海岸冲淤动态的理论分析:物质收支、剖面形态、岸线进退

高抒, 贾建军, 于谦

高抒,贾建军,于谦. 海岸冲淤动态的理论分析:物质收支、剖面形态、岸线进退[J]. 海洋地质与第四纪地质,2023,43(2): 1-17. DOI: 10.16562/j.cnki.0256-1492.2023021501
引用本文: 高抒,贾建军,于谦. 海岸冲淤动态的理论分析:物质收支、剖面形态、岸线进退[J]. 海洋地质与第四纪地质,2023,43(2): 1-17. DOI: 10.16562/j.cnki.0256-1492.2023021501
GAO Shu,JIA Jianjun,YU Qian. Theoretical framework for coastal accretion-erosion analysis: material budgeting, profile morphology, shoreline change[J]. Marine Geology & Quaternary Geology,2023,43(2):1-17. DOI: 10.16562/j.cnki.0256-1492.2023021501
Citation: GAO Shu,JIA Jianjun,YU Qian. Theoretical framework for coastal accretion-erosion analysis: material budgeting, profile morphology, shoreline change[J]. Marine Geology & Quaternary Geology,2023,43(2):1-17. DOI: 10.16562/j.cnki.0256-1492.2023021501

海岸冲淤动态的理论分析:物质收支、剖面形态、岸线进退

基金项目: 江苏省基础研究计划(自然科学基金)项目“江苏沿海滩涂冲淤及岸线变化规律研究与预测”(BK2011012)
详细信息
    作者简介:

    高抒(1956—),男,教授,主要从事海洋沉积地质学研究,E-mail:shugao@nju.edu.cn

  • 中图分类号: P736.2

Theoretical framework for coastal accretion-erosion analysis: material budgeting, profile morphology, shoreline change

  • 摘要: 海岸线动态经常被作为海岸冲淤的判据,然而,由于未能涵盖物质收支和海岸剖面形态的双重因素影响,此判据具有局限性。基于沉积物收支方程性质和海滩-潮滩剖面形态的理论分析,认为将物质收支与岸线进退速率或海岸剖面形态相结合,才能准确判别海岸冲淤状态。沉积物收支方程含有沉积体系规模、冲淤强度、系统生长极限等信息;海滩剖面形态决定于物质粒径、波能大小,波能耗散最小原理决定了海滩均衡剖面的存在性,而潮滩剖面形态决定于沉积物供给、粒径组成和潮汐动力。根据沉积物收支方程和海岸剖面理论,融合极端事件(风暴等)和海面变化因素,可获取砂质海岸(以海滩为代表)、泥质海岸(以潮滩为代表)各种侵蚀现象的发生机制、速率和时间尺度信息,海岸线变化速率从低(<100 m/a)到高(101~102 m/a)有数量级的差异,冲淤过程的时间尺度包括10−2 a(风暴事件)到103 a(海面变化)的范围。根据沉积物收支和海岸线进退的不同组合,可将海滩、潮滩海岸冲淤动态分为4类,其中第一类为堆积海岸,其余三类为侵蚀海岸,与不同的地貌演化方向和时间尺度相联系。高强度、长时间持续侵蚀主要与物质供给中断和海面上升相关,同时也有人为因素影响。
    Abstract: Shoreline dynamics is often used as a criterion for coastal erosion or accretion. However, this criterion may not be valid because it does not incorporate the factors of material budget and coastal profile morphology. Based upon an analysis of the properties of sediment budget equation and the profile morphology of beach and tidal flat systems, it is argued that only by combining the material budget with the rate of shoreline retreat or the profile morphology can the status of accretion-erosion be accurately identified. The sediment budget equation contains the information on the magnitude of a sedimentary system, accretion-erosion intensity, and the growth limit of the system. The beach profile shape depends on particle size and wave energy. The minimum wave energy dissipation principle implies the existence of equilibrium morphology, while the tidal flat profile shape depends on sediment supply, particle size composition and tidal dynamics. On such a basis, the erosion of both sandy coasts (represented by beaches) and muddy coasts (represented by tidal flats) can be understood in terms its mechanisms, rate and temporal scales by taking into account the various factors such as extreme events induced by storms and sea level rise. The rate of shoreline change may vary by orders of magnitude, ranging from low values of <100 m/a to high values of 101~102 m /a, with time scales for accretion-erosion processes ranging from 10−2 a (storm events) to 103 a (sea level changes). According to the different combinations of sediment budget and shoreline advancing/retreating patterns, the dynamic behaviour of the coastal zone associated with beaches and tidal flats has four possible situations: one of them is related to accretion, and the others are linked with erosion. The different types of erosion are each determined by the geomorphic evolution direction and the temporal scale. High intensity, long-time persisting erosion is mainly related to material supply cutoff and sea level rise, and is influenced by anthropogenic factors.
  • 浊流是具备牛顿流变性质和紊乱状态的一种特殊模式的重力流[1],在海底十分常见并具有极大的破坏性[2]。海底的浊流沉积层对于海底扇、深海峡谷等海底地貌的形成[3-4],以及古气候和古环境变化的记录[5-6]都具有重要的指示意义。

    南海是西太平洋最大的新生代边缘海,物源丰富,沉积速率高,且构造运动活跃,是浊流沉积有利的发育场所[7]。国内许多学者已经在南海北部陆坡、深海盆地、西部深海平原、东部陆坡、南部巽他陆坡底部等地发现了浊流沉积的存在[2, 8-10]。根据前人的研究,南海地区浊流的发生大多与地形地貌、海平面波动、海底火山活动引发的地震以及一些阵发性事件如坍塌、滑坡等有关[8]

    珠江口盆地的浊流沉积比较发育[11],但是目前对于神狐海域的浊流沉积研究多与该区域的天然气水合物相关。神狐海域是我国海底矿产资源和天然气水合物勘探的重要区域,已有的研究表明该地区天然气水合物的产生通常与深水浊流沉积体密切相关[12]。此外,神狐海域发育了多期海底滑坡,钻井资料显示海底滑坡与水合物密切相关。

    前人对于神狐海域地区浊流沉积的研究大多从地球物理以及水合物试采区的含水合物样品着手,而缺乏对神狐海域陆坡浊流沉积的基本沉积特征、成因以及物源等的综合研究。因此本文将对采自南海北部神狐海域陆坡的SH37岩心进行综合分析,探讨神狐海域浊流沉积的沉积特征、浊流成因及物质来源。这不仅能够更好地掌握神狐海域浊流沉积的特征,深化对浊流沉积的研究,对神狐海域浊流沉积的沉积特征、成因及物源做出补充分析,还对深海油气藏的形成、浊流沉积背景下的水合物赋存机制以及古气候的变化记录研究有重要意义。

    南海是西太平洋最大的边缘海,周边被众多大陆和岛屿环绕,东临台湾、菲律宾岛,西达中南半岛,北依华南大陆,南至加里曼丹岛,经纬跨度约为3°~23°N、99°~122°E,面积约为350×104 km2,平均水深1800 m[13]

