Advance, challenge, and suggestion in geophysical technology for underwater archaeology survey
-
摘要:
水下考古涉及不同的调查阶段,其调查范围、水下环境、调查目标存在很大差异,对应使用的调查技术和策略也不同。系统分析了常规的和最前沿的水下考古地球物理及潜水器技术的现状和优缺点,包括声学(多波束、侧扫声呐、浅地层剖面、单道/小多道地震)、磁力、电磁法、激光雷达、潜水器(HOV、ROV、AUV)等。目前水下考古在海床遗存图像识别、埋藏的小尺寸人工遗物探测、洞穴遗存的探测发掘、潮间带遗存探测和深海考古发掘等方面仍存在大量挑战。建议通过加强海洋行业合作,升级改进现有调查技术,建立技术装备共享机制,从而提升考古遗址发现数量和几率,避免遗址受破坏流失,降低考古经济成本。
Abstract:Underwater archaeology involves different stages of investigation, and the survey scope, underwater environment, and survey objective vary greatly. Therefore, corresponding survey techniques and strategies are also different. We analyzed conventional method and cutting-edge geophysical vehicle techniques of underwater archaeology, including acoustics (multi-beam echosounder, side-scan sonar, sub-bottom profiler, and single-channel/mini multi-channel seismic), electromagnetic, electric, LiDAR, and underwater operated vehicles (HOV/ROV/AUV) etc. At present, many challenges remain in underwater archaeology in terms of image recognition of seabed relics, detection of buried small-scale artificial relics, detection and excavation of cave leftovers, detection of intertidal remnants, and the exploration of deep-sea archaeology and excavation. It is our device to strengthen cooperation in marine industry, upgrade and improve existing survey technology, and establish a mechanism for hardware sharing to increase the probability of archaeological site discovery, avoid damage and loss of the sites, and reduce economic costs.
-
-
图 2 水下史前考古遗址及中国主要水下考古遗址的水深信息
灰色柱状显示史前遗址发现数量随水深增加而迅速减少。红色曲线表示人口密度和调查技术方法随水深增加而减少;蓝线表示发现遗址的成本和技术难度随水深增大而不断增加;黑色星号表示中国主要水下考古遗址水深信息 [4]。
Figure 2. Distribution in the depth of all submerged prehistoric sites and major ancient shipwreck site in China
The number of known sites decreases rapidly with depth. The red curve uses arbitrary units to indicate that the population density and tool technology decreases as we go back in time and depth, and the blue line indicates the increasing cos twith depth and technical difficulty of working. Black stars indicate depth of major underwater archaeological sites in China[4].
图 3 典型的水下考古调查方法示意图
a: 浅地层剖面仪,b: 多波束测深仪,c: 地震系统,d. 侧扫声呐系统, e: AUV,f: 沉积物取样器,g: 无人机激光雷达,h: 人工潜水挖掘。
Figure 3. Typical setup for underwater archaeological survey
a: sub-bottom profiler; b: multibeam echosounder; c: Reflection seismic system; d: side scan sonar; e: autonomous underwater vehicle; f: sediment sampling gravity corer; g: UAV-airborne LiDAR bathymetry; h: Diver-controlled excavation.
图 4 近海岛礁古沉船遗址探测
a: 侧扫声呐和浅地层剖面系统的基本工作原理示意图;b: 拖曳于调查船尾的侧扫声呐换能器发射垂直宽扇形高频声脉冲扫描海底,海床反射脉冲(背向散射)被记录并处理,生成海床和沉船高精度侧扫声呐地貌图像;c: 船载浅地层剖面系统沿垂直方向发射垂直窄波束高频脉冲,海底和更深层的反射声脉冲被记录和处理,生成海底和沉船浅地层剖面图像[11]。
Figure 4. Exploration of the ancient shipwreck site off the coast of Island
a: schematic presentation showing basic operation principles of the side scan sonar (SSS) and sub-bottom profiler (SBP); b: the SSS transmits high-frequency sound pulses in a vertically wide fan shape from a moving vessel, which scans the seafloor. The reflected pulses from the seafloor (backscatter) are recorded and processed to produce a perspective image of the seafloor; c: the SBP emits a narrow acoustic beam, which penetrates the layers beneath the seafloor. The reflected acoustic pulses from the seabed and the deeper layers are recorded and processed to produce a vertical plane seismic section of the seabed along the vessel’s trajectory[11].
