基于地震融合属性的砂体连通性判断方法以渤中凹陷中浅层砂体为例

张罗成, 刘怀山, 张志军, 谭辉煌, 赵明鑫, 杨宸

张罗成,刘怀山,张志军,等. 基于地震融合属性的砂体连通性判断方法——以渤中凹陷中浅层砂体为例[J]. 海洋地质与第四纪地质,2024,44(6): 195-203. DOI: 10.16562/j.cnki.0256-1492.2023011601
引用本文: 张罗成,刘怀山,张志军,等. 基于地震融合属性的砂体连通性判断方法——以渤中凹陷中浅层砂体为例[J]. 海洋地质与第四纪地质,2024,44(6): 195-203. DOI: 10.16562/j.cnki.0256-1492.2023011601
ZHANG Luocheng,LIU Huaishan,ZHANG Zhijun,et al. A method for judging sand body connectivity based on seismic fusion attributes: A case of the Bozhong Sag[J]. Marine Geology & Quaternary Geology,2024,44(6):195-203. DOI: 10.16562/j.cnki.0256-1492.2023011601
Citation: ZHANG Luocheng,LIU Huaishan,ZHANG Zhijun,et al. A method for judging sand body connectivity based on seismic fusion attributes: A case of the Bozhong Sag[J]. Marine Geology & Quaternary Geology,2024,44(6):195-203. DOI: 10.16562/j.cnki.0256-1492.2023011601

基于地震融合属性的砂体连通性判断方法——以渤中凹陷中浅层砂体为例

基金项目: 国家自然科学基金项目“近海底地震海洋学立体探测与成像基础研究”(91958206)
详细信息
    作者简介:

    张罗成(1997—),男,硕士研究生,海洋地球物理勘探研究,E-mail:1076046322@qq.com

    通讯作者:

    刘怀山(1962—),男,博士,教授,海洋地球物理勘探数据采集研究,E-mail:lhs@ouc.edu.cn

  • 中图分类号: P631.4;P736

A method for judging sand body connectivity based on seismic fusion attributes: A case of the Bozhong Sag

  • 摘要:

    关于渤中凹陷区中浅层明化镇组下段砂体精细化描述的薄互层以及地震、测井资料较少,砂体连通性的判定问题难以解决。基于研究区实际地震、测井和地质资料,根据砂体实际特征建立了对应模型,通过正演模拟技术中的波动方程法验证、优选适合的地震属性。由地震属性分析技术探究出砂体在最小尺度横向距离$ \frac{1}{8}\mathrm{\lambda } $、纵向叠置$ \frac{1}{6}\mathrm{\lambda } $的情况下,均方根振幅属性、甜点属性和主频属性在中浅层层段比地震资料判断砂体连通性的效果更好。研究区的X5井验证得到,地震融合属性与砂体厚度相关性明显提升,可以定量计算出砂体本身的厚度以及砂体间接触点的距离,对研究区砂体的连通性起到良好的判定作用。

    Abstract:

    The fine description of sand bodies in the lower member of the Minghuazhen Formation (Neogene) in the middle and shallow layers of the Bozhong Sag, Bohai Bay, is limited due to thin interbeds and insufficient seismic and logging data, making it difficult to determine the connectivity of sand bodies. Based on the actual seismic, logging, and geological data in the study area, a corresponding model was established based on the actual characteristics of the sand bodies in the study area, and suitable seismic attributes were verified and optimized through the wave equation method in forward modeling technology. By using a minimum horizontal distance of 1/8 of wavelength and a vertical overlap of 1/6 the wavelength, the root mean square amplitude attribute, sweet spot attribute and main frequency attribute were more effective than using seismic data in determining the connectivity of sand bodies in mid-to-shallow layers. According to the verification of Well X5 logging in the study area, the correlation between seismic fusion attribute and sand body thickness was significantly improved, and the thickness of sand body itself and the distance of contact points among sand bodies could be quantitatively calculated, which played a good role in determining the connectivity of sand bodies in the study area.