    SH37岩心所在的神狐海域位于南海北部陆坡的中部位置,属于南海北部陆坡和中央海盆的过渡地带,介于西沙海槽和东沙群岛之间[14]。其北部为珠江水下三角洲和珠江水系,南部为珠江口外海底峡谷和西北次海盆,水深范围为200~1700 m[15]。总体来看,海底地形呈东北高、西南低的形态,整个陆坡坡度大致为2°~5°,表现为NE-SW的延伸方向[16]。海底地形地貌非常复杂,除陆坡斜坡外,还发育有多种次级地貌形态,主要发育滑坡、滑塌、海山、断层崖、海底丘陵、海底峡谷等[17]。从构造上看,神狐海域位于珠江口盆地珠Ⅱ坳陷的白云凹陷北侧(图1),受台湾和东沙等构造运动的影响,中新世以来,构造沉降速率在神狐海域表现为异常高值[18]。白云凹陷是南海北部陆坡最大的一个深水盆地,发育了大量重力流沉积体系,是最具代表性的深水陆坡沉积区[13],沉积类型是以海相沉积地层为主的巨厚层新生代沉积,有机碳含量高,沉积物组分总体上以细粒沉积为主,主要为泥质粉砂、含泥质粉砂和粉砂等。

    图  1  神狐海域构造图[17]
    Figure  1.  Tectonic map of Shenhu sea area[17]

    本文研究材料为2015年取自南海北部陆坡神狐海域的SH37岩心,采样方式为重力柱状样,岩芯位置为19.84°N、114.81°E(图1),岩心总长度4.37 m,取样站位水深1080 m。对SH37岩心进行了AMS14C测年、粒度测试以及常微量、稀土元素测试。

    本文共对437个样品进行了粒度测试,取样间隔1 cm。测试在中国海洋大学实验室利用Mastersizer2000激光粒度测试仪完成。具体操作步骤如下:

    取黄豆粒大小的样品于50 mL烧杯中,加入适量浓度为1∶5的H2O2去除有机质;待样品与H2O2反应完全后,加入适量浓度为10%的盐酸溶液去除碳酸盐;以上反应全部结束后,加入适量六偏磷酸钠溶液,并将样品放入超声机中进行加热分散,分散时间不少于5 min;样品充分分散后即可上机进行测试,每个样品至少进行两组测试,两组结果误差不超过0.5 μm。

    样品测试完成后,根据Shepard三角图解法进行分类命名,并采用Folk-Ward粒度参数计算公式进行参数计算。

    本文共选取了110个样品进行元素测试,平均间隔约4 cm进行取样。主微量元素和稀土元素统一采用电感耦合等离子体质谱仪分析法(ICP-MS)和电感耦合等离子体原子发射光谱分析法(ICP-AES)联合测定。采用四酸消解,取低温烘干后的样品50 mg于Bomb溶样器中,加入1∶1的HNO3溶液1 mL,使其充分反应后加入纯的HF 3 mL,置于160 ~180 ℃的自动控温电板上加热48 h,将液体蒸至近干;然后加入纯化过的HClO4溶液1 mL,蒸干至白烟冒尽;待其冷却后加入2 mL HCl溶液,同样蒸至近干;然后加入2 mL 1∶1的 HNO3溶液,蒸至近干后加入1.5 mL 1∶1的HNO3溶液,放于电热板上加热溶解12 h;冷却至室温后加入0.5 mL铑内标溶液,放于电热板上保温12 h;最后等其冷却至室温后,用1∶1的HNO3溶液转移至50 mL的容量瓶中,稀释至其刻度,摇匀后进行测试。本文样品的元素测试在澳实分析检测(广州)有限公司实验室利用电感耦合等离子体质谱仪XSERIESII测定。其中主量元素(Si除外)用ICP-AES测定,微量元素与稀土元素用ICP-MS测定。地球化学元素分析误差控制在5%以内。

    本文只选取了11~12、133~134、218~219、265~266和426~429 cm内的5个样品进行测试。首先对样品进行前处理,加入适量浓度为1∶3的H2O2溶液去除有机质,待其反应完全后,过0.063 mm的水筛进行冲样,然后留下大于0.063 mm的样品进行烘干,烘干温度为50 ℃。样品完全烘干后挑出所需有孔虫,每个样品挑出的有孔虫质量为4~10 mg。其中11~12、133~134和218~219 cm挑出的有孔虫为单一种Globorotalia inflata,265~266和426~429 cm内的样品为混合种,具体是Globorotalia inflataGloborotalia menardii。测年实验在美国迈阿密Beta实验室进行。

    根据AMS14C测定结果,依据CALIB校正程序,使用Marine13校准数据库[19],取Delta-R值为18±37a,对14C年龄进行校正,并转换为日历年龄。

    结果显示SH37岩心的沉积年龄大约为0~16 kaBP,其中218~219和265~266 cm两个层位处发生地层倒转。0~100 cm(0~11.6 kaBP)为全新世沉积,100~437 cm为末次冰期沉积(表1)。

    表  1  AMS14C测年结果
    Table  1.  Results of AMS14C dating
    取样深度/cm样品种类AMS 14C年龄/aBP校正后日历年龄/cal.aBP
    11~12Globorotalia inflata680±30440~225
    133~134Globorotalia inflata11020±3012671~12442
    218~219Globorotalia inflata13120±3015298~14895
    265~266混合种12590±4014206~13889
    426~430混合种13940±4016511~16076
    下载: 导出CSV 
    | 显示表格

    进行粒度特征的分析时,选取了与元素测试相同的层位进行同步分析。

    根据Shepard命名法,研究区内沉积物主要为黏土质粉砂,其次为粉砂。沉积物主要由粉砂组成,平均含量为73.30%,其次为黏土,平均含量为25.37%,砂含量很少或没有,平均含量仅为1.33%。平均粒径的变化范围为6.76~10.14 μm,平均值为7.95 μm;中值粒径变化范围为7.70~11.41 μm,平均值为9.14 μm;分选系数平均为1.59,分选差;偏态平均值为0.22,表现为正偏态,粒度集中分布于细粒部分;峰态平均值为1.03,表现为中等峰态(表2)。

    表  2  研究区样品各沉积组分含量与粒度参数
    Table  2.  Contents and grain size parameters of the sediments
    粒度参数/组分砂/%粉砂/%黏土/%平均粒径/μm中值粒径/μm 分选系数偏态峰态
    最大值4.1978.2429.2410.1411.411.760.291.14
    最小值0.0069.3219.65 6.767.701.480.120.97
    平均值1.3373.3025.377.959.141.590.221.03
    下载: 导出CSV 
    | 显示表格

    根据沉积物组成与粒度参数的垂向变化(图2),大致将沉积物分成3个层位。

    图  2  粒度组成及参数垂向变化图
    Figure  2.  Vertical variation of grain size composition and parameters

