logging[J]. Marine Geology & Quaternary Geology,2023,43(4):189-198. DOI: 10.16562/j.cnki.0256-1492.2023021601
Citation: LIAO Haibo,LIU Hongqi,CUI Yunjiang,et al. Research on fractures identification method of metamorphic rock based on conventional logging[J]. Marine Geology & Quaternary Geology,2023,43(4):189-198. DOI: 10.16562/j.cnki.0256-1492.2023021601

基于常规测井的变质岩裂缝识别方法研究

基金项目: 中石油创新联合体项目“长水平段薄箱体页岩储层地质导向钻井技术”(2020CX040203)
详细信息
    作者简介:

    廖海博(1998—),男,硕士研究生,主要从事测井资料处理解释与储层评价、油藏描述研究,E-mail:1075129119@qq.com

  • 中图分类号: P744

Research on fractures identification method of metamorphic rock based on conventional logging

  • 摘要: BZ19-6气田变质岩潜山储层结构复杂、多样,裂缝发育且非均质性强。在储层评价中,识别有效的裂缝是一个紧迫的难题,而这对于该气田的勘探开发具有重要的意义。以岩性主要为花岗片麻岩、夹少量侵入岩的太古界为研究层位,通过对常规测井曲线进行重极标差(R/S)分析,以识别研究层位的裂缝发育程度,并通过计算Lg(R/S)的牛顿二阶差分值预测裂缝的发育位置。进一步将R/S分析结果与岩芯薄片裂缝观察统计和电成像图解释结果进行对比,建立了利用赫尔特指数识别花岗片麻岩储层裂缝发育程度分类标准。研究表明:① 将R/S分析和牛顿差分法相结合改进的裂缝识别方法,在变质岩储层裂缝评价中具有可行性,可识别宽度>0.005 mm的裂缝;② Lg(R/S)曲线二阶差分值能够准确地识别天然裂缝的发育位置,并且K-Rxo与裂缝线密度呈正相关,相关性高;③ 岩性各向异性和裂缝充填情况对常规测井曲线R/S分析方法识别裂缝精度有影响。
    Abstract: The structure of the reservoir in the BZ19-6 gas field metamorphic rock sub-salt dome is complex and diverse, with developed and heterogeneous fractures. Identifying effective fractures in reservoir evaluation is an urgent problem, which is important for the exploration and development of the gas field. The study mainly focuses on the granite gneiss and Archean intrusions with a small amount of intrusive rock as the research layer. The degree of fracture development of the research layer is identified by analyzing the R/S (rescaled range) of conventional logging curves. The development position of fractures is predicted by calculating the second-order difference of Lg(R/S). Furthermore, the R/S analysis results are compared with the statistical observation of thin-section fractures and the interpretation results of electric imaging to establish a classification standard for the degree of fracture development in granite gneiss reservoirs using the Hurst index. The study shows that: 1) The improved method of combining R/S analysis and Newton's difference method is feasible for fracture evaluation in metamorphic rock reservoirs and can identify fractures with a width greater than 0.005 mm. 2) The second-order difference value of Lg(R/S) curve can accurately identify the development position of natural fractures, and K-Rxo is positively correlated with fracture line density, with high correlation. 3) Rock anisotropy and fracture filling have an impact on the accuracy of fracture identification using the conventional logging curve R/S analysis method.
  • 图  1   研究区位置图

    Figure  1.   Location of study area

    图  2   太古界潜山气藏构造剖面图

    Figure  2.   Archean buried hill gas reservoir structure profile

    图  3   太古界天然裂缝岩芯图片

    Figure  3.   Core pictures of Archean natural fractures

    图  4   太古界岩石薄片

    Figure  4.   Rock slices of Archean strata

    图  5   Microscope电成像图裂缝特征

    Figure  5.   Fracture characteristics of Microscope electrical imaging

    图  6   R/S分析曲线

    Figure  6.   R/S analysis curve

    图  7   赫尔特指数三维散点图

    Figure  7.   Three-dimensional scatter plot of Hurst index

    图  8   Lg(R/S)曲线的K值和凹区间对比

    Figure  8.   Comparison of K value and concave interval of Lg(R/S) curve

    图  9   裂缝线密度与K-Rxo散点图

    Figure  9.   Fracture line density and K-Rxo scatter plot

    图  10   BZ19-6气田裂缝发育预测

    Figure  10.   Prediction of Fracture Development in BZ19-6 Gas Field

    图  11   非花岗片麻岩裂缝发育特征

    Figure  11.   Fracture development characteristics of non-granitic gneiss

    表  1   花岗片麻岩储层裂缝发育程度分类识别标准

    Table  1   Classification and identification standard of fracture development degree of granite gneiss reservoir

    裂缝发育情况HCALHRxoHDT
    不发育>0.95>1.0>1.0
    较发育0.75<HCAL<0.950.7<HRxo<1.00.75<HDT<1.0
    发育<0.75<0.7<0.75
    下载: 导出CSV

    表  2   牛顿二阶差分K值与Microscope-HD电成像图对比

    Table  2   Comparison of Newton ' s second-order difference K value and Microscope-HD electrical imaging map