  • 天然气水合物是一种似冰状固体化合物,由水分子和气体分子在低温高压条件下生成,具有可燃性,因此也被称为“可燃冰”[1]。水合物的燃烧效率极高,并且污染小,被视为是未来化石燃料的替代能源,美国、日本、韩国、印度等国家均已制定国家水合物勘探研究计划[2-4]。中国在近年来水合物勘探开发上也取得了较为显著的成效,2017年神狐海域的成功试采标志着中国成为全球第一个实现了在海域可燃冰开采中获得连续稳定产气的国家,同年,水合物被列为中国第173个矿种[5-9]。水合物在全球分布的范围十分广泛(图1),主要存在于海底沉积层和永久冻土层中。据估算,世界可燃冰总资源量大约相当于全球已知煤、石油和天然气总资源量的2倍,储量十分可观[10]。然而在复杂海底地质环境下勘探水合物具有相当大的困难,因此,准确勘探识别水合物和估算水合物储量一直以来都是国内外的研究热点问题。

    图  1  全球天然气水合物分布图(据文献[3]修改)
    Figure  1.  Global gas hydrate distribution (modified from reference [3])

    地震勘探技术一直以来都是水合物识别与评价的重要地球物理方法[11]。早期通过识别地震剖面上的似海底反射层(BSR)来判断地层中的天然气水合物稳定带底界,BSR通常呈现出与海底平行、极性相反、高振幅强反射、与沉积地层相交等特征, 但地震剖面上的BSR与水合物分布并不是—对应的[12-14]。由于水合物的存在会导致地层的速度升高,所以有学者提出用速度异常的方法来识别水合物,但该方法仍有一定的问题,如有其他矿物充填对应的测井曲线上也有速度异常升高,因此速度异常的方法也存在指示不明的问题。后来,Liu等[15]提出利用纵横波速度增量比的方法来识别地层中的水合物,在布莱克海台ODP164航次的实际数据中取得较好的应用效果。Tian 和Liu[16]发现通过纵横波速度交汇图的方法也可以区分出含水合物地层,以及用纵横波速度增量交汇图的方法估算水合物饱和度范围,并在俄勒冈水合物海岭的实际数据中进行验证,结果与实际情况相一致。传统的水合物识别方法往往需要综合的判断分析,处理解释的时间长,水合物饱和度计算准确率低,亟待提出一套高效准确的水合物识别计算方法。随着人工智能的高速发展,机器学习作为人工智能领域的核心算法,分为监督学习、非监督学习和深度学习,无论是在理论研究还是实践应用方面都取得了巨大的突破[17-18]。目前通过机器学习的方法也解决了很多地质问题,例如,王迪等[19]利用深度学习方法定量地进行了烃类预测;Bai和Tan[20]采用机器学习方法进行储层参数预测并取得较好结果;陈钢花等[21]采用了双向长短时记忆神经网络有效解决了致密滩坝的储层岩性识别问题;Chen等[22]利用径向基函数神经网络对神狐海域水合物饱和度进行预测得到了较好的应用效果;Zhu等[23]基于机器学习方法对水合物的赋存类型进行了识别并估算了水合物饱和度。因此,本文考虑在中国南海海域借助人工智能的手段来进一步高效准确识别水合物资源。

    本研究主要通过几种不同算法,包括AdaBoost算法、随机森林算法、Bagging算法、和最近邻(KNN)算法,对测井数据中的纵波速度和密度数据进行模型训练和测试,从而区分含水合物地层与非含水合物地层。

    AdaBoost是基于Boosting的一种集成学习算法。该算法的核心思想是通过调整样本分布和弱分类器权值,将一系列弱分类器集成为一个分类精度高的强分类器,改变分类器在已有样本分布上的优势,提高泛化能力(模型在未曾见过的数据上的表现能力,即模型对于新的数据的适应能力‌)。AdaBoost算法通过改变训练集中各样本的权重实现迭代过程,根据每次训练集中各样本是否分类正确及上次总体分类的准确率,综合确定各样本的权重,把修改过权重的新数据集送给下层分类器进行训练,并将每次训练所得分类器融合起来,形成最终的决策分类器[24]

    随机森林(Random Forest,简称RF)是一种集成多棵决策树的有监督学习算法。RF以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择[25]。随机森林使用 booststrap 方法构建n个训练集,每个训练集对应生成一个决策树,总体就有n个决策树,因为每个决策树的数据集都不相同,所以每棵树又有少量区别。最后对所有的决策树的预测结果取平均减少预测的方差,提高在测试集上的性能表现。该算法具有简单、容易实现、计算开销小等特点,在很多现实任务中展现出强大的性能。

    Bagging算法是一种用来提高弱分类器准确率的集成方法,该算法对训练集实施有放回的随机样本重新采样,形成多个与训练集规模相近但各不相同的训练子集,在此基础上形成多个基分类器,在多个基分类器的基础上使用多数投票原则[26-27]。Bagging方法具有较大的随机性,但当采样次数足够多时会生成足够丰富的基本模型,可以得到十分精确的结果。通常在减小方差方面Bagging方法效果明显,因此Bagging方法对训练集微小变化敏感的模型可以提高其稳定性。