    层Ⅰ:0~200 cm,该层沉积物类型均为黏土质粉砂,各粒级组分含量变化不大,砂、粉砂、黏土的含量分别占1.27%、71.90%和26.83%,中值粒径为7.70~9.33 μm,平均值为8.40 μm;分选系数为1.56,分选差;偏态0.20,为正偏态;峰态1.03,峰态中等。

    层Ⅱ:200~300 cm,该层沉积物类型为黏土质粉砂和粉砂,粉砂类型较多;砂、粉砂、黏土含量分别占1.81%、75.19%和23.01%;中值粒径为8.77~11.41 μm,平均值为10.39 μm;分选系数为1.65,分选差;偏态为0.20,为正偏态;峰态为1.02,中等峰态。

    层Ⅲ:300~437 cm,该层沉积物主要为黏土质粉砂和少量的粉砂;砂、粉砂、黏土的含量分别为1.05%、73.91%和25.04%;中值粒径变化范围为8.21~11.07 μm,平均值为9.30 μm;分选系数为1.59,分选差;偏态为0.24,为正偏态;峰态为1.04,中等峰态。

    SH37岩心稀土总量(ΣREE)变化范围为128.97~183.02 μg/g,平均含量为152.55 μg/g;轻稀土含量(ΣLREE)为118.92~169.14 μg/g,平均值为141.08 μg/g;重稀土含量(ΣHREE)为11.18~13.88 μg/g,平均值为11.48 μg/g;轻重稀土比值(LREE/HREE)变化范围为11.18~13.90,平均值为12.32,ΣLREE明显高于ΣHREE。δEu值为0.57~0.68,平均值为0.62,具有较明显的δEu负异常;δCe为0.92~1.01,平均值为0.97,无明显δCe异常。各个稀土元素的含量见表3

    表  3  稀土元素及参数含量
    Table  3.  Contents of rare earth elements and parameters
    元素LaCePrNdSmEuGdTbDyHoErTmYbLu
    样品最大值39.1079.909.3833.206.471.104.580.654.120.701.950.331.990.31
    样品最小值27.6054.906.4523.704.500.863.200.452.490.491.320.20 1.230.20
    样品平均值32.7966.207.7527.985.390.973.780.542.980.571.58 0.241.540.24
    珠江[20]53.82103.9713.0847.989.231.927.911.256.531.333.550.623.66 0.56
    台湾[21]41.8982.789.3534.976.321.346.110.895.090.962.870.432.850.43
    吕宋岛北部[22]33.3461.516.9125.114.361.153.610.523.070.682.00/1.910.31
    元素参数∑REE∑LREE∑HREE∑REE/
    HREE
    δEuδCe(La/Sm)
    ucc
    (Gd/Lu)
    ucc
    (Gd/Yb)
    ucc
    样品最大值183.02169.1413.88 13.900.671.031.031.451.92
    样品最小值128.97118.929.6911.180.560.930.831.061.31
    样品平均值152.55141.0811.4812.320.610.980.921.321.57
    珠江[20]255.40229.9925.418.980.660.920.881.181.48
    台湾[21]196.29176.6619.638.940.64 0.980.991.211.08
    吕宋岛北部[22]/132.38//0.880.920.710.971.07
      注:元素含量单位为μg /g。
    下载: 导出CSV 
    | 显示表格

    浊流沉积的理想沉积序列为Bouma[23]在1962年提出的“鲍马序列”,但在实际沉积过程中,鲍马序列很难完整保存下来,并且鲍马序列的部分片断存在很大的多解性,在实际应用过程中很难用其来判别浊流沉积。因此,Shanmugam[24]在对世界各海区长达6000多米的岩芯进行了观察和描述后,认为可以将向上变细的正粒序层及其下伏的冲刷构造作为判别浊流的标志。

    南海北部陆坡浊积层的厚度普遍较小,无法发育完整的鲍马序列,因此本文依据Shanmugam判别浊流的标准,并结合AMS14C测年、沉积物粒度特征、特征元素比值以及C-M图的分析结果,识别出了一层特征较明显的浊流沉积,即层Ⅱ(200~300 cm)。

    浊流沉积最显著的特征是沉积物粒度的突然变化[25]。根据粒度参数的垂向变化(图3),中值粒径和分选系数均在层Ⅱ处出现高峰值,与其上下地层相比,层Ⅱ的主要组分为粉砂质沉积,砂含量增多,黏土含量降低,粒度明显变粗,分选变差。说明沉积物粒径大小在该层底部迅速上升然后逐渐降低至正常深海沉积物水平,表现出一个向上逐渐变细的正粒序,与Shanmugam总结的海洋浊流层的沉积特征基本一致。因此初步认为层Ⅱ(200~300 cm)为可能的浊积层。在南海西北部莺歌陆坡ZK3岩心[26]、末次冰期南海南部巽他陆坡底部MD05-2895岩心[2]以及南海西部深海平原SA14-34岩心[10]中发育的浊流沉积中也都出现了类似的正粒序变化,与本文的SH37岩心粒度变化趋势类似。

    图  3  粒度端元提取结果
    Figure  3.  The extraction results from granularity end-members

    为了更好地证明层Ⅱ属于浊流沉积,本文还提取了特征粒级端元组分,提取结果显示前3个粒级端元组分即可解释整个数据变化量的99.9%(图3a),几乎可以涵盖整个孔位数据,因此,我们选择三端元解释数据变化。3个端元粒度的分布模式基本类似,EM1峰值约为7 μm,EM2峰值约为12 μm,EM3峰值约为22 μm(图3b)。可以认为EM1和EM2分别代表正常水动力条件下的较细和较粗组分,EM3代表粒度最粗组分,反映了较复杂的水动力环境。因此我们认为EM3与浊流沉积有一定的关系,可以将EM3端元作为确定浊流沉积的特征端元。从图4b可以看出,EM3含量在层Ⅱ底部开始显著升高,并在整个层Ⅱ的含量都明显高于其上下两层,证明该层存在浊流沉积。

    图  4  SH37岩芯粒度、地球化学元素比值及14C年龄随深度的变化
    a.中值粒径/ μm,b.特征粒级端元EM3,c.砂含量/%,d.Zr/Rb比值,e.岩芯14C测年结果,f.20 kaBP以来南海海平面变化[27-28]
    Figure  4.  Variation of grain size, geochemical element ratios and 14C age of SH37 core with depth
    a. median diameter/ μm,b.Characteristic granularity end-members EM3,c.Sand content, d. Zr/Rb, e.Dating results of the core,f. Sea level changes in the South China Sea since 20 kaBP[[27-28]].

