Suspended sediment grain size and influencing factors in Funing Bay and its nearby sea areas
-
摘要:
基于闽北福宁湾及附近海域冬、夏两季水文泥沙实测数据,分析了不同时间尺度下悬沙的粒度特征,探讨了影响悬沙粒度季节差异的主要因素以及悬沙粒度与浓度的关系。结果表明:正常天气下,研究区悬沙中值粒径普遍大于6.5 Φ。悬沙粒度具有“冬细夏粗”的季节分布特征;受潮动力影响,悬沙粒度大小潮变化明显;潮周期内悬沙粒径变化规律不明显。悬沙粒级-标准偏差曲线显示两种主要的敏感粒级分布范围为2.8~3.4 μm和21.1~25.1 μm。悬沙粒度“冬细夏粗”的季节差异主要受底质再悬浮和泥沙来源的影响。冬季悬沙粒径与浓度的相关性不明显,夏季两者存在显著的线性关系,悬沙粒径随悬沙浓度的增加而减小,这种季节差异可能与悬沙来源和混合作用有关。夏季悬沙粒径的粗化可能与细颗粒发生絮凝沉降有关。
Abstract:Based on the observed hydrological data and sediment in winter and summer in the Funing Bay and its nearby sea areas in the northern Fujian, South China, we analyzed the characteristics of suspended sediment grain size at different time scales, discussed the main factors affecting the seasonal variation of grain size, and revealed the relationship between grainsize and concentration. Results show that in normal weather, the median grain size is generally larger than 6.5 Φ in the study area. The grain size shows seasonal distribution characteristics: being fine in winter and coarse in summer. Under the influence of tidal power, the grain size changes significantly between spring and neap tides. The variation of grain size in tidal cycle is not obvious. The standard deviation of grain size curve shows that the distribution ranges of two main sensitive grain size are 2.8~3.4 μm and 21.1~25.1 μm. The seasonal variation in grain size is mainly affected by sediment resuspension and source supply. Correlation between median grain size and concentration in winter is not obvious, but there is a significant linear relationship between them in summer. With the increase of concentration, the grainsize becomes finer. This seasonal variation may be related to the sources and mixing of suspended sediment. The coarsening of grain size in summer may be related to the flocculation settling of fine particles.
-
海底峡谷通常发育在陆架陆坡区,是陆源物质向深海运移的重要通道[1]。海底峡谷既可发育于主动大陆边缘,又可发育于被动大陆边缘[2]。浊流通常被认为是峡谷内部物质输运的主要营力,尤其对于那些与陆地河流连接的峡谷。Xu等监测到蒙特利峡谷最大的浊流速度可达2.60 m/s[3];Paull等推算的浊流的前锋可以达到7.2 m/s,并且浊流能够以至少4 m/s的速度搬运800 kg的物体[4]。2006年台湾西南恒春地震引起了多处的滑坡和浊流,有序切断了1 500~4 000 m水深的14条电缆,其中6条在峡谷外,估算的流速为3.7~20 m/s[5]。同样的事情发生在2009年,莫拉克台风引起的高密度流/浊流有序切断了多条海底通讯电缆,计算的最大速度达16.6 m/s[6]。