    KNN算法是一种有监督的机器学习算法,通过遍历训练集样本,计算测试数据与训练样本点属性间的距离,找到与测试数据最近的K个样本点,采取少数服从多数的原则确定测试数据的类别[28]。KNN算法尤其适用于训练样本量较大且样本之间的差异性相对显著的海量数据分类,优势明显,准确度非常高。

    为了更好地确定水合物地层识别模型的预测精度和泛化能力,利用准确率、精确率、召回率、F1分数、ROC曲线来对分类模型进行性能评估。

    识别水合物的过程是一个二分类问题,结果只有真和假两种。一般用T(True)表示预测结果正确(与实际相符),F(False)表示预测结果不正确(与实际不符),P(Positive)表示真实的正样本,N(Negative)表示真实的负样本,因此预测结果分为四种,如表1所示:

    表  1  评价结果指标意义
    Table  1.  Significance of evaluation results indicators
    预测为真预测为负
    实际为真TPFN
    实际为负FPTN
    下载: 导出CSV 
    | 显示表格

    准确率(Accuracy)用来衡量分类正确的比例,虽然准确率可以判断总的正确率,但在样本不平衡的情况下,并不能作为很好的指标来衡量分类结果:

    $$ {\text{Accuracy = }}\frac{{{\text{TP}} + {\text{TN}}}}{{{\text{TP}} + {\text{TN}} + {\text{FP}} + {\text{FN}}}} $$ (1)

    精确率(Precision)是指预测为正类样本数中实际为正类的比例:

    $$ {\text{Precision}} = \frac{{{\text{TP}}}}{{{\text{TP}} + {\text{FP}}}} $$ (2)

    召回率(Recall)是度量有多少个正类样本数被判定为正类:

    $$ {\text{Recall}} = \frac{{{\text{TP}}}}{{{\text{TP}} + {\text{FN}}}} $$ (3)

    精确率与召回率可能是相互矛盾的,因此需要对二者进行综合考虑,因此引入F分数,定义如下:

    $$ {F_\beta } = \left( {1 + {\beta ^2}} \right) \cdot \rm\frac{{precision \cdot recall}}{{{\beta ^2} \cdot precision + recall}} $$ (4)

    当式中β=1时,F分数为F1分数。F1是精确率和召回率的调和均值。当式中β>1时,召回率的权重高于精确率。相反,当β<1时精确率的权重高于召回率。

    接受者操作特征(ROC)曲线是反映模型敏感性与特异性连续变化的综合指标。该曲线的横坐标为预测为正但实际为负的样本占所有负例样本的比例;曲线的纵坐标为预测为正且实际为正的样本占所有正例样本的比例。

    $$\rm {{TPR}} = \frac{{TP}}{{TP + FN}} $$ (5)
    $$\rm {{FPR}} = \frac{{FP}}{{FP + TN}} $$ (6)

    ROC曲线下与坐标轴围成的面积(AUC)值为ROC曲线下与坐标轴围成的面积,是衡量算法优劣的一种性能指标,AUC值越接近1,则算法越优秀。

    中国南海东沙海域位于南海东北部陆坡区(图2),该区域地理位置独特,海域沉积活动和构造运动相对复杂,具有被动大陆边缘特点,是天然气水合物生成的有利富集区,海底存在甲烷渗漏现象,冷泉发育活跃。2013年,广州海洋地质调查局开展了第二次天然气水合物勘查钻探项目(GMGS2),在该研究区进行了一系列的地质、地球物理、地球化学等方面的调查,并获取了大量的块状、脉状、层状、分散状及结核状等多种不同类型的水合物样品,孔隙型水合物和裂隙型水合物也被证实存在于研究区内,此次勘查在中国海域天然气水合物勘探中具有重要意义。在GMGS2-05、GMGS2-08和GMGS2-16钻井位置分别采集到了测井数据,因此本文采用这3个站位处的数据用来训练和测试水合物智能识别方法。

    图  2  研究区位置
    Figure  2.  Location of the study area

    前期勘探已在05、08和16站位发现有天然气水合物,根据随钻测井获得了大量的测井数据,图3分别给出了05、08和16站位的纵波速度和密度测井曲线,蓝色区域为含水合物地层,本论文主要利用05、08和16站位测井数据作为学习数据集进行实验分析。在05站位,在海底以下约193~206.5 m 发现了大量的孔隙型水合物,并伴随有高速度和高电阻率异常特征;在08站位,发现有两层裂隙型水合物分别在海底以下约9~22和65~98 m;在16站位,裂隙型水合物出现在海底以下10~20 m,孔隙型水合物BSR在海底以下约189~198 m位置[27]

    图  3  GMGS2-05、GMGS2-08和GMGS2-16站位纵波速度和密度测井曲线
    天然气水合物区域用蓝色标记。
    Figure  3.  Logging curves of P-wave velocity and density at sites GMGS2-05, GMGS2-08 and GMGS2-16
    The gas hydrate areas are marked in blue.