    此外,根据前人的研究,浊流发生时会有大量的粗碎屑物质输入[2],因此具有较高的Si/Al、Si/Fe和Zr/Rb比值。然而由于本文缺少Si元素的数据,在此仅用Zr/Rb比值进行说明。从图4c图4d中可以看出,砂含量及Zr/Rb比值在层Ⅱ内整体较高,并出现高峰值,说明该层相对来说有较多的粗碎屑物质未经改造加入到沉积环境当中,进一步说明了浊流沉积的存在。

    C-M图是识别浊流沉积常用且有效的手段之一。为进一步确认上述数据识别浊流层的可靠性,我们将识别出的浊流层沉积物与其他正常层位的沉积物进行了C-M图投点(图5),结果发现,正常层位内的样品较分散,变化趋势线斜率非常陡,而200~300 cm层位内大部分样品的变化趋势与C=M线大致呈平行关系,其C值与M值成比例增加,这是比较典型的浊流沉积的特征。因此可以判断200~300 cm层位为浊流沉积。

    图  5  C-M图解
    Figure  5.  C-M diagram

    综合粒度特征、浊流环境判别指标、特征元素比值及C-M图等各方面数据,可以认为层Ⅱ即200~300 cm层位是浊流沉积层。

    浊流形成所需的必要条件通常有4个,分别为足够的水深、充足的物源、必要的坡度和触发机制。现有的研究表明,浊流的触发机制主要有海平面的波动、季节性洪水、火山活动、地震、海啸、底辟活动和天然气水合物泄露等[26]

    SH37钻孔位于南海北部白云凹陷的珠江海谷陆坡段(图6)约1000 m的水深处。在该区域内发现了15条近似梳状的海底峡谷,坡度较陡[29-30],是浊流发育的有利地形,加上受北部珠江水系和珠江下三角洲沉积物供给与天然气水合物分解的影响,极易发生沉积物滑塌现象。

    图  6  南海北部陆坡分段[[30]]
    Figure  6.  Segmentation of the northern slope of the South China Sea[[30]]

    根据20 kaBP以来南海的海平面变化曲线(图4f),SH37岩芯的浊流层形成时间恰好处在末次冰期低海平面时期[31],此时南海的海平面低于现代海平面约120 m,南海北部陆架大面积出露,珠江口向陆架区延伸[32],陆源物质的搬运距离大大缩短,珠江水系向陆坡输送了大量的沉积物。这一时期陆源物质供应充足,沉积速率与堆积速率均处于一个较高水平。陆源沉积物快速大量的堆积,导致其固结程度很低,为浊流沉积的形成提供了必要的物质基础。进入末次冰消期后海平面快速上升,松散堆积的沉积物极易受到海平面的波动或重力作用的影响发生滑塌,从而形成浊流。对比同一时期南海西北部莺歌陆坡ZK3岩芯[26]、南海南部巽他陆坡底部MD05-2895岩芯[2]、西菲律宾海MD06-3052岩芯[33]以及南海中央海盆U1433岩芯[34]的沉积特征,它们均在末次冰期低海平面时期发育了较强的浊流堆积事件,且这一时期浊流沉积事件发生的主要诱因均被认为是低海平面时期的海平面波动造成陆架上的沉积物不稳定,同时较陡的陆坡为浊流沉积提供了有利地形。

    另外,有研究表明,神狐海域发育了大量的海底滑坡,且主要发育在水深800~1200 m[35]。因此,推测SH37岩芯内的浊流沉积与海底滑坡相关。其AMS14C测年结果显示在200~300 cm年龄上老下新,出现地层倒转现象,进一步证实了研究区内曾经发生过海底滑坡,这是导致浊流沉积的重要原因。

    综合上述因素,我们认为SH37岩芯浊流沉积的主要触发因素为末次冰期低海平面时期海平面的变化导致陆坡沉积物失稳发生滑坡,进而形成浊流。

    综合前人研究,南海地区沉积物来源较为复杂,存在多个物质来源,而南海北部陆坡神狐海域的物质主要来源于珠江和台湾岛内河流[36]。珠江虽然是注入南海北部最大的河流,但其每年的输沙量约为82.87×106 t,属于少沙型河流,且主要向西运输,而台湾西南部的高屏溪和曾文溪,虽然流域面积加起来还不及珠江的百分之一,但每年搬运的沉积物却达67×106 t,接近珠江的输沙量[37-38]。因此台湾岛河流对南海北部沉积物供给的影响不容小觑。

    稀土元素具有稳定的化学性质,海洋沉积物中稀土元素的含量主要受控于物源和矿物学特征[39],受化学风化剥蚀、搬运、水动力、沉积、成岩及变质作用的影响较小,其含量和分布特征是判断沉积物来源的有效方法[40],因此常用稀土元素来示踪沉积物源。

    研究区内沉积物的ΣREE平均值为152.55 μg/g,与上陆壳值(148 μg/g)[41]很接近,相对接近中国黄土(171 μg/g)[42]和珠江沉积物(255 μg/g),而与深海黏土[43](411 μg/g)[21]和大洋中脊玄武岩(36.14 μg/g)[44]相差较大,表现出明显的“亲陆性”,其较高的LREE/HREE也表明其陆源碎屑含量高,这说明SH37岩芯沉积物应该主要来自陆源,即主要通过沿岸河流输入沉积物。

    首先对岩芯不同层位的沉积物进行球粒陨石标准化,不同深度的样品均具有相似的稀土元素配分模式,均表现为轻稀土相对富集、重稀土相对亏损,具有Eu负异常、无明显Ce异常的特点(图7)。说明沉积物的物质来源基本一致。

    图  7  SH37岩芯稀土元素球粒陨石标准化曲线
    a.SH37岩芯不同层位沉积物稀土元素球粒陨石标准化曲线,b. SH37岩芯与珠江、台湾岛以及吕宋岛北部稀土元素球粒陨石标准化曲线对比图。
    Figure  7.  Chondrite-normalized REE distribution patterns of the sediments from core SH37
    a. Chondrite-normalized REE distribution patterns of sediments from different layers of SH37 core, b. Chondrite-normalized REE distribution patterns of sediments from SH37 core, Pearl River, Taiwan River and the north of Luzon.

    将研究区样品的稀土球粒陨石标准化曲线与珠江、台湾岛内河流以及吕宋岛北部火山岩的球粒陨石标准化曲线进行对比,发现其与珠江和台湾河流沉积物具有基本一致的配分模式(图7a),而与吕宋岛北部的稀土元素分布模式有较大差异,说明研究区内沉积物物源可能为既来源于珠江又来源于台湾岛的混合物源。

    为了进一步确认研究区沉积物的来源,我们选取了(La/Sm)UCC、(Gd/Yb)UCC以及(Gd/Lu)UCC等稀土元素参数进行计算并投点。结果显示,在(La/Sm)UCC-(Gd/Yb)UCC散点图(图8a)和(Gd/Yb)UCC-(Gd/Lu)UCC散点图(图8b)中,SH37岩芯沉积物主要散落在珠江和台湾河流的范围内,仅有个别情况落在吕宋岛范围内,且浊流层和正常层位的分布特征并无明显差异。结合稀土元素球粒陨石标准化曲线,认为SH37岩芯沉积物来源基本一致,一部分来自于珠江,一部分来自于台湾河流。