南海神狐峡谷群是垂直陆坡方向发育的多条近似平行的限制型海底峡谷(图1a、b)。神狐峡谷群远离陆地,更新世以来沉积速率较高(20~34.16 cm/ka)[7],海底发育了总面积超过1 000 km2的滑动、滑塌、碎屑流等块体搬运沉积(MTDs, Mass Transport Deposits)[8-9]。与同处南海北部陆缘且有大量碎屑物质输入的台湾高屏海底峡谷相比,陆坡限定性峡谷内浊流发生的频率相对较小[5]。
图 1 研究区位置a.神狐峡谷群的位置,b.神狐峡谷群海底地形图,c.基于三维地震资料的研究区海底地形图,d.基于AUV采集的多波束的研究区海底地形图。Figure 1. Locations of the study areaa. The location of the studied slope confined canyons, b. the bathymetric map of canyons, c. the bathymetric map of the studied canyon segment based on 3D seismic reflection data, d. the bathymetric map of the studied canyon segment based on multi-beam data acquired by AUV.以往对深水区地层结构的探测主要依赖二维、三维(2D/3D)反射地震资料和浅地层剖面;前者探测深度几千米,分辨率较低,在数米至数十米之间;后者探测深度较浅,几十米到几百米,容易受到能量吸收和复杂作业环境干扰,设备分辨率较高,但实际获取的数据质量较差。即便是能量和探测精度更高的电火花震源,其分辨率也只有约2 m。这对于研究深水区海底沉积层的精细结构是不够的。AUV探测是加载各种探测设备的自主水下航行器保持与海底几十米的距离并按照设定的路由线路进行数据采集,具有很好的横向和纵向的分辨率,例如中海油服3 000 m级AUV携带的EdgeTech2200-M浅剖仪的垂向分辨率可达6~10 cm[10-11]。国际上AUV探测已经越来越多地应用到深海沉积研究中[12-14]。国内也研发出多套AUV设备,但应用范围有限[15]。
对于神狐峡谷群,以往的研究主要集中在滑坡广泛发育的崎岖的峡谷脊部,但对较为平坦的峡谷谷底研究较少。本文利用AUV获取的地球物理资料刻画神狐峡谷谷底沉积特征,对研究陆坡限定性峡谷的物质输运过程具有重要意义。
1. 地质概况
神狐峡谷群分布在珠江口外海陆坡区,具体位于珠江口盆地的白云凹陷。珠江口盆地所在的南海北部经历古近纪的裂陷期和新近纪―第四纪的裂后期[16]。在约23.8 Ma的渐新世末期,受南海扩张中心南向跃迁的影响,陆架坡折带从白云凹陷的南部退移到目前的位置[17]。神狐峡谷群开始于13.8 Ma的中中新世,经历了4个期次的北东向迁移发育,峡谷覆盖面积从Ⅰ期(13.8~12.5 Ma)、Ⅱ期(12.5~10.5 Ma)到Ⅲ期(10.5~5.5 Ma)逐渐增大,再到Ⅳ期(1.8 Ma~)缩小[18-19]。浊流、底流及两者之间的相互作用被认为影响了峡谷的迁移发育[20-22]。
2. 数据和方法
研究使用了三维地震数据和AUV资料进行对比分析。三维地震数据的时间采样间隔2~4 ms,空间采样间隔6.25 m×12.5 m,上部1 500 m地层主频约为40 Hz。三维地震数据中的海底反射时间经时深转换生成水深图(海水声速取值1 500 m/s)。AUV资料使用Echo Surveyor III(Kongsberg Hugin 1000 AUV)采集,主要加载了多波束、旁扫声呐和浅地层剖面仪等设备。多波束为Kongsberg EM2000,声脉冲频率平均2 Hz,扫描宽度为240 m,水平分辨率可以达到0.6 m;旁扫声呐用来反映地形变化和底质类型,采用Edgetech全谱旁扫声呐,频率105/410 kHz,声脉冲频率3 Hz,脉冲长度9 ms/2 ms,扫描范围221 m/100 m;浅地层剖面仪为Edgetech全谱线性调频剖面仪,频率范围2~16 kHz,实际工作频率2~10 kHz,地层分辨率可达3~4 cm,声脉冲频率3 Hz,记录长度143 ms。作业时AUV在距海底35 m的水深处以3~4节的速度航行。2010年在水深1 302.21 m的块体搬运沉积体上实施了重力柱状取样(GC-3),取样长度3.6 m。基于AUV获取的旁扫声呐、浅地层剖面和多波束等高分辨率地球物理数据,对第14条峡谷进行了海底地貌和部分谷底的浅地层分析。