    在机器学习模型的训练过程中,为了使模型具有更好的泛化能力,将数据集分割为训练集和测试集。本实验选取05、08和16站位的测井数据,以深度位置计数分别取速度和密度点各4 247个建立水合物识别样本数据库(图3),其中抽取75%作为训练样本,然后将剩余25%数据点作为测试样本。训练集用于训练模型,测试集用于检验模型的泛化能力。从常规测井系列中优选对岩性变化敏感的纵波速度和密度作为水合物识别模型的输入特征,含水合物地层和非含水合物地层两种类别作为输出特征。

    此外,合适的监督模型参数是提高分类器预测精度的关键。为了使上述机器学习监督模型在其它未知的例子上也表现出较好的分类性能,还需要调整模型在训练过程之前所设置的参数(即超参数)获取适当的参数值。但是,训练后的模型不能过于拟合训练集,否则会失去对测试数据的预测能力,导致出现过拟合。可以通过交叉验证结果生成的验证分数选择不引起模型过拟合或欠拟合的最优参数集。网格搜索是模型参数调试的常用方法,通过选择合理的参数范围网格搜索能够找出模型的最优参数组合。在本案例研究中,利用网格搜索对模型的超参数进行调试,试验不同的超参数范围,使用交叉验证来评估超参数值的所有可能组合,以获得泛化能力较好的改进模型。本文以准确度作为衡量分类性能的指标。对于每个模型,需要调优的参数见表2

    表  2  每个模型的超参数调整
    Table  2.  Hyperparameter tuning for each algorithm
    监督模型超参数调整范围最优参数
    AdaBoostN estimators5~2515
    Learning rate0.1~0.90.5
    RFmax leaf nodes5~4510
    n estimators0~15030
    Baggingn estimators10~500100
    Max samples50~500150
    KNNN neighbors5~20010
    weightsuniform/distanceuniform
    下载: 导出CSV 
    | 显示表格

    应用不同机器学习模型对南海东沙海域的05、08和16站位的测井数据样本进行水合物识别分析,首先将数据样本中的已知为含水合物地层深度位置的数据标记为1,非含水合物地层深度位置的数据标记为0,识别结果如下:

    (1) AdaBoost算法的分类效果

    在训练AdaBoost分类器时,该算法首先训练一个基础分类器,然后进行集成,先选择决策树作为基础分类器,也就是弱学习器。其中基础分类器决策树算法的最大深度(max depth)为1,弱学习器的最大迭代次数(n estimators)为15,学习率为0.5,Scikit-Learn 默认使用SAMME.R,对样本集分类效果作为弱学习器权重,由于SAMME.R使用了概率度量的连续值,迭代一般比SAMME快。调整参数后的模型对测试数据进行分类,我们得到准确率、精确率、召回率和F1分数分别是0.91710.86250.47260.6106。此外,AUC值为0.9146。用AdaBoost 算法对05、08和16站位纵波速度和密度进行分类训练和测试,结果如图4,其中红色点表示含水合物地层纵波速度和密度交点,蓝色点表示非含水合物地层纵波速度和密度交点,中间的深绿色交线为算法的决策边界,决策边界左边为含水合物地层(绿色区域),决策边界右边为非含水合物地层(黄色区域)。该算法较好地将水合物与非水合物地层进行分类,算法稳定可靠。

    图  4  AdaBoost算法对GMGS2-05、GMGS2-08和GMGS2-16纵波速度和密度数据训练识别水合物结果
    Figure  4.  The hydrate identification results using AdaBoost algorithm based on the P-wave velocity and density data at sites GMGS2-05, GMGS2-08, and GMGS2-16