    图  8  物源判别散点图
    Figure  8.  Scatter diagrams for provenance discrimination

    (1)南海北部神狐海域SH37岩芯沉积物类型主要为黏土质粉砂和粉砂,粒度整体较细,分选差,正偏态,峰态中等。根据AMS14C测年、粒度特征、特征元素比值以及C-M图等综合分析,在200~300 cm层位内发现浊流沉积。

    (2)浊流沉积层粒度较粗,砂组分含量明显较高,分选更差,EM3端元和Zr/Rb比值在该层相对更高。测年结果显示浊流层内出现地层倒转现象。浊流沉积的成因推测为海平面波动或重力作用引起的海底滑坡。

    (3)SH37岩芯沉积物物质来源基本一致,一部分来自珠江,一部分来自台湾河流。

  • [1] 夏东兴, 王文海, 武桂秋, 等. 中国海岸侵蚀述要[J]. 地理学报, 1993, 48(5):468-476 doi: 10.3321/j.issn:0375-5444.1993.05.010

    XIA Dongxing, WANG Wenhai, WU Guiqiu, et al. Coastal erosion in China [J]. Acta Geographica Sinica, 1993, 48(5): 468-476. doi: 10.3321/j.issn:0375-5444.1993.05.010

    [2] 陈吉余. 中国海岸侵蚀概要[M]. 北京: 海洋出版社, 2010

    CHEN Jiyu. A Synthesis of Coastal Erosion in China[M]. Beijing: China Ocean Press, 2010.

    [3]

    Bacopoulos P, Clark R R. Coastal erosion and structural damage due to four consecutive-year major hurricanes: beach projects afford resilience and coastal protection [J]. Ocean & Coastal Management, 2021, 209: 105643.

    [4]

    Brooke B, Lee R, Cox M, et al. Rates of shoreline progradation during the last 1700 years at beachmere, southeastern Queensland, Australia, based on optically stimulated luminescence dating of beach ridges [J]. Journal of Coastal Research, 2008, 24(3): 640-648.

    [5]

    Brooke B P, Olley J M, Pietsch T, et al. Chronology of quaternary coastal aeolianite deposition and the drowned shorelines of southwestern western Australia: a reappraisal [J]. Quaternary Science Reviews, 2014, 93: 106-124. doi: 10.1016/j.quascirev.2014.04.007

    [6]

    Gao S. Modeling the growth limit of the Changjiang delta [J]. Geomorphology, 2007, 85(3-4): 225-236. doi: 10.1016/j.geomorph.2006.03.021

    [7]

    King C A M. Beaches and Coasts[M]. 2nd ed. London: Edward Arnold, 1972.

    [8]

    Komar P D. Beach Processes and Sedimentation[M]. 2nd ed. Upper Saddle River: Prentice Hall, 1998.

    [9]

    Flemming B W, Davis R A Jr. Holocene evolution, morphodynamics and sedimentology of the Spiekeroog Barrier Island system (southern North Sea) [J]. Senckenbergiana Maritima, 1994, 24(1-6): 117-155.

    [10] 张忍顺, 陈才俊. 江苏岸外沙洲演变与条子泥并陆前景研究[M]. 北京: 海洋出版社, 1992

    ZHANG Renshun, Chen Caijun. Evolution of Jiangsu Offshore banksia (Radial Offshore Tidal Sands) and Probability of Tiaozini Sands to Merged into Mainland[M]. Beijing: China Ocean Press, 1992.

    [11]

    Duc D M, Nhuan M T, Ngoi C V. An analysis of coastal erosion in the tropical rapid accretion delta of the Red River, Vietnam [J]. Journal of Asian Earth Sciences, 2012, 43(1): 98-109. doi: 10.1016/j.jseaes.2011.08.014

    [12]

    Trenhaile A S. The Geomorphology of Rock Coasts[M]. Oxford: Clarendon Press, 1987.

    [13]

    Sunamura T. Geomorphology of Rocky Coasts[M]. Chichester: John Wiley, 1992.

    [14]

    Davis R A Jr, Fitzgerald D M. Beaches and Coasts[M]. Malden: Blackwell, 2004.

    [15]

    Carter R W G. Coastal Environments: An Introduction to the Physical, Ecological and Cultural Systems of Coastlines[M]. San Diego: Academic Press, 1988.

    [16]

    Woodroffe C D. Coasts: Form, Process and Evolution[M]. Cambridge: Cambridge University Press, 2002.

    [17]

    Thom B G, Hall W. Behaviour of beach profiles during accretion and erosion dominated periods [J]. Earth Surface Processes and Landforms, 1991, 16(2): 113-127. doi: 10.1002/esp.3290160203

    [18]

    Xue Z, Liu J P, DeMaster D, et al. Late Holocene evolution of the Mekong subaqueous delta, southern Vietnam [J]. Marine Geology, 2010, 269(1-2): 46-60. doi: 10.1016/j.margeo.2009.12.005

    [19]

    Gao S, Wang Y P, Gao J H. Sediment retention at the Changjiang sub-aqueous delta over a 57 year period, in response to catchment changes [J]. Estuarine, Coastal and Shelf Science, 2011, 95(1): 29-38. doi: 10.1016/j.ecss.2011.07.015

    [20]

    Jia J J, Gao J H, Cai T L, et al. Sediment accumulation and retention of the Changjiang (Yangtze River) subaqueous delta and its distal muds over the last century [J]. Marine Geology, 2018, 401: 2-16. doi: 10.1016/j.margeo.2018.04.005

    [21]

    Crossland C J, Kremer H H, Lindeboom H J, et al. Coastal Fluxes in the Anthropocene[M]. Berlin: Springer, 2005.

    [22] 高抒. 海岸带陆海相互作用及其环境影响[M]//中国海洋学会. 2007-2008海洋科学学科发展报告. 北京: 中国科学技术出版社, 2008: 79-87, 165-166

    GAO Shu. Land-ocean interactions in the coastal zone and their environmental influences[M]//Chinese Society for Oceanography. Report on Advances in Ocean Science. Beijing: China Science and Technology Press, 2008: 79-87, 165-166.

    [23]

    Haslett S K. Coastal Systems[M]. London: Routledge, 2000.

    [24]

    Kay R, Alder J. Coastal Planning and Management[M]. London: E & FN Spon, 1999.

    [25] 任美锷. 江苏省海岸带和海涂资源综合调查报告[M]. 北京: 海洋出版社, 1986

    REN Mei’e. The Report of Integrated Survey for Coastal Zone and Tidal Plat in Jiangsu Province[M]. Beijing: China Ocean Press, 1986.

    [26]

    Boak E H, Turner I L. Shoreline definition and detection: a review [J]. Journal of Coastal Research, 2005, 21(4): 688-703.

    [27]

    Merritt W S, Letcher R A, Jakeman A J. A review of erosion and sediment transport models [J]. Environmental Modelling & Software, 2003, 18(8-9): 761-799.