3. 结果
3.1 峡谷地形地貌特征
神狐峡谷群水深200~2 000 m,由19条近似平行的峡谷组成。峡谷起源于陆坡的上部,向深水逐渐加宽,最下端汇聚到珠江大峡谷。峡谷长3.6~36 km,宽1~5 km,深100~400 m。峡谷脊部地形崎岖不平,沟壑陡崖普遍发育,峡谷谷底较为平坦(图1)。基于三维反射地震可以在峡谷谷底观测到巨大的陡崖和大型的沟槽,可以大体分辨边界明显的MTDs(图1c)。基于AUV获取的旁扫声呐图则更加清晰地展示了所选取峡谷谷底的精细地貌特征(图1b,图2a)。MTDs在谷底广泛分布,总面积近17 km2。MTDs在峡谷头部的弧形斜坡和谷底都有分布,MTDs呈不规则的圆形展布,其表面起伏不平(图2b);在峡谷中下游MTDs沿着谷底狭长条带状分布(图2c-e)。基于AUV的多波束数据(图1d)和旁扫声呐数据(图2d),选取了峡谷下游水深1 280~1 360 m、距离峡谷出口10~15 km的 MTDs典型发育区进行了详细分析。3个MTDs分别位于不同台阶上(图3,图4)。MTDs的上面发育了数量众多的宽3~10 m、长20~700 m、深5~20 cm的冲蚀沟槽(图3)。MTDs的厚度都在8.4 m及以下,这在常规2D/3D地震资料上是难以分辨的(图4)。
图 2 峡谷的旁扫声呐图和岩心图a.研究区所在峡谷的旁扫声呐图,b—e.局部放大的旁扫声呐图,f—g. MTD1上GC-3站位的部分重力柱状岩心样品。虚线多边形指示MTDs的位置。Figure 2. The side-scan sonar map of the canyon floor and sections of the gravity core acquired from the canyon floora. The side-scan sonar map of the studied canyon, b-e. amplified side-scan sonar maps of the study area, f-g. sediment samples from the gravity core GC-3 over MTD1 at 1.25 m and 3.25 m, respectively. The dashed polygons denote locations of MTDs on the canyon floor.3.2 MTD1
MTD1位于谷底的最西边,是峡谷谷底主水道的位置,中间宽、上下两端窄,在下部受到突出的水道堤岸的阻挡而改变方向且宽度变窄。MTD1的上部可以识别出狭长的渠道状的物质输运后的残留物(图3),而在MTD1邻近的峡谷翼部没有识别出明显的滑坡体或滑坡遗迹。MTD1长5.00 km,头尾两端厚度小,中间厚度大,厚度最小1.30 m,最大8.40 m,面积 0.90 km2,体积约4.37 km3(表1)。MTD1可以清晰识别出连续的底边界反射指示底部剪切面,其反射强度低于海底反射但明显高于其他正常地层反射。MTD1内部为振幅较弱的杂乱反射(图5),仅在底部的局部位置有少量的长度有限的连续反射轴(图5c)。沉积体上发育了大量平直的冲蚀沟槽,尤其在主水道上更为低洼的地方(图3)。基于AUV的旁扫声呐图(浅色)指示整条峡谷谷底浅表层主要由软的沉积物组成(图2);重力柱状取样结果证实MTD1沉积体由很软的高可塑性的灰绿色粉砂组成,含非常少的砂(图2f—g)。
表 1 峡谷谷底MTDs的几何参数Table 1. Geometric parameters of MTDs on the canyon floor编号 宽度/m 长度/km 长宽比 厚度/m 面积/km2 体积/km3 MTD1 80~500 5.00 10.00~62.50 1.30~8.40 0.90 4.37 MTD2 260~350 0.75 2.14~2.88 0.90~3.20 0.28 0.58 MTD3 70~600 2.00 3.33~28.57 1.20~3.00 1.10 2.31 3.3 MTD2
MTD2位于峡谷谷底中部的台阶上,平面上呈不规则梯形展布(图1d,图2d,图3)。MTD2并非直接出露在海底,上部覆盖了一层厚约0.6 m的沉积层。MTD2宽度变化不大,为260.0~350.0 m;长750.0 m;厚0.90~3.20 m;面积较小,为0.28 km2;体积约0.58 km3 (表1)。MTD2沉积体上面也发育有冲蚀沟槽,此外在沉积体头部发育了更多的冲沟。MTD2同样可以识别出强反射的底边界和弱的顶界面。底边界并非平直光滑,而是出现了大量的凹槽,这些凹槽宽5.0~20.0 m,高0.375~0.75 m,其宽度明显大于沉积体上面的冲蚀沟槽,推测是由块体搬运沉积体在运动过程中侵蚀海底形成的侵蚀沟。不同于MTD1两端较小的厚度,MTD2从头部到尾部厚度逐渐减小(图6)。