    (2)随机森林算法分类效果

    随机森林算法将多个决策树组合在一起,随机选取不同的数据集,以便输出相似但不相同的模型结果,再将所有决策树结果整合在一起,作为输出结果,而这一训练方式,意味着很难过拟合,并且对噪音不敏感。通过网格搜索调整该模型超参数,确定决策树的个数(n estimators)为30,通过限制最大叶子节点数,防止过拟合,最大叶节点数设置为10。调整参数后的模型对测试数据进行分类,得到准确率、精确率、召回率和F1分数分别为0.9388, 0.88570.63700.7410,此外,AUC值为0.9278。用随机森林算法对05、08和16站位纵波速度和密度进行分类训练和测试,结果如图5,其中红色点表示含水合物地层纵横波速度交点,蓝色点表示非含水合物地层纵横波速度交点,中间的深绿色交线为算法的决策边界,决策边界左边为含水合物地层(绿色区域),决策边界右边为非含水合物地层(黄色区域),该算法在水合物的识别问题上表现出很好的分类性能,算法稳定可靠,有很强的抗干扰能力、抗过拟合和泛化能力。

    图  5  随机森林算法对GMGS2-05、GMGS2-08和GMGS2-16站位纵波速度和密度数据训练识别水合物结果
    Figure  5.  The hydrate identification results using by random forest algorithm based on the P-wave velocity and density data at sites GMGS2-05, GMGS2-08 and GMGS2-16

    (3)Bagging算法分类性能

    在本算法中我们训练多个决策树去组成bagging集成算法,经网格搜索调参后,确定该算法包含100个决策树分类器(n estimators=100),每次从训练集中随机采样150个训练实例(max samples=150)进行训练,然后放回。一旦预测器训练完成,集成就可以通过简单地聚合所有预测器的预测来对新实例做出预测。最后通过该模型对测试数据的预测结果,得到准确率、精确率、召回率和F1分数分别为0.93410.87250.60960.7177,此外,AUC值为 0.9449。用Bagging算法对05、08和16站位纵波速度和密度进行分类训练和测试,结果如图6,其中红色点表示含水合物地层纵横波速度交点,蓝色点表示非含水合物地层纵横波速度交点,中间的深绿色交线为算法的决策边界,决策边界左边为含水合物地层(绿色区域),决策边界右边为非含水合物地层(黄色区域),该算法性能依赖于基分类器(本模型中使用决策树)的稳定性,能够较好地将水合物与非水合物地层进行区分。

    图  6  Bagging算法对GMGS2-05、GMGS2-08和GMGS2-16站位纵波速度和密度数据训练识别水合物结果
    Figure  6.  The hydrate identification result using Bagging algorithm based on the P-wave velocity and density data at sites GMGS2-05, GMGS2-08 and GMGS2-16

    (4)KNN算法分类性能

    在KNN算法中我们主要调整k值和选择距离的权重方式,k值越小越容易过拟合,当k=1时,这时只根据单个近邻进行预测,如果离目标点最近的一个点是噪声,就会出错,此时模型复杂度高,稳健性低,决策边界崎岖。但是如果k值取的过大,这时与目标点较远的样本点也会对预测起作用,就会导致欠拟合,此时模型变得简单,决策边界变平滑。在sklearn中k近邻算法还有一个weights参数,其默认值为uniform,此时是不考虑距离权重的,当weights=distance时,sklearn就会考虑距离的权重,权重和距离成反比,距离预测目标越近具有越高的权重。通过网格搜索最后确定模型的k值为200,weights=distance,用该模型对测试数据进行分类,我们得到准确率、精确率、召回率和F1分数分别为 0.93790.86360.65070.7422,此外,AUC值为0.9580用KNN算法对05、08和16站位纵波速度和密度进行分类训练和测试,结果如图7,其中红色点表示含水合物地层纵横波速度交点,蓝色点表示非含水合物地层纵横波速度交点,中间的深绿色交线为算法的决策边界,决策边界左边为含水合物地层(绿色区域),决策边界右边为非含水合物地层(黄色区域),该算法能够很好地将水合物与非水合物地层进行分类,准确率高,AUC值在这4种算法中最高(图8),因此该算法在该地区的水合物分类中所表现的性能最好。

    图  7  KNN算法对GMGS2-05、GMGS2-08和GMGS2-16站位纵波速度和密度数据训练识别水合物结果
    Figure  7.  The hydrate identification result using KNN algorithm based on the P-wave velocity and density data at sites GMGS2-05, GMGS2-08 and GMGS2-16
    图  8  不同算法模型的ROC曲线
    Figure  8.  The ROC curves of different algorithms