    [28]

    Bird E C F. Coasts: An Introduction to Coastal Geomorphology[M]. 3rd ed. Oxford: B. Blackwell, 1984.

    [29] 高抒, 朱大奎. 江苏淤泥质海岸剖面的初步研究[J]. 南京大学学报: 自然科学版, 1988, 24(1):75-84

    GAO Shu, ZHU Dakui. The profile of Jiangsu’s mud coast [J]. Journal of Nanjing University:Natural Sciences Edition, 1988, 24(1): 75-84.

    [30]

    Toure S, Diop O, Kpalma K, et al. Shoreline detection using optical remote sensing: a review [J]. ISPRS International Journal of Geo-information, 2019, 8(2): 75. doi: 10.3390/ijgi8020075

    [31]

    Sarretta A, Pillon S, Molinaroli E, et al. Sediment budget in the Lagoon of Venice, Italy [J]. Continental Shelf Research, 2010, 30(8): 934-949. doi: 10.1016/j.csr.2009.07.002

    [32]

    Yang S L, Milliman J D, Li P, et al. 50, 000 dams later: erosion of the Yangtze River and its delta [J]. Global and Planetary Change, 2011, 75(1-2): 14-20. doi: 10.1016/j.gloplacha.2010.09.006

    [33]

    Luo X X, Yang S L, Wang R S, et al. New evidence of Yangtze delta recession after closing of the Three Gorges Dam [J]. Scientific Reports, 2017, 7: 41735. doi: 10.1038/srep41735

    [34]

    Mei X F, Dai Z J, Wei W, et al. Secular bathymetric variations of the north Channel in the Changjiang (Yangtze) Estuary, China, 1880-2013: causes and effects [J]. Geomorphology, 2018, 303: 30-40. doi: 10.1016/j.geomorph.2017.11.014

    [35]

    Li J, Gao S. Estimating deposition rates using a morphological proxy of Spartina alterniflora plants [J]. Journal of Coastal Research, 2013, 29(6): 1452-1463.

    [36]

    Wang D D, Gao S, Zhao Y Y, et al. An eco-parametric method to derive sedimentation rates for coastal saltmarshes [J]. Science of the Total Environment, 2021, 770: 144756. doi: 10.1016/j.scitotenv.2020.144756

    [37] 高抒, 方国洪, 于克俊, 等. 沉积物输运对砂质海底稳定性影响的评估方法及应用实例[J]. 海洋科学集刊, 2001, 43:25-37

    GAO Shu, FANG Guohang, YU Kejun, et al. Methodology for evaluating the stability of sandy seabed controlled by sediment movement, with an example of application [J]. Studia Marina Sinica, 2001, 43: 25-37.

    [38]

    Yu Q, Wang Y W, Gao S, et al. Modeling the formation of a sand bar within a large funnel-shaped, tide-dominated estuary: Qiantangjiang Estuary, China [J]. Marine Geology, 2012, 299-302: 63-76. doi: 10.1016/j.margeo.2011.12.008

    [39]

    Xie D F, Pan C H, Wu X G, et al. The variations of sediment transport patterns in the outer Changjiang Estuary and Hangzhou Bay over the last 30 years [J]. Journal of Geophysical Research:Oceans, 2017, 122(4): 2999-3020. doi: 10.1002/2016JC012264

    [40]

    Xie D F, Gao S, Pan C H. Process-based modeling of morphodynamics of a tidal inlet system [J]. Acta Oceanologica Sinica, 2010, 29(6): 51-61. doi: 10.1007/s13131-010-0076-1

    [41]

    Yu Q, Wang Y W, Gao J H, et al. Turbidity maximum formation in a well-mixed macrotidal estuary: the role of tidal pumping [J]. Journal of Geophysical Research:Oceans, 2014, 119(11): 7705-7724. doi: 10.1002/2014JC010228

    [42]

    Wang Y W, Wang Y P, Yu Q, et al. Sand-mud tidal flat morphodynamics influenced by alongshore tidal currents [J]. Journal of Geophysical Research:Oceans, 2019, 124(6): 3818-3836. doi: 10.1029/2018JC014550

    [43] 吴超羽, 包芸, 任杰, 等. 珠江三角洲及河网形成演变的数值模拟和地貌动力学分析: 距今6000-2500a[J]. 海洋学报, 2006, 28(4):64-80

    WU Chaoyu, BAO Yun, REN Jie, et al. A numerical simulation and mophodynamic analysis on the evolution of the Zhujiang River delta in China: 6000~2500 a BP [J]. Acta Oceanologica Sinica, 2006, 28(4): 64-80.

    [44]

    Hapke C J, Lentz E E, Gayes P T, et al. A review of sediment budget imbalances along Fire Island, New York: can nearshore geologic framework and patterns of shoreline change explain the deficit? [J]. Journal of Coastal Research, 2010, 263(3): 510-522.

    [45]

    Gao S, Collins M. Net sand transport direction in a tidal inlet, using foraminiferal tests as natural tracers [J]. Estuarine, Coastal and Shelf Science, 1995, 40(6): 681-697. doi: 10.1006/ecss.1995.0046

    [46]

    Strogatz S H. Exploring complex networks [J]. Nature, 2001, 410(6825): 268-276. doi: 10.1038/35065725

    [47] 高抒, 贾建军, 于谦. 绿色海堤的沉积地貌与生态系统动力学原理: 研究综述[J]. 热带海洋学报, 2022, 41(4):1-19

    GAO Shu, JIA Jianjun, YU Qian. Green sea dykes: an overview of their principles of sediment, geomorphology and ecosystem dynamics [J]. Journal of Tropical Oceanography, 2022, 41(4): 1-19.

    [48]

    Young A P, Carilli J E. Global distribution of coastal cliffs [J]. Earth Surface Processes and Landforms, 2019, 44(6): 1309-1316. doi: 10.1002/esp.4574

    [49]

    Limber P W, Murray A B. Sea stack formation and the role of abrasion on beach-mantled headlands [J]. Earth Surface Processes and Landforms, 2015, 40(4): 559-568. doi: 10.1002/esp.3667

    [50]

    Cullen N D, Bourke M C. Clast abrasion of a rock shore platform on the Atlantic coast of Ireland [J]. Earth Surface Processes and Landforms, 2018, 43(12): 2627-2641. doi: 10.1002/esp.4421

    [51]

    Watanabe M, Goto K, Imamura F, et al. Modeling boulder transport by coastal waves on cliff topography: case study at Hachijo Island, Japan [J]. Earth Surface Processes and Landforms, 2019, 44(15): 2939-2956. doi: 10.1002/esp.4684

    [52]

    Buchanan D H, Naylor L A, Hurst M D, et al. Erosion of rocky shore platforms by block detachment from layered stratigraphy [J]. Earth Surface Processes and Landforms, 2020, 45(4): 1028-1037. doi: 10.1002/esp.4797

    [53]