图 6 三维浅地层剖面系统探测考古遗址
a.安装在小型调查船上的SES-2000 quattro参量三维浅剖; b. 水下摄影显示的居民桩基遗迹; c. 三维浅剖数据揭示民居桩基遗迹(b)、沉积层、埋藏物、考古文化层[23]。
Figure 6. Exploration of archaeological sites by 3D sub-bottom profiler
a: SES-2000 quattro parametric sub-bottom profiler mounted on a small survey vessel; b: remains of resident pilings as shown by underwater photography; c: 3D data of SES-2000 quattro reveals the remains of resident pilings, sedimentary layer, buried objects, and archaeological culture layer in b[23].
表 1 水下考古调查的不同阶段及其规模、水下环境及相应分辨率
Table 1 Different stages, scale, underwater environment, and corresponding resolution of underwater archaeological survey
调查阶段 调查范围 水下环境 分辨率 区域预查 百千米级 大陆架 十米级 潜力区普查 十千米级 河系 米级 重点区详查 千米级 河谷 分米级 遗址勘探 十米级 结构、层位 分米级 遗址发掘/恢复/保存 米或分米级 人工遗物 厘米级 表 2 水下考古主要地球物理技术及其数据信息类型
Table 2 Main geophysical techniques and data information types of underwater archaeology
技术分类 调查技术 探测分辨率 数据信息类型 声学 侧扫声呐(多脉冲、多波束声呐等) 分米级 海底地形地貌、水下裸露/半掩埋目标物 合成孔径声呐 厘米级 三维扫描声呐 厘米级 条带多波束测深 米级 声学 常规声学浅剖 分米级 浅部地层结构(二维)、浅埋目标物 Chirp浅剖 分米级 参量浅剖 厘米级 Boomer单道地震 分米或米级 电火花单道地震 米级 电火花小多道地震 分米级 Chirp/参量/合成孔径三维浅剖(3D Chirp、SES2000 Quattro、
SBI、海底鹰等)厘米级 浅部地层结构(三维)、浅埋目标物 磁力/电磁 磁力(梯度)测量 亚米级 磁力剖面和磁异常平面 电磁测量 米级 电阻率剖面 光学 机载LiDAR测深 分米级 岸滩、浅水地形 潜水器平台 HOV、ROV、AUV及其任务载荷技术 — 声学影像/光学摄像/海水、沉积物样品/岩芯等 -
[1] 丁见祥. 浅谈大陆架考古及其意义[J]. 中国文化遗产, 2022, 111(5):79-89 doi: 10.3969/j.issn.1672-7819.2022.05.018 DING Jianxiang. Archaeology of continental shelf and its implications: a brief discussion [J]. China Cultural Heritage, 2022, 111(5): 79-89. doi: 10.3969/j.issn.1672-7819.2022.05.018
[2] Chappell J, Shackleton N J. Oxygen isotopes and sea level [J]. Nature, 1986, 324(6093): 137-140. doi: 10.1038/324137a0
[3] Galili E, Benjamin J, Hershkovitz I, et al. Atlit-Yam: a unique 9000 year old prehistoric village submerged off the Carmel coast, Israel-the SPLASHCOS field school (2011)[M]//Bailey G N, Harff J, Sakellariou D. Under the Sea: Archaeology and Palaeolandscapes of the Continental Shelf. Cham: Springer, 2017: 85-102.
[4] Flemming N C, Çağatay M N, Chiocci F L, et al. Land Beneath the Waves: Submerged Landscapes and Sea Level Change: A Joint Geoscience-Humanities Strategy for European Continental Shelf Prehistoric Research[M]. Oostende: European Marine Board, 2014: 171.
[5] L'Hour M, 邱丹丹. 开创深海考古新模式: 月亮号沉船发掘[J]. 水下考古, 2018: 83-99 L'Hour M, 邱丹丹. 开创深海考古新模式: 月亮号沉船发掘[J]. 水下考古, 2018: 83-99. [L'Hour M, QIU Dandan. La Lune: invent the abyssal archaeology[J]. Underwater Archaeology Survey, 2018: 83-99.
[6] 胡毅, 丁见祥, 房旭东, 等. 水下考古区域调查与海洋地球物理方法[J]. 科学, 2016, 68(6): 32-35 HU Yi, DING Jianxiang, FANG Xudong, et al. 2016. Underwater archaeological area survey and Marine geophysics[J]. Science, 68(6): 32-35.
[7] 赵潮, 潘臻. 考古区域系统调查的理论、实践与反思[J]. 四川文物, 2015(4):91-96 ZHAO Chao, PAN Zhen. Theory, practice and reflection on archaeological regional systematic investigation [J]. Sichuan Cultural Relics, 2015(4): 91-96.