    本文通过4种机器学习算法对南海东沙海域GMGS2-05、GMGS2-08和GMGS2-16站位的纵波速度和密度数据进行训练,不断调整超参数选值确定最优模型来对水合物和非水合物点分类识别,引入准确率、精确率、召回率和F1分数分别是对识别结果进行评价(表3),此外用AUC值对模型性能进行更直观的评价。识别结果表明,① 与其他机器学习算法相比,随机森林算法在测试水合物分类过程中的准确率、精确率和最高,KNN算法的召回率和F1分数最高。② KNN算法的AUC值是最接近1的,也就是说该算法性能相对来说比较优秀。③ 这些算法都能较好地通过纵波速度和密度属性数据来识别水合物,为天然气水合物的高效准确识别提供了技术支撑。利用人工智能技术能够有效解决水合物研究中面临的难点问题,今后仍需在算法和输入地震属性特征方面进行更加深入的研究,不断优化模型算法,当前水合物在自然界中的赋存类型多样,后续值得应用人工智能手段进一步细化研究区分水合物的赋存状态的智能识别方法。

    表  3  各算法评价指标计算结果
    Table  3.  Calculation results of evaluation indicators of each algorithm
    Supervision algorithm Accuracy Precision Recall F1 AUC
    AdaBoost 0.9171 0.8625 0.4726 0.6106 0.9146
    Random forest 0.9388 0.8857 0.6370 0.7410 0.9278
    Bagging 0.9341 0.8725 0.6096 0.7177 0.9449
    KNN 0.9379 0.8636 0.6507 0.7422 0.9580
    下载: 导出CSV 
    | 显示表格
  • 图  1   渤中凹陷区域位置

    Figure  1.   Location of the Bozhong Sag

    图  2   纵向叠置12 m地震属性分析效果对比图

    Figure  2.   Comparison in seismic attribute analysis results of 12 m vertical overlay

    图  4   纵向叠置30 m地震属性分析效果对比图

    Figure  4.   Comparison of seismic attribute analysis results of 30-m vertical overlay

    图  3   纵向叠置12.5 m地震属性分析效果对比图

    Figure  3.   Comparison of seismic attribute analysis results of 12.5 m vertical overlay

    图  5   单属性与砂岩交汇图

    Figure  5.   Intersection of single property and sandstone

    图  6   单属性平面图

    Figure  6.   Planar pictures of a single attribute

    图  7   融合属性平面图

    Figure  7.   Planar picture of a fused attribute

    图  8   融合属性与砂岩厚度交汇图

    Figure  8.   Plot of fusion properties vs sandstone thickness

    图  9   研究区X5井曲线图

    Figure  9.   Logging of Well X5 in the study area

    图  10   X5井解释结论与单属性、融合属性对比图

    Figure  10.   Interpretation conclusion of Well X5 and the comparison with single attribute and fusion attribute

    表  1   优选属性融合权重统计表

    Table  1   Statistics in the weight of priority attribute fusion

    属性类型均方根振幅主频甜点属性
    相关系数R0.72880.66150.6285
    融合权重0.3610.32770.3113
    下载: 导出CSV

    表  2   融合地震属性与砂岩厚度数据关系表

    Table  2   Relationship between fusion of seismic attributes and sandstone thickness

    砂体层砂岩厚度/m融合属性
    预测厚度/m绝对误差/m相对误差
    17.26.5−0.70.097
    22.42.90.50.208
    32.92.3−0.60.207
    47.58.20.70.093
    55.23.9−1.30.25
    69.18.2−0.90.099
    756.21.20.24
    下载: 导出CSV
  • [1] 梁文富, 余兴华, 贾春雨, 等. 完善单砂体注采关系的做法及效果[J]. 大庆石油地质与开发, 2002, 21(3):38-40,51

    LIANG Wenfu, YU Xinghua, JIA Chunyu, et al. Comprehensive use of pattern to improve the injection-production relation of single sand body [J]. Petroleum Geology & Oilfield Development in Daqing, 2002, 21(3): 38-40,51.

    [2] 斯扬. 姬塬油田盐67区长8储层连通性研究[D]. 西安石油大学硕士学位论文, 2015.

    SI Yang. Research on reservoir connectivity of Chang 8 Reservoir in Yan 67 area, Jiyuan oilfield[D]. Master Dissertation of Xi'an Shiyou University, 2015.

    [3]

    Fielding C R, Crane R C. An application of statistical modelling to the prediction of hydrocarbon recovery factors in fluvial reservoir sequences[M]//Ethridge F G, Flores R M, Harvey M D. Recent Developments in Fluvial Sedimentology. Tulsa: SEPM Society for Sedimentary Geology, 1987.