3.4 MTD3
MTD3位于谷底最东侧的台阶上。头部宽度小,中部和尾部宽度大。MTD3长2.0 km,宽70~600 m,厚1.2~3.0 m,面积1.10 km2,体积约2.31 km3。垂直于峡谷走向,沉积体呈楔形展布,整个沉积体分布在中间低两侧高的大型凹槽中(图3,图7a—b)。MTD3在大型凹槽东侧宽度大于其西侧宽度,且东侧厚度逐渐变薄。沿着峡谷走向,沉积体厚度在中部最大,头部稍小,尾部最薄。MTD3底部反射较为平滑,反射强度较强,但明显小于MTD1和MTD2的底部反射强度。
4. 讨论
4.1 峡谷谷底MTDs的形成
通过对MTDs埋深的分析,推断MTDs形成的时间距今不远,因为在MTD1和MTD3上面没有识别出正常沉积的地层。MTD2的上部发育厚约0.60 m的沉积地层(图6),明显晚于MTD1和MTD2。
基于AUV的地球物理资料对MTDs特征的分析结果,我们推测峡谷中下游大多数MTDs并不是直接从邻近的峡谷脊部上搬运下来,而是从上游通过滑塌-碎屑流的形式运移下来。首先,除了峡谷头部弧形斜坡分布有大量不规则圆形展布的MTDs,峡谷中下游的MTDs大都沿峡谷走向狭长展布,并不是垂直峡谷走向展布(图2)。虽然脊部沉积物滑移后可以继续通过谷底向下继续运移,但在谷底两侧靠近坡脚的位置并没有发现较厚块体搬运沉积体的存在,在邻近的脊部也没有发现物质滑移的证据,相反,我们在MTD1上部发现了明显的物质输运后的残留遗迹(图5a)。MTD2具有较小的长宽比以及逐渐减小的厚度,说明该沉积体搬运的距离并不远(表1,图6),推测其是从邻近的谷底陡坡上搬运下来。MTD3 沉积体在大型凹槽东侧宽度要大于西侧,且东侧的沉积厚度向东逐渐变薄,说明MTD3不是直接来源于峡谷东侧的脊部,这表明峡谷上游比中下游发生滑坡的概率更大。三维反射地震资料的解释也表明MTDs在峡谷上游的数量更多,分布面积更广(图2a)[8-9]。虽然三维反射地震资料也显示峡谷中下游的脊部有大量MTDs,但这些MTDs厚度较大,在几十米以上,很多MTDs的内部地层变形不严重,反映了块体滑移或程度较弱的滑塌,但不能反映当前较小时间尺度内峡谷谷底的沉积过程。相比较而言,基于AUV的高分辨地球物理资料更真实反映了峡谷内部的沉积特征和过程,即当前或较短时间内峡谷谷底分布着大量小规模的沿峡谷走向呈狭长展布的MTDs。
研究区声学剖面上的块体搬运沉积体可能是一次块体流沉积的结果,也可能是多次块体流沉积的结果,但块体流间隔的时间较短,没有形成声学可识别的正常沉积地层。MTD1所处的谷底主水道位置更容易汇聚长距离搬运下来的碎屑流沉积。
4.2 峡谷谷底的物质输运
神狐峡谷群距离陆地近250 km,河流高悬浮物注入引起的浊流对峡谷影响很小,在MTD1上GC-3站位细粒粉砂沉积物也指示缺少陆源粗粒沉积物的输入。前人的研究表明峡谷坡度较陡的脊部发育了大量的MTDs,形成了起伏不平的地貌[23],谷底地形相对比较平坦。通过以上对AUV获取的高分辨率地形和浅部地层资料的解析,我们认识到峡谷谷底并不像它的地表那么简单,而是在平坦的地表下发育了MTDs。这些MTDs的面积和厚度远没有峡谷脊部的大,但在峡谷谷底大量分布。峡谷中下游谷底的大多数MTDs并不是直接来源于峡谷脊部,而是来自MTDs的上部。这指示了峡谷谷底的物质输送的一种重要途径可能是通过不断重复的发生块体搬运沉积的形式进行的。滑坡并引起浊流被认为是陆坡限定性峡谷物质输运的主要营力,这种情况下浊流的产生通常是伴随着滑塌-碎屑流的产生而产生。在高海平面的情况下,以紊流为支撑力的浊流会侵蚀并携带部分沉积物流向下坡方向输运,但很难将垂直峡谷走向的MTDs完全改造成沿峡谷走向展布而不留下痕迹,除非发生大规模的滑坡事件。但高分辨率AUV资料表明目前的峡谷中下游的谷底只是分布着大量的小规模MTDs,而不是大量的浊流沉积体。据此,我们认为AUV可辨识的较小的时间尺度范围内,在特定沉积环境下(比如高海平面时期),神狐峡谷内物质输运的主要营力不只是浊流,还应该考虑峡谷谷底不断重复进行的块体搬运沉积过程。AUV资料和三维反射地震资料的解释结果并不冲突,只是存在空间尺度和时间尺度的不同。新形成的MTDs的表面通常会有沉积物堆积造成的凹凸不平,但谷底MTDs的表面只发育了大量小型冲蚀沟槽,这很可能是峡谷内部的较强的水动力对MTDs表面进行了改造。前人研究表明,神狐峡谷内部具有复杂的海洋水动力环境,其中内潮普遍发育且能量最大,峡谷内部发育的内潮最大流速可达50 cm/s,沿着峡谷轴向往复运动[24]。MTDs沉积体上面的冲沟是由潮流、余流还是其他类型的水体运动造成的还不明确。
5. 结论