[8] 马永, 李家彪, 吴自银, 等. 综合物探技术在海洋考古中的应用: 以川岛水下考古为例[J]. 海洋学研究, 2016, 34(2):43-52 doi: 10.3969/j.issn.1001-909X.2016.02.006 MA Yong, LI Jiabiao, WU Ziyin, et al. The application of an integrated geophysical prospecting system to underwater archeology: an example from Chuan Island, Guangdong province [J]. Journal of Marine Sciences, 2016, 34(2): 43-52. doi: 10.3969/j.issn.1001-909X.2016.02.006
[9] 蔺爱军. 综合海洋地球物理方法在探测水下文化遗产中的应用研究: 以平潭附近海域为例[D]. 厦门: 国家海洋局第三海洋研究所, 2017 LIN Aijun. The study of integrated marine geophysical method in detecting underwater cultural heritage: a case of nearby the waters in Pingtan[D]. Xiamen: Third Institute of Oceanography, State Oceanic Administration of China, 2017.
[10] 李海东, 胡毅, 许江, 等. 浅地层剖面系统在福建沿海海底沉船调查中的应用[J]. 海洋技术学报, 2019, 38(1):79-84 LI Haidong, HU Yi, XU Jiang, et al. Application of sub-bottom profilers in the investigation of seabed shipwreck in Fujian coastal waters [J]. Journal of Ocean Technology, 2019, 38(1): 79-84.
[11] Ferentinos G, Fakiris E, Christodoulou D, et al. Optimal sidescan sonar and subbottom profiler surveying of ancient wrecks: the ‘Fiskardo’ wreck, Kefallinia Island, Ionian Sea [J]. Journal of Archaeological Science, 2020, 113: 105032. doi: 10.1016/j.jas.2019.105032
[12] 胡毅, 丁见祥, 房旭东, 等. 基于水下文物控制实验的海洋地球物理声学研究进展[J]. 地球科学进展, 2019, 34(10):1081-1091 doi: 10.11867/j.issn.1001-8166.2019.10.1081 HU Yi, DING Jianxiang, FANG Xudong, et al. Control experiments for underwater cultural relics survey by marine geophysical of acoustics [J]. Advances in Earth Science, 2019, 34(10): 1081-1091. doi: 10.11867/j.issn.1001-8166.2019.10.1081
[13] 蒲进菁, 李太春, 唐梓力, 等. 无人船在近浅海水下考古领域的工程实践[J]. 海洋测绘, 2022, 42(3):52-55 doi: 10.3969/j.issn.1671-3044.2022.03.012 PU Jinjing, LI Taichun, TANG Zili, et al. A practical application of unmanned surface vehicle in the field of underwater archeology in the shallow water [J]. Hydrographic Surveying and Charting, 2022, 42(3): 52-55. doi: 10.3969/j.issn.1671-3044.2022.03.012
[14] Bates C R, Lawrence M, Dean M, et al. Geophysical methods for wreck-Site monitoring: the rapid archaeological site surveying and evaluation (RASSE) programme [J]. International Journal of Nautical Archaeology, 2011, 40(2): 404-416. doi: 10.1111/j.1095-9270.2010.00298.x
[15] Mallios A. Sonar scan matching for simultaneous localization and mapping in confined underwater environments[D]. Doctor Dissertation of University of Gerona, 2014.
[16] Hurtado O J Z, Missiaen T, De Clercq M, et al. Comparative seismic source study for buried palaeolandscape investigations in the southern North Sea[C]//20th European Meeting of Environmental and Engineering Geophysics. Vienna: European Association of Geoscientists, 2014,doi: 10.3997/2214-4609.20142110.
[17] Wunderlich J, Wendt G, Müller S. High-resolution echo-sounding and detection of embedded archaeological objects with nonlinear sub-bottom profilers [J]. Marine Geophysical Researches, 2005, 26(2-4): 123-133. doi: 10.1007/s11001-005-3712-y
[18] Plets R, Dix J, Bastos A, et al. Characterization of buried inundated peat on seismic (chirp) data, inferred from core information [J]. Archaeological Prospection, 2007, 14(4): 261-272. doi: 10.1002/arp.318
[19] Missiaen T. The potential of seismic imaging in marine archaeological site investigations [J]. Relicta, 2010, 6: 219-236.