    [4] 林伟强, 曲丽丽, 朱露, 等. 井震藏结合判定井间砂体连通性研究及应用: 以南堡油田M区中深层为例[J]. 油气藏评价与开发, 2022, 12(2):373-381

    LIN Weiqiang, QU Lili, ZHU Lu, et al. Evaluation of inter-well sand body connectivity by combination of well, seismic, and reservoir and its application: Taking the middle and deep layers of M area of Nanpu Oilfield as an example [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(2): 373-381.

    [5] 张钊, 陈明强, 高永利. 应用示踪技术评价低渗透油藏油水井间连通关系[J]. 西安石油大学学报:自然科学版, 2006, 21(3):48-51

    ZHANG Zhao, CHEN Mingqiang, GAO Yongli. Estimation of the connectivity between oil wells and water injection wells in low-permeability reservoir using tracer detection technique [J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2006, 21(3): 48-51.

    [6] 刘文岭, 牛彦良, 李刚, 等. 多信息储层预测地震属性提取与有效性分析方法[J]. 石油物探, 2002, 41(1):100-106

    LIU Wenling, NIU Yanliang, LI Gang, et al. Seismic attribute extraction and effectiveness analysis of multi-attribute reservoir prediction [J]. Geophysical Prospecting for Petroleum, 2002, 41(1): 100-106.

    [7] 王开燕, 徐清彦, 张桂芳, 等. 地震属性分析技术综述[J]. 地球物理学进展, 2013, 28(2):815-823

    WANG Kaiyan, XU Qingyan, ZHANG Guifang, et al. Summary of seismic attribute analysis [J]. Progress in Geophysics, 2013, 28(2): 815-823.

    [8]

    Chopra S, Marfurt K J. Emerging and future trends in seismic attributes [J]. The Leading Edge, 2008, 27(3): 298-318. doi: 10.1190/1.2896620

    [9] 韩红涛, 贾敬, 李慧琳, 等. 应用GeoEast解释系统中的地震属性技术预测生物礁滩[J]. 石油地球物理勘探, 2014, 49(S1):160-163

    HAN Hongtao, JIA Jing, LI Huilin, et al. Organic reef and bank prediction with seismic attribute approaches provided by GeoEast [J]. Oil Geophysical Prospecting, 2014, 49(S1): 160-163.

    [10] 冯金义. 时频分析技术识别河道砂体在埕海一区明化镇组中的应用[J]. 中国石油和化工标准与质量, 2016, 36(6):31-32

    FENG Jinyi. Application of time-frequency analysis technique to identify channel sand body in Minghuazhen formation in Chenghai No. 1 District [J]. China Petroleum and Chemical Standard and Quality, 2016, 36(6): 31-32.

    [11] 刘传奇, 宋俊亭, 薛明星. 边缘检测技术在砂体连通研究中的应用[J]. 地球物理学进展, 2022, 37(2):844-850

    LIU Chuanqi, SONG Junting, XUE Mingxing. Application of edge detection technology in sand connectivity research [J]. Progress in Geophysics, 2022, 37(2): 844-850.

    [12] 周连敏. 倾角方位属性在曲流河河道砂体预测中的应用[J]. 断块油气田, 2017, 24(4):471-473

    ZHOU Lianmin. Application of DipAzi attribute to predicting channel sandstone of meandering river [J]. Fault-block Oil and Gas Field, 2017, 24(4): 471-473.

    [13] 安鹏, 刘专, 马云海, 等. 基于地质甜点的地震相控敏感属性分析技术在河道砂体识别中的应用[C]//中国石油学会2021年物探技术研讨会论文集. 成都: 《中国学术期刊(光盘版)》电子杂志社有限公司, 2020.

    AN Peng, LIU Zhuan, MA Yunhai, et al. Application of seismic phase-controlled sensitive attribute analysis technique based on geological sweet spot in channel sand body identification[C]. Chengdu: China Academic Journal (CD) Online magazine Co. , Ltd, 2020.

    [14] 井涌泉, 栾东肖, 张雨晴, 等. 基于地震属性特征的河流相叠置砂岩储层预测方法[J]. 石油地球物理勘探, 2018, 53(5):1049-1058

    JING Yongquan, LUAN Dongxiao, ZHANG Yuqing, et al. Fluvial facies inter-bedded sand reservoir prediction with seismic multi-attributes [J]. Oil Geophysical Prospecting, 2018, 53(5): 1049-1058.

    [15] 印兴耀, 周静毅. 地震属性优化方法综述[J]. 石油地球物理勘探, 2005, 40(4):482-489

    YIN Xingyao, ZHOU Jingyi. Summary of optimum methods of seismic attributes [J]. Oil Geophysical Prospecting, 2005, 40(4): 482-489.