    类别测井曲线特征参数特征
    井壁崩落区K-CAL>0.00003
    K-DT<0.00001
    K-Rxo<0.00001
    裂缝发育区K-CAL<0.00003
    K-DT>0.00001
    K-Rxo<0.00001
    基岩区K-CAL<0.00003
    K-DT>0.00001
    K-Rxo>0.00001
    下载: 导出CSV
  • [1] 薛永安, 王德英. 渤海湾油型湖盆大型天然气藏形成条件与勘探方向[J]. 石油勘探与开发, 2020, 47(2):260-271

    XUE Yong’an, WANG Deying. Formation conditions and exploration direction of large natural gas reservoirs in the oil-prone Bohai Bay Basin, East China [J]. Petroleum Exploration and Development, 2020, 47(2): 260-271.

    [2] 李欣, 李建忠, 杨涛, 等. 渤海湾盆地油气勘探现状与勘探方向[J]. 新疆石油地质, 2013, 34(2):140-144

    LI Xin, LI Jianzhong, YANG Tao, et al. Oil-gas exploration status and future targets in Bohai Bay Basin [J]. Xinjiang Petroleum Geology, 2013, 34(2): 140-144.

    [3] 薛永安, 李慧勇. 渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义[J]. 中国海上油气, 2018, 30(3):1-9

    XUE Yong'an, LI Huiyong. Large condensate gas field in deep Archean metamorphic buried hill in Bohai sea: discovery and geological significance [J]. China Offshore Oil and Gas, 2018, 30(3): 1-9.

    [4] 侯明才, 曹海洋, 李慧勇, 等. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素[J]. 天然气工业, 2019, 39(1):33-44

    HOU Mingcai, CAO Haiyang, LI Huiyong, et al. Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai Sea area [J]. Natural Gas Industry, 2019, 39(1): 33-44.

    [5] 徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发, 2019, 46(1):25-38

    XU Changgui, YU Haibo, WANG Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin [J]. Petroleum Exploration and Development, 2019, 46(1): 25-38.

    [6] 肖述光, 吕丁友, 侯明才, 等. 渤海海域西南部中生代构造演化过程与潜山形成机制[J]. 天然气工业, 2019, 39(5):34-44

    XIAO Shuguang, LÜ Dingyou, HOU Mingcai, et al. Mesozoic tectonic evolution and buried hill formation mechanism in the southwestern Bohai Sea [J]. Natural Gas Industry, 2019, 39(5): 34-44.

    [7] 韩磊, 刘俊州, 刘振峰, 等. 裂缝型储层测井评价方法及应用研究[J]. 国外测井技术, 2017, 38(4):8-13

    HAN Lei, LIU Junzhou, LIU Zhenfeng, et al. Method of well logging interpretation for fracture reservoirs and its application [J]. World Well Logging Technology, 2017, 38(4): 8-13.

    [8]

    Xiao Z K, Ding W L, Liu J S, et al. A fracture identification method for low-permeability sandstone based on R/S analysis and the finite difference method: a case study from the Chang 6 reservoir in Huaqing oilfield, Ordos Basin [J]. Journal of Petroleum Science and Engineering, 2019, 174: 1169-1178. doi: 10.1016/j.petrol.2018.12.017

    [9] 陈义国, 张丽霞, 赵谦平, 等. 三介质模型常规测井变尺度极差分析裂缝预测技术[J]. 断块油气田, 2012, 19(1):84-87

    CHEN Yiguo, ZHANG Lixia, ZHAO Qianping, et al. Fracture prediction using rescaled range analysis and based on conventional logging data of triple media model [J]. Fault-Block Oil and Gas Field, 2012, 19(1): 84-87.

    [10]

    Li A, Ding W L, Luo K P, et al. Application of R/S analysis in fracture identification of shale reservoir of the Lower Cambrian Niutitang Formation in northern Guizhou Province, South China [J]. Geological Journal, 2020, 55(5): 4008-4020. doi: 10.1002/gj.3648

    [11]

    Zhang H, Ju W, Yin G Q, et al. Natural fracture prediction in Keshen 2 ultra-deep tight gas reservoir based on R/S analysis, Kuqa Depression, Tarim Basin [J]. Geosciences Journal, 2021, 25(4): 525-536. doi: 10.1007/s12303-020-0041-8

    [12]

    Xiao Z K, Ding W L, Hao S Y, et al. Quantitative analysis of tight sandstone reservoir heterogeneity based on rescaled range analysis and empirical mode decomposition: a case study of the Chang 7 reservoir in the Dingbian oilfield [J]. Journal of Petroleum Science and Engineering, 2019, 182: 106326. doi: 10.1016/j.petrol.2019.106326

    [13]

    Aghli G, Moussavi-Harami R, Tokhmechi B. Integration of sonic and resistivity conventional logs for identification of fracture parameters in the carbonate reservoirs (A case study, Carbonate Asmari Formation, Zagros Basin, SW Iran) [J]. Journal of Petroleum Science and Engineering, 2020, 186: 106728. doi: 10.1016/j.petrol.2019.106728

    [14]

    Ge X M, Fan Y R, Zhu X J, et al. A method to differentiate degree of volcanic reservoir fracture development using conventional well logging data—an application of kernel principal component analysis (KPCA) and multifractal detrended fluctuation analysis (MFDFA) [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(12): 4972-4978. doi: 10.1109/JSTARS.2014.2319392

    [15] 倪金龙, 夏斌. 断块运动与潜山油气藏的形成: 以渤海湾盆地为例[J]. 天然气工业, 2006, 26(2):32-35

    NI Jinlong, XIA Bin. Fault block movement and formation of buried hill hydrocarbon reservoir: taking Bohai Bay Basin as an example [J]. Natural Gas Industry, 2006, 26(2): 32-35.