[20] Missiaen T, Murphy S, Loncke L, et al. Very high-resolution seismic mapping of shallow gas in the Belgian coastal zone [J]. Continental Shelf Research, 2002, 22(16): 2291-2301. doi: 10.1016/S0278-4343(02)00056-0
[21] Missiaen T. VHR marine 3D seismics for shallow water investigations: some practical guidelines [J]. Marine Geophysical Research, 2005, 26(2-4): 145-155. doi: 10.1007/s11001-005-3708-7
[22] Plets R M K, Dix J K, Adams J R, et al. The use of a high-resolution 3D chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), river Hamble, UK [J]. Journal of Archaeological Science, 2009, 36(2): 408-418. doi: 10.1016/j.jas.2008.09.026
[23] Wunderlich J, Lowag J. Multi-transducer parametric sub-bottom profiler to acquire high-resolution data of buried structures for 3-D visualisation[C]//11th European Conference on Underwater Acoustics. 2012: 1308-1313.
[24] Boyce J I, Reinhardt E G, Raban A, et al. Marine magnetic survey of a submerged roman Harbour, Caesarea Maritima, Israel [J]. International Journal of Nautical Archaeology, 2004, 33(1): 122-136. doi: 10.1111/j.1095-9270.2004.00010.x
[25] Klein G, Bohlen T, Theilen F, et al. Acquisition and inversion of dispersive seismic waves in shallow marine environments [J]. Marine Geophysical Research, 2005, 26(2-4): 287-315. doi: 10.1007/s11001-005-3725-6
[26] 罗贤虎, 邓明, 邱宁, 等. MicrOBEM: 小型海底电磁接收机[J]. 物探与化探, 2022, 46(3):544-549 LUO Xianhu, DENG Ming, QIU Ning, et al. MicrOBEM: a micro-ocean-bottom electromagnetic receiver [J]. Geophysical and Geochemical Exploration, 2022, 46(3): 544-549.
[27] 王猛, 张汉泉, 伍忠良, 等. 勘查天然气水合物资源的海洋可控源电磁发射系统[J]. 地球物理学报, 2013, 56(11):3708-3717 doi: 10.6038/cjg20131112 WANG Meng, ZHANG Hanquan, WU Zhongliang, et al. Marine controlled source electromagnetic launch system for natural gas hydrate resource exploration [J]. Chinese Journal of Geophysics, 2013, 56(11): 3708-3717. doi: 10.6038/cjg20131112
[28] Henderson R D, Day-Lewis F D, Abarca E, et al. Marine electrical resistivity imaging of submarine groundwater discharge: sensitivity analysis and application in Waquoit Bay, Massachusetts, USA [J]. Hydrogeology Journal, 2010, 18(1): 173-185. doi: 10.1007/s10040-009-0498-z
[29] Rucker D F, Noonan G E, Greenwood W J. Electrical resistivity in support of geological mapping along the Panama Canal [J]. Engineering Geology, 2011, 117(1-2): 121-133. doi: 10.1016/j.enggeo.2010.10.012
[30] Passaro S. Marine electrical resistivity tomography for shipwreck detection in very shallow water: a case study from Agropoli (Salerno, southern Italy) [J]. Journal of Archaeological Science, 2010, 37(8): 1989-1998. doi: 10.1016/j.jas.2010.03.004
[31] Pe’eri S, Morgan L V, Philpot W D, et al. Land-water interface resolved from airborne LiDAR bathymetry (ALB) waveforms [J]. Journal of Coastal Research, 2011, 62: 75-85. doi: 10.2112/SI_62_8
[32] 金鼎坚, 吴芳, 于坤, 等. 机载激光雷达测深系统大规模应用测试与评估: 以中国海岸带为例[J]. 红外与激光工程, 2020, 49(S2):20200317 JIN Dingjian, WU Fang, YU Kun, et al. Large-scale application test and evaluation of an airborne Lidar bathymetry system: a case study in China′s coastal zone [J]. Infrared and Laser Engineering, 2020, 49(S2): 20200317.
[33] Pastol Y. Use of airborne LiDAR bathymetry for coastal hydrographic surveying: the French experience [J]. Journal of Coastal Research, 2011(62): 6-18.
[34] 宿殿鹏, 阳凡林, 陈亮, 等. 无人机载LiDAR测深系统进行海岸带测绘的可行性分析[J]. 山东科技大学学报:自然科学版, 2022, 41(5):11-20 SU Dianpeng, YANG Fanlin, CHEN Liang, et al. Feasibility analysis of UAV-airborne LiDAR bathymetry system for coastal zone mapping [J]. Journal of Shandong University of Science and Technology:Natural Science, 2022, 41(5): 11-20.