    [16] 季玉新, 欧钦. 优选地震属性预测储层参数方法及应用研究[J]. 石油地球物理勘探, 2003, 38(S1):57-62

    JI Yuxin, OU Qin. Research on the method and application of optimizing seismic attribute prediction of reservoir parameters [J]. Petroleum Geophysical Exploration, 2003, 38(S1): 57-62.

    [17] 李娟, 王鑫渊, 杨国栋, 等. 地震属性优化技术在郭家河三维地震资料解释中的应用[J]. 煤炭科技, 2019, 40(6):83-85

    LI Juan, WANG Xinyuan, YANG Guodong, et al. Application of seismic attribute optimization technology in three-dimensional seismic data interpretation of Guojiahe [J]. Coal Science & Technology Magazine, 2019, 40(6): 83-85.

    [18]

    Chen Q, Sidney S. Seismic attribute technology for reservoir forecasting and monitoring [J]. The Leading Edge, 1997, 16(5): 445-450. doi: 10.1190/1.1437657

    [19]

    Chopra S, Marfurt K J. Seismic attributes-A historical perspective [J]. Geophysics, 2005, 70(5): 3SO-28SO. doi: 10.1190/1.2098670

    [20] 王彦仓, 秦凤启, 杜维良, 等. 地震属性优选、融合探讨[J]. 中国石油勘探, 2013, 18(6):69-73

    WANG Yancang, QIN Fengqi, DU Weiliang, et al. Discussions on optimization and fusion of seismic attributes [J]. China Petroleum Exploration, 2013, 18(6): 69-73.

    [21] 李德生. 渤海湾含油气盆地的地质构造特征与油气田分布规律[J]. 海洋地质研究, 1981, 1(1):3-20

    LI Desheng. Geological structure and hydrocarbon occurrence of Bohai gulf oil and gas basin (China) [J]. Marine Geology & Quaternary Geology, 1981, 1(1): 3-20.

    [22] 叶加仁, 吴景富, 舒誉, 等. 中国近海富烃凹陷油气成藏特征[J]. 地质科技情报, 2012, 31(5):105-111

    YE Jiaren, WU Jingfu, SHU Yu, et al. Characteristics of hydrocarbon accumulation in the hydrocarbon-rich depressions, offshore China [J]. Geological Science and Technology Information, 2012, 31(5): 105-111.

    [23] 刘海涛, 于海涛, 孙雨, 等. 断陷盆地多类型斜坡形成与油气差异富集规律: 以渤海湾盆地为例[J]. 岩石学报, 2022, 38(9):2697-2708

    LIU Haitao, YU Haitao, SUN Yu, et al. Formation and differential enrichment of oil and gas on multiple types of slopes in rifted basins: Taking the Bohai Bay Basin as an example, China [J]. Acta Petrologica Sinica, 2022, 38(9): 2697-2708.

    [24] 张勇刚, 范国章, 王红平, 等. 地震多属性分析技术预测和评价盐下碳酸盐岩储层厚度分布[J]. 盐湖研究, 2022, 30(3):72-82

    ZHANG Yonggang, FAN Guozhang, WANG Hongping, et al. Seismic multi-attributes analysis method to predict and evaluate thickness distribution of carbonate reservoir in Pre-salt [J]. Journal of Salt Lake Research, 2022, 30(3): 72-82.

    [25] 张亚志. 薄互层储层地震反射特征识别方法研究[D]. 大庆石油学院硕士学位论文, 2003.

    ZHANG Yazhi. Research on seismic reflection characteristic identification method of thin interbed reservoir[D]. Master Dissertation of Daqing Petroleum Institute, 2003.

    [26]

    Dorrington K P, Link C A. Genetic-algorithm/neural-network approach to seismic attribute selection for well-log prediction [J]. Geophysics, 2004, 69(1): 212-221. doi: 10.1190/1.1649389

    [27] 刘淑芬, 张海翔, 李占东, 等. 地震属性融合定量储层预测实验设计[J]. 实验技术与管理, 2022, 39(7):181-186,195

    LIU Shufen, ZHANG Haixiang, LI Zhandong, et al. Experimental design of quantitative reservoir prediction based on seismic attribute fusion [J]. Experimental Technology and Management, 2022, 39(7): 181-186,195.

图(10)  /  表(2)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  0
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-15
  • 修回日期:  2024-04-05
  • 刊出日期:  2024-12-27

目录

/

返回文章
返回