(1)基于AUV的高分辨率多波束,旁扫声呐和浅地层剖面数据对峡谷整体和局部的MTDs进行了精细刻画,在峡谷谷底识别了常规地球物理资料不能辨识或不能清晰辨识的大量MTDs的分布。峡谷上游弧形斜坡和谷底分布着大量不规则圆形展布的MTDs,峡谷中下游的MTDs多在谷底呈狭长展布。
(2)对MTDs典型发育区的研究表明,MTDs沉积体的厚度在8.4 m及以下,沉积体内部为反射强度较弱的杂乱反射,推断为经过一定搬运距离而充分混合的碎屑流。
(3)通过分析MTDs沉积体的形态、沉积厚度变化并结合谷底两侧峡谷脊部的地层反射特征,认为谷底分布的MTDs主要来源于其上部,而不是邻近的峡谷脊部。在特定沉积环境和较小时间尺度范围内,除了浊流外,从峡谷上游到下游的块体搬运沉积过程的重复发生很可能是峡谷物质输运的另一种重要形式。
-
图 1 研究区附近流系(a)及调查站位分布(b)
附近流系改自文献[37],MZCC:闽浙沿岸流,TWC:台湾暖流。
Figure 1. Distributions of current systems and stations in the study area
Nearby current systems are modified from the reference [37], MZCC: Min-Zhe Coastal Current, TWC: Taiwan Warm Current.
表 1 各测次观测时间统计
Table 1 Time statistics of four observations
测次 观测时间 冬季大潮 2019年12月12—13日 冬季小潮 2019年12月17—18日 夏季大潮 2020年6月5—6日 夏季小潮 2020年6月13—14日 表 2 研究区流速特征值
Table 2 Characteristic value of current velocity in the study area
m/s 测次 站位 大潮期 小潮期 平均流速* 最大流速 平均流速* 最大流速 冬季 1# 0.22 0.60 0.21 0.45 2# 0.26 0.55 0.21 0.49 3# 0.37 0.71 0.32 0.55 4# 0.32 0.60 0.27 0.51 5# 0.34 0.70 0.28 0.55 6# 0.33 0.54 0.28 0.54 7# 0.36 0.74 0.36 0.69 8# 0.38 0.67 0.34 0.68 夏季 1# 0.23 0.61 0.15 0.35 2# 0.24 0.66 0.19 0.43 3# 0.36 0.69 0.20 0.45 4# 0.31 0.54 0.19 0.33 5# 0.33 0.75 0.19 0.40 6# 0.33 0.62 0.21 0.47 7# 0.44 0.92 0.34 0.75 8# 0.40 0.83 0.25 0.61 注:*代表垂线平均值。 表 3 研究区悬沙中值粒径变化范围
Table 3 Variation range of suspended sediment median grain size in the study area
Φ 区域 站位 冬季大潮 冬季小潮 夏季大潮 夏季小潮 湾内 1# 7.45~7.47 7.53~7.62 6.37~7.19 7.06~7.23 2# 7.28~7.59 7.50~7.56 6.52~7.00 7.17~7.52 湾口 3# 7.39~7.42 7.50~7.65 6.77~6.99 6.83~7.33 4# 7.39~7.46 7.59~7.70 6.58~6.95 7.01~7.23 5# 7.28~7.31 7.64~7.74 6.40~6.92 6.51~7.27 6# 7.31~7.44 7.25~7.51 7.12~7.31 7.34~7.51 湾外 7# 7.32~7.41 7.19~7.53 6.65~6.98 7.16~7.31 8# 7.09~7.38 7.14~7.62 5.67~6.35 6.83~7.09 表 4 悬沙粒度参数
Table 4 Suspended sediment grain size parameters
测次 各组分含量/% 中值粒
径/Ф平均粒
径/Ф分选
系数偏态 峰态 砂 粉砂 黏土 冬季大潮 1.42 65.95 32.63 7.37 7.45 1.51 0.08 3.43 冬季小潮 1.11 62.31 36.58 7.53 7.63 1.43 0.14 3.34 平均 1.27 64.13 34.61 7.45 7.54 1.47 0.11 3.39 夏季大潮 5.29 72.67 22.04 6.77 6.83 1.68 0.05 3.45 夏季小潮 5.60 64.70 29.69 7.17 7.09 1.81 −0.38 3.73 平均 5.45 68.69 25.87 6.97 6.96 1.75 −0.17 3.59 注:表内数值为研究区站位平均值。 表 5 研究区底质粒度特征