[35] 连琏, 魏照宇, 陶军, 等. 无人遥控潜水器发展现状与展望[J]. 海洋工程装备与技术, 2018, 5(4):223-231 doi: 10.12087/oeet.2095-7297.2018.04.01 LIAN Lian, WEI Zhaoyu, TAO Jun, et al. Development status and prospects of remotely operated vehicles [J]. Ocean Engineering Equipment and Technology, 2018, 5(4): 223-231. doi: 10.12087/oeet.2095-7297.2018.04.01
[36] Bingham B, Foley B, Singh H, et al. Robotic tools for deep water archaeology: surveying an ancient shipwreck with an autonomous underwater vehicle [J]. Journal of Field Robotics, 2010, 27(6): 702-717. doi: 10.1002/rob.20350
[37] Mahon I, Pizarro O, Johnson-Roberson M, et al. Reconstructing pavlopetri: mapping the world’s oldest submerged town using stereo-vision[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 2315-2321.
[38] Mccann A M, Oleson J P. Deep-Water Shipwrecks off Skerki Bank: the 1997 Survey[M]. Journal of Roman Archaeology, 2004: 40-89.
[39] 丁见祥. 二〇一八年南海海域深海考古调查与思考[N]. 中国文物报, 2018-08-10(5) DING Jianxiang. Deep-sea archaeological survey and reflection in South China Sea in 2018[N]. China Cultural Relics Journal, 2018-08-10(5).
[40] Missiaen T, Sakellariou D, Flemming N C. Survey strategies and techniques in underwater geoarchaeological research: an overview with emphasis on prehistoric sites[M]//Bailey G N, Harff J, Sakellariou D. Under the Sea: Archaeology and Palaeolandscapes of the Continental Shelf. Cham: Springer, 2017: 21-37.
[41] Du X, Sun Y F, Song Y P, et al. A comparative study of different CNN models and transfer learning effect for underwater object classification in side-scan sonar images [J]. Remote Sensing, 2023, 15(3): 593. doi: 10.3390/rs15030593
[42] Huo G Y, Wu Z Y, Li J B. Underwater object classification in Sidescan sonar images using deep transfer learning and semisynthetic training data [J]. IEEE Access, 2020, 8: 47407-47418. doi: 10.1109/ACCESS.2020.2978880
[43] Ren Q Y, Grøn O, Hermand J P. On the in-situ detection of flint for underwater Stone Age archaeology[C]//Proceedings of OCEANS 2011 IEEE Conference. Santander: IEEE, 2011: 1-7,doi: 10.1109/Oceans-Spain.2011.6003529.
[44] 刘溢滂, 胡毅. 浅埋水下文物遗址的海洋地球物理声学探测展望: 以沉船为例[J]. 地球科学进展, 2023, 38(1):99-109 doi: 10.11867/j.issn.1001-8166.2022.078 LIU Yipang, HU Yi. Prospect of marine geophysical acoustic detection of buried underwater cultural relics: a case study of shipwrecks [J]. Advances in Earth Science, 2023, 38(1): 99-109. doi: 10.11867/j.issn.1001-8166.2022.078
[45] Gillham J. Development of a field deployable underwater laser scanning system[D]. Master Dissertation of University of Waterloo, 2011.
[46] Missiaen T, Slob E, Donselaar M E. Comparing different shallow geophysical methods in a tidal estuary, Verdronken land van Saeftinge, western Scheldt, the Netherlands [J]. Netherlands Journal of Geosciences, 2008, 87(2): 151-164. doi: 10.1017/S0016774600023192
[47] Delefortrie S, Saey T, Van De Vijver E, et al. Frequency domain electromagnetic induction survey in the intertidal zone: limitations of low-induction-number and depth of exploration [J]. Journal of Applied Geophysics, 2014, 100: 14-22. doi: 10.1016/j.jappgeo.2013.10.005
[48] Kruiver P, Zurita-Hurtado O, Diafera G, et al. Non-conventional techniques for marine archaeological investigations[R]. Renard Centre of Marine Geology, University of Gent, 2013.
[49] Fitch S, Thomson K, Gaffney V. Late Pleistocene and Holocene depositional systems and the palaeogeography of the Dogger Bank, North Sea [J]. Quaternary Research, 2005, 64(2): 185-196. doi: 10.1016/j.yqres.2005.03.007