    [16] 薛永安, 柴永波, 周园园. 近期渤海海域油气勘探的新突破[J]. 中国海上油气, 2015, 27(1):1-9

    XUE Yong’an, CHAI Yongbo, ZHOU Yuanyuan. Recent new breakthroughs in hydrocarbon exploration in Bohai sea [J]. China Offshore Oil and Gas, 2015, 27(1): 1-9.

    [17] 龚再升. 中国近海含油气盆地新构造运动与油气成藏[J]. 地球科学-中国地质大学学报, 2004, 29(5):513-517

    GONG Zaisheng. Neotectonics and petroleum accumulation in offshore Chinese basins [J]. Earth Science-Journal of China University of Geosciences, 2004, 29(5): 513-517.

    [18] 宋国民, 张艳, 李慧勇, 等. 渤中凹陷19-6区太古界潜山变质岩岩石类型及鉴别特征[J]. 世界地质, 2020, 39(2):344-352

    SONG Guomin, ZHANG Yan, LI Huiyong, et al. Types and identification characteristics of Archean metamorphic rocks of Buried Hill in 19-6 area of Bozhong sag [J]. Global Geology, 2020, 39(2): 344-352.

    [19] 付晓飞, 宋宪强, 王海学, 等. 裂陷盆地断层圈闭含油气有效性综合评价: 以渤海湾盆地歧口凹陷为例[J]. 石油勘探与开发, 2021, 48(4):677-686

    FU Xiaofei, SONG Xianqiang, WANG Haixue, et al. Comprehensive evaluation on hydrocarbon-bearing availability of fault traps in a rift basin: a case study of the Qikou Sag in the Bohai Bay Basin, China [J]. Petroleum Exploration and Development, 2021, 48(4): 677-686.

    [20] 施和生, 王清斌, 王军, 等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探, 2019, 24(1):36-45

    SHI Hesheng, WANG Qingbin, WANG Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 structure in deep Bozhong sag [J]. China Petroleum Exploration, 2019, 24(1): 36-45.

    [21] 童凯军, 赵春明, 吕坐彬, 等. 渤海变质岩潜山油藏储集层综合评价与裂缝表征[J]. 石油勘探与开发, 2012, 39(1):56-63

    TONG Kaijun, ZHAO Chunming, LÜ Zuobin, et al. Reservoir evaluation and fracture characterization of the metamorphic buried hill reservoir in Bohai Bay [J]. Petroleum Exploration and Development, 2012, 39(1): 56-63.

    [22]

    Nelson R A. Geologic Analysis of Naturally Fractured Reservoirs[M]. 2nd ed. Amsterdam: Elsevier, 2001.

    [23] 牛虎林, 胡欣, 徐志强, 等. 基岩油气藏裂缝性储层的成像测井评价及裂缝预测[J]. 石油学报, 2010, 31(2):264-269

    NIU Hulin, HU Xin, XU Zhiqiang, et al. Evaluation of imaging logging and fracture prediction in fractured basement reservoirs [J]. Acta Petrolei Sinica, 2010, 31(2): 264-269.

    [24]

    Hurst H E. Long-term storage capacity of reservoirs [J]. Transactions of the American Society of Civil Engineers, 1951, 116(1): 770-799. doi: 10.1061/TACEAT.0006518

    [25]

    Mandelbrot B B, Wallis J R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence [J]. Water Resources Research, 1969, 5(5): 967-988. doi: 10.1029/WR005i005p00967

    [26]

    Miranda J G V, Andrade R F S. Rescaled range analysis of pluviometric records in Northeast Brazil [J]. Theoretical and Applied Climatology, 1999, 63(1): 79-88.

    [27]

    Beretta A, Roman H E, Raicich F, et al. Long-time correlations of sea-level and local atmospheric pressure fluctuations at Trieste [J]. Physica A:Statistical Mechanics and its Applications, 2005, 347: 695-703. doi: 10.1016/j.physa.2004.08.027

    [28]

    Pang J, North C P. Fractals and their applicability in geological wireline log analysis [J]. Journal of Petroleum Geology, 1996, 19(3): 339-350. doi: 10.1111/j.1747-5457.1996.tb00438.x

图(11)  /  表(2)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  99
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-04-01
  • 网络出版日期:  2023-09-12
  • 刊出日期:  2023-08-27

目录

    /

    返回文章
    返回