Table 5 Characteristics of sediment grain size in the study area
测次 站位 各组分含量/% 中值粒径/Ф 沉积物类型 砂 粉砂 黏土 冬季 1# 1.50 75.10 23.40 6.78 粉砂 2# 1.70 73.40 24.90 6.91 黏土质粉砂 3# 1.30 64.90 33.80 6.64 黏土质粉砂 4# 6.40 70.30 23.30 6.83 黏土质粉砂 5# 3.20 67.40 29.40 6.84 黏土质粉砂 6# 3.50 71.50 25.00 7.31 黏土质粉砂 7# 2.60 72.40 25.00 7.10 黏土质粉砂 8# 2.80 66.60 30.60 7.18 黏土质粉砂 夏季 1# 2.10 77.20 20.70 6.62 粉砂 2# 3.40 72.80 23.80 6.84 黏土质粉砂 3# 3.30 71.40 25.30 6.75 黏土质粉砂 4# 6.90 69.00 24.10 6.81 黏土质粉砂 5# 2.10 69.90 28.00 6.86 黏土质粉砂 6# 2.30 74.00 23.70 6.93 黏土质粉砂 7# 2.10 73.90 24.00 7.10 黏土质粉砂 8# 1.10 69.60 29.30 7.16 黏土质粉砂 -
[1] Walling D E, Moorehead P W. The particle size characteristics of fluvial suspended sediment: an overview [J]. Hydrobiologia, 1989, 176(1): 125-149.
[2] 严肃庄, 曹沛奎. 长江口悬浮体的粒度特征[J]. 上海地质, 1994(3):50-58 YAN Suzhuang, CAO Peikui. The grain-size characteristics of the suspended matters in the Changjiang Estuary [J]. Shanghai Geology, 1994(3): 50-58.
[3] 陈语, 何青, 张迨, 等. 长江口浑浊带枯季悬沙粒度分布特征[J]. 泥沙研究, 2016(1):24-30 CHEN Yu, HE Qing, ZHANG Dai, et al. Grain size distribution of suspended sediment in Yangtze River Estuary turbidity maximum in dry season [J]. Journal of Sediment Research, 2016(1): 24-30.
[4] Szymczak E, Burska D. Distribution of suspended sediment in the gulf of Gdansk off the Vistula River mouth (Baltic Sea, Poland) [J]. IOP Conference Series:Earth and Environmental Science, 2019, 221(1): 012053.
[5] 曹沛奎, 严肃庄. 长江口悬沙锋及其对物质输移的影响[J]. 华东师范大学学报:自然科学版, 1996(1):85-94 CAO Peikui, YAN Suzhuang. Suspended sediments front and its impacts on the materials transport of the Changjiang Estuary [J]. Journal of East China Normal University:Natural Science, 1996(1): 85-94.
[6] 王爱军, 汪亚平, 高抒, 等. 长江口枯季悬沙粒度与浓度之间的关系[J]. 海洋科学进展, 2005, 23(2):159-167 WANG Aijun, WANG Yaping, GAO Shu, et al. Relationship between suspended sediment grain size and concentration in the Changjiang Estuary area during dry season [J]. Advances in Marine Science, 2005, 23(2): 159-167.