    Matsumoto H, Dickson M E, Kench P S. Modelling the relative dominance of wave erosion and weathering processes in shore platform development in micro- to mega-tidal settings [J]. Earth Surface Processes and Landforms, 2018, 43(12): 2642-2653. doi: 10.1002/esp.4422

    [54]

    Gao S, Collins M. Equilibrium coastal profiles: I. Review and synthesis [J]. Chinese Journal of Oceanology and Limnology, 1998, 16(2): 97-107. doi: 10.1007/BF02845175

    [55]

    Brooks S M, Spencer T. Temporal and spatial variations in recession rates and sediment release from soft rock cliffs, Suffolk coast, UK [J]. Geomorphology, 2010, 124(1-2): 26-41. doi: 10.1016/j.geomorph.2010.08.005

    [56]

    Carpenter N E, Dickson M E, Walkden M, et al. Lithological controls on soft cliff planshape evolution under high and low sediment availability [J]. Earth Surface Processes and Landforms, 2015, 40(6): 840-852. doi: 10.1002/esp.3675

    [57]

    Hurst M D, Rood D H, Ellis M A, et al. Recent acceleration in coastal cliff retreat rates on the south coast of Great Britain [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(47): 13336-13341. doi: 10.1073/pnas.1613044113

    [58]

    Stavrou A, Lawrence J A, Mortimore R N, et al. A geotechnical and GIS based method for evaluating risk exposition along coastal cliff environments: a case study of the chalk cliffs of southern England [J]. Natural Hazards and Earth System Sciences, 2011, 11(11): 2997-3011. doi: 10.5194/nhess-11-2997-2011

    [59]

    Dawson R J, Dickson M E, Nicholls R J, et al. Integrated analysis of risks of coastal flooding and cliff erosion under scenarios of long term change [J]. Climatic Change, 2009, 95: 249-288. doi: 10.1007/s10584-008-9532-8

    [60]

    Trenhaile A S. Predicting the response of hard and soft rock coasts to changes in sea level and wave height [J]. Climatic Change, 2011, 109(3): 599-615.

    [61]

    Faraoni V. On the extremization of wave energy dissipation rates in equilibrium beach profiles [J]. Journal of Oceanography, 2020, 76(6): 459-463. doi: 10.1007/s10872-020-00556-4

    [62]

    Maldonado S. Do beach profiles under nonbreaking waves minimize energy dissipation? [J]. Journal of Geophysical Research:Oceans, 2020, 125(5): e2019JC015876.

    [63]

    Dean R G. Equilibrium beach profiles: characteristics and applications [J]. Journal of Coastal Research, 1991, 7(1): 53-84.

    [64]

    Bernabeu A M, Medina R, Vidal C. An equilibrium profile model for tidal environments [J]. Scientia Marina, 2002, 66(4): 325-335. doi: 10.3989/scimar.2002.66n4325

    [65]

    Bernabeu A M, Medina R, Vidal C. A morphological model of the beach profile integrating wave and tidal influences [J]. Marine Geology, 2003, 197(1-4): 95-116. doi: 10.1016/S0025-3227(03)00087-2

    [66]

    Castelle B, Marieu V, Bujan S, et al. Equilibrium shoreline modelling of a high-energy meso-macrotidal multiple-barred beach [J]. Marine Geology, 2014, 347: 85-94. doi: 10.1016/j.margeo.2013.11.003

    [67]

    Gao S. Geomorphology and sedimentology of tidal flats[M]//Perillo G M E, Wolanski E, Cahoon D, et al. Coastal Wetlands: An Integrated Ecosystem Approach. 2nd ed. Amsterdam: Elsevier, 2019: 359-381.

    [68]

    Flemming B W. Siliciclastic back-barrier tidal flats[M]//Davis R A Jr, Dalrymple R W. Principles of Tidal Sedimentology. Dordrecht: Springer, 2012: 231-267.

    [69]

    Van Straaten L M J U, Kuenen P H. Accumulation of fine grained sediments in the Dutch Wadden Sea [J]. Geologie en Mijnbouw, 1957, 19: 329-354.

    [70]

    Van Straaten L M J U, Kuenen H. Tidal action as a cause of clay accumulation [J]. Journal of Sedimentary Research, 1958, 28(4): 406-413.

    [71] 朱大奎, 高抒. 潮滩地貌与沉积的数学模型[J]. 海洋通报, 1985, 4(5):15-21

    ZHU Dakui, GAO Shu. Mathematical model of the geomorphic evolution and sedimentation of tidal flats [J]. Marine Science Bulletin, 1985, 4(5): 15-21.

    [72]

    Amos C L. Siliciclastic tidal flats[M]// Perillo G M E. Geomorphology and Sedimentology of Estuarine, Amsterdam: Elsevier, 1995: 273-306.

    [73]

    Gao S. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, Eastern China [J]. Continental Shelf Research, 2009, 29(16): 1927-1936. doi: 10.1016/j.csr.2008.12.010

    [74]

    Wang Y P, Gao S, Jia J J, et al. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China [J]. Marine Geology, 2012, 291-294: 147-161. doi: 10.1016/j.margeo.2011.01.004

    [75]

    Pritchard D, Hogg A J. Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents [J]. Journal of Geophysical Research:Oceans, 2003, 108(C10): 3313. doi: 10.1029/2002JC001570

    [76]

    Liu X J, Gao S, Wang Y P. Modeling profile shape evolution for accreting tidal flats composed of mud and sand: a case study of the central Jiangsu coast, China [J]. Continental Shelf Research, 2011, 31(16): 1750-1760. doi: 10.1016/j.csr.2011.08.002

    [77]

    Yang S L, Luo X X, Temmerman S, et al. Role of delta-front erosion in sustaining salt marshes under sea-level rise and fluvial sediment decline [J]. Limnology and Oceanography, 2020, 65(9): 1990-2009. doi: 10.1002/lno.11432

    [78]

    Kamphuis J W. Introduction to Coastal Engineering and Management[M]. Singapore: World Scientific, 2000.

    [79]

    Wang Y, Ke X K. Cheniers on the east coastal plain of China [J]. Marine Geology, 1989, 90(4): 321-335. doi: 10.1016/0025-3227(89)90134-5

    [80]

    Lee H J, Chun S S, Chang J H, et al. Landward migration of isolated shelly sand ridge (Chenier) on the macrotidal flat of Gomso Bay, west coast of Korea: controls of storms and typhoon [J]. Journal of Sedimentary Research, 1994, 64(4a): 886-893.

    [81]

    Wang H, Van Strydonck M. Chronology of Holocene Cheniers and oyster reefs on the coast of Bohai Bay, China [J]. Quaternary Research, 1997, 47(2): 192-205. doi: 10.1006/qres.1996.1865

    [82]

    Dashtgard S E, Vaucher R, Yang B C, et al. Hutchison medallist 1. Wave-dominated to tide-dominated coastal systems: a unifying model for tidal shorefaces and refinement of the coastal-environments classification scheme [J]. Geoscience Canada, 2021, 48(1): 5-22. doi: 10.12789/geocanj.2021.48.171

    [83]

    Short A D. Macro-meso tidal beach morphodynamics: an overview [J]. Journal of Coastal Research, 1991, 7(2): 417-436.