[7] 李九发, 何青, 张琛. 长江河口拦门沙河床淤积和泥沙再悬浮过程[J]. 海洋与湖沼, 2000, 31(1):101-109 LI Jiufa, HE Qing, ZHANG Chen. A study on sediment deposition and resuspension in the mouth bar area of the Changjiang River Estuary [J]. Oceanologia et Limnologia Sinica, 2000, 31(1): 101-109.
[8] 王飞, 李九发, 李占海, 等. 长江口南槽河道水沙特性及河床沙再悬浮研究[J]. 人民长江, 2014, 45(13):9-13 WANG Fei, LI Jiufa, LI Zhanhai, et al. Research on flow and sediment characteristics and bed sediment re-suspension in South Passage of Yangtze River Estuary [J]. Yangtze River, 2014, 45(13): 9-13.
[9] Li Z H, Wang Y P, Cheng P, et al. Flood-ebb asymmetry in current velocity and suspended sediment transport in the Changjiang Estuary [J]. Acta Oceanologica Sinica, 2016, 35(10): 37-47. doi: 10.1007/s13131-016-0923-9
[10] 张俊儒. 长江口最大浑浊带表层悬浮物浓度及粒径对水体光谱特性影响的研究[D]. 华东师范大学硕士学位论文, 2010 ZHANG Junru. Research of suspended sediment concentration and size distribution impact on the water spectrum at the maximum turbid zone of Yangtze River Estuary[D]. Master Dissertation of East China Normal University, 2010.
[11] Fettweis M, Baeye M, Lee B J, et al. Hydro-meteorological influences and multimodal suspended particle size distributions in the Belgian nearshore area (southern North Sea) [J]. Geo-Marine Letters, 2012, 32(2): 123-137. doi: 10.1007/s00367-011-0266-7
[12] Bainbridge Z T, Wolanski E, Álvarez-Romero J G, et al. Fine sediment and nutrient dynamics related to particle size and floc Formation in a Burdekin River flood plume, Australia [J]. Marine Pollution Bulletin, 2012, 65(4-9): 236-248. doi: 10.1016/j.marpolbul.2012.01.043
[13] 邓智瑞, 何青, 杨清书, 等. 珠江口磨刀门泥沙絮凝特征[J]. 海洋学报, 2015, 37(9):152-161 DENG Zhirui, HE Qing, YANG Qingshu, et al. Observations of in situ flocs characteristic in the Modaomen Estuary of the Pearl River [J]. Acta Oceanologica Sinica, 2015, 37(9): 152-161.
[14] 张存勇. 连云港近岸海域沉积物再悬浮及悬沙动力研究[D]. 中国海洋大学博士学位论文, 2011 ZHANG Cunyong. Study on sediment resuspension and dynamics in the Lianyungang nearshore area[D]. Doctor Dissertation of Ocean University of China, 2011.
[15] 刘红, 何青, Jan Weltje G, 等. 长江入海泥沙的交换和输移过程: 兼论泥质区的“泥库”效应[J]. 地理学报, 2011, 66(3):291-304 LIU Hong, HE Qing, Jan Weltje G, et al. Sediment exchange and transport processes in the Yangtze River Estuary: concurrent discussion on the effects of sediment sink in the muddy area [J]. Acta Geographica Sinica, 2011, 66(3): 291-304.
[16] 杨云平, 张明进, 樊咏阳, 等. 长江河口悬沙颗粒特征变化趋势及成因[J]. 应用基础与工程科学学报, 2016, 24(6):1203-1218 YANG Yunping, ZHANG Mingjin, FAN Yongyang, et al. Variation trend and causes of suspended sediment characteristic in Yangtze Estuary [J]. Journal of Basic Science and Engineering, 2016, 24(6): 1203-1218.
[17] 张凯南, 王珍岩, 王保铎. 2012年春季南海南部不同水团上层海水中悬浮体分布特征及其物源分析[J]. 海洋科学, 2014, 38(3):26-36 ZHANG Kainan, WANG Zhenyan, WANG Baoduo. Distribution characteristics and provenance of suspended matter in upper water of the southern South China Sea during the spring of 2012 [J]. Marine Sciences, 2014, 38(3): 26-36.