    [84]

    Masselink G, Hegge B. Morphodynamics of meso- and macrotidal beaches: examples from central Queensland, Australia [J]. Marine Geology, 1995, 129(1-2): 1-23. doi: 10.1016/0025-3227(95)00104-2

    [85]

    Fan D D. Open-coast tidal flats[M]//Davis R A Jr, Dalrymple R W. Principles of Tidal Sedimentology. Dordrecht: Springer, 2012: 187-229.

    [86] 高抒. 极浅水边界层的沉积环境效应[J]. 沉积学报, 2010, 28(5):926-932 doi: 10.14027/j.cnki.cjxb.2010.05.005

    GAO Shu. Extremely shallow water benthic boundary layer processes and the resultant sedimentological and morphological characteristics [J]. Acta Sedimentologica Sinica, 2010, 28(5): 926-932. doi: 10.14027/j.cnki.cjxb.2010.05.005

    [87]

    Shi B W, Cooper J R, Pratolongo P D, et al. Erosion and accretion on a mudflat: the importance of very shallow-water effects [J]. Journal of Geophysical Research:Oceans, 2017, 122(12): 9476-9499. doi: 10.1002/2016JC012316

    [88]

    Silvester R, Hsu J C. Coastal Stabilization: Innovative Concepts[M]. Upper Saddle River: Prentice Hall, 1993.

    [89]

    Bruun P. Sea-level rise as a cause of shore erosion [J]. Journal of the Waterways and Harbors Division, 1962, 88(1): 117-130. doi: 10.1061/JWHEAU.0000252

    [90] 高抒. 大型海底、海岸和沙漠沙丘的形态和迁移特征[J]. 地学前缘, 2009, 16(6):13-22 doi: 10.3321/j.issn:1005-2321.2009.06.002

    GAO Shu. Morphological and migration characteristics of large-scaled submarine, coastal and desert sand dunes [J]. Earth Science Frontiers, 2009, 16(6): 13-22. doi: 10.3321/j.issn:1005-2321.2009.06.002

    [91]

    Qi Y L, Yu Q, Gao S, et al. Morphological evolution of river mouth spits: wave effects and self-organization patterns [J]. Estuarine, Coastal and Shelf Science, 2021, 262: 107567. doi: 10.1016/j.ecss.2021.107567

    [92]

    Flor-Blanco G, Alcántara-Carrió J, Jackson D W T, et al. Coastal erosion in NW Spain: Recent patterns under extreme storm wave events [J]. Geomorphology, 2021, 387: 107767. doi: 10.1016/j.geomorph.2021.107767

    [93]

    Leont'yev I O. Estimating the vulnerability of a sandy coast to storm-induced erosion [J]. Oceanology, 2021, 61(2): 254-261. doi: 10.1134/S0001437021020119

    [94]

    Donnelly C, Kraus N, Larson M. State of knowledge on measurement and modeling of coastal overwash [J]. Journal of Coastal Research, 2006, 22(4): 965-991.

    [95]

    Toimil A, Camus P, Losada I J, et al. Climate change-driven coastal erosion modelling in temperate sandy beaches: methods and uncertainty treatment [J]. Earth-Science Reviews, 2020, 202: 103110. doi: 10.1016/j.earscirev.2020.103110

    [96]

    Davis R A Jr. Geology of Holocene Barrier Island Systems[M]. Berlin: Springer-Verlag, 1994.

    [97]

    Gao S, Collins M. Formation of salt-marsh cliffs in an accretional environment, Christchurch Harbour, southern England[C]//Proceedings of the 30th International Geological Congress (Volume 13: Marine Geology and Palaeoceanography). Beijing: VSP Press, 1997: 95-110.

    [98]

    Zhao Y Y, Yu Q, Wang D D, et al. Rapid formation of marsh-edge cliffs, Jiangsu coast, China [J]. Marine Geology, 2017, 385: 260-273. doi: 10.1016/j.margeo.2017.02.001

    [99] 赵秧秧, 高抒, 王丹丹, 等. 盐沼前缘陡坎韵律性形态特征及其形成过程与机理[J]. 地理学报, 2014, 69(3):378-390 doi: 10.11821/dlxb201403009

    ZHAO Yangyang, GAO Shu, WANG Dandan, et al. Characteristics and formation mechanisms of the rhythmicmorphology of salt-marsh edge cliffs [J]. Acta Geographica Sinica, 2014, 69(3): 378-390. doi: 10.11821/dlxb201403009

    [100]

    Ren M E, Zhang R S, Yang J H. Effect of typhoon No. 8114 on coastal morphology and sedimentation of Jiangsu Province, People's Republic of China [J]. Journal of Coastal Research, 1985, 1(1): 21-28.

    [101]

    Wang J, Bai C, Xu Y H, et al. Tidal couplet formation and preservation, and criteria for discriminating storm-surge sedimentation on the tidal flats of central Jiangsu Province, China [J]. Journal of Coastal Research, 2010, 26(5): 976-981.

    [102]

    Reed D J. The response of coastal marshes to sea-level rise: survival or submergence? [J]. Earth Surface Processes and Landforms, 1995, 20(1): 39-48. doi: 10.1002/esp.3290200105

    [103]

    Allen J R L. The Severn Estuary in southwest Britain: its retreat under marine transgression, and fine-sediment regime [J]. Sedimentary Geology, 1990, 66(1-2): 13-28. doi: 10.1016/0037-0738(90)90003-C

    [104]

    Weill P, Tessier B, Mouazé D, et al. Shelly Cheniers on a modern macrotidal flat (Mont-Saint-Michel Bay, France): internal architecture revealed by ground-penetrating radar [J]. Sedimentary Geology, 2012, 279: 173-186. doi: 10.1016/j.sedgeo.2010.12.002

  • 期刊类型引用(2)

    1. 董杰,朱晓青,窦衍光,宋维宇,薛碧颖,邹亮. 胶州湾基底新元古代变花岗岩的发现与地质意义. 海洋地质与第四纪地质. 2024(06): 163-175+178-189 . 本站查看
    2. Ziwei SUN,Jin LIU,Yue ZHANG,Jinming SONG,Yuanyuan XIAO,Huamao YUAN,Ning LI,Xuegang LI. Compositional characteristics of sediment from Jiaozhou Bay in North China and the implication to the provenance. Journal of Oceanology and Limnology. 2023(05): 1729-1741 . 必应学术

    其他类型引用(1)

计量
  • 文章访问数:  2228
  • HTML全文浏览量:  529
  • PDF下载量:  215
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-02-14
  • 修回日期:  2023-03-06
  • 录用日期:  2023-03-06
  • 网络出版日期:  2023-03-14
  • 刊出日期:  2023-04-27

目录

/

返回文章
返回