[18] Skinnebach K H, Fruergaard M, Andersen T J. Biological effects on flocculation of fine-grained suspended sediment in natural seawater [J]. Estuarine, Coastal and Shelf Science, 2019, 228: 106395. doi: 10.1016/j.ecss.2019.106395
[19] 刘启贞. 长江口细颗粒泥沙絮凝主要影响因子及其环境效应研究[D]. 华东师范大学博士学位论文, 2007 LIU Qizhen. Study on the flocculation parameters of fine sediments and the environmental effects in the Changjiang Estuary[D]. Doctor Dissertation of East China Normal University, 2007.
[20] 秦蕴珊, 赵一阳, 陈丽蓉. 东海地质[M]. 北京: 科学出版社, 1987 QIN Yunshan, ZHAO Yiyang, CHEN Lirong. Geology of the East China Sea[M]. Beijing: China Ocean Press, 1987.
[21] 薛碧颖, 王厚杰, 张勇, 等. 闽北附近海域悬浮体输运及通量的季节变化[J]. 海洋地质与第四纪地质, 2018, 38(5):30-40 XUE Biying, WANG Houjie, ZHANG Yong, et al. Seasonal variations of suspended sediments in transport and flux in the coastal area of the northern Fujian Province [J]. Marine Geology & Quaternary Geology, 2018, 38(5): 30-40.
[22] 李安春, 张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼, 2020, 51(4):705-727 LI Anchun, ZHANG Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea [J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 705-727.
[23] 徐方建, 李安春, 黄敬利. 东海陆架浙-闽沿岸泥质沉积研究进展[J]. 海洋通报, 2012, 31(1):97-104 XU Fangjian, LI Anchun, HUANG Jingli. Research progress in the mud deposits along the Zhe-Min coast of the East China Sea continental shelf [J]. Marine Science Bulletin, 2012, 31(1): 97-104.
[24] Yang Z S, Lei K, Guo Z G, et al. Effect of a winter storm on sediment transport and resuspension in the distal mud area, the East China Sea [J]. Journal of Coastal Research, 2007, 23(2): 310-318.
[25] 王凯, 卢昕晖, 施心慧. 东海混浊海域悬沙浓度的三维数值模拟及与观测的比较[J]. 海洋与湖沼, 2011, 42(6):884-891 WANG Kai, LU Xinhui, SHI Xinhui. A three-dimensional sediment transport model in the offshore area near the Changjiang Estuary: a case study [J]. Oceanologia et Limnologia Sinica, 2011, 42(6): 884-891.
[26] Bian C W, Mao X Y, Jiang W S, et al. ADV-based estimates of sediment settling velocity on the shelf of the Yellow and East China seas: evidence of marked seasonal and intra-tidal variations [J]. Geo-Marine Letters, 2015, 35(1): 53-60. doi: 10.1007/s00367-014-0386-y
[27] 刘世东, 乔璐璐, 李广雪, 等. 东海内陆架悬浮体输运、通量及季节变化[J]. 海洋与湖沼, 2018, 49(1):24-39 LIU Shidong, QIAO Lulu, LI Guangxue, et al. Transport and flux of suspended sediment and its seasonal variation over the inner shelf of the East China Sea [J]. Oceanologia et Limnologia Sinica, 2018, 49(1): 24-39.
[28] 雷栋, 王珍岩, 李文建. 夏季东海陆架不同水团对悬浮体物质组成及粒度分布的影响[J]. 海洋与湖沼, 2019, 50(4):740-751 LEI Dong, WANG Zhenyan, LI Wenjian. Impact of water masses on composition and particle size distribution of suspended particulate matter over the East China Sea shelf in summer [J]. Oceanologia et Limnologia Sinica, 2019, 50(4): 740-751.
[29] 朱子晨, 胡泽建, 刘建强, 等. 不同悬沙组分对潮流的响应关系研究[J]. 海洋科学进展, 2020, 38(1):103-112 ZHU Zichen, HU Zejian, LIU Jianqiang, et al. Study on the response of suspended sediment with different compositions to tidal current [J]. Advances in Marine Science, 2020, 38(1): 103-112.
[30] 董永发, 曹沛奎. 浙闽淤泥质港湾的沉积特征[J]. 华东师范大学学报:自然科学版, 1996(2):77-83 DONG Yongfa, CAO Peikui. Sedimentary characteristics or the muddy bays in the Zhejiang and Fujian provinces [J]. Journal of East China Normal University:Natural Science, 1996(2): 77-83.
[31] 伊兆晗, 胡日军, 李毅, 等. 福宁湾海域夏季大潮期悬浮泥沙输运特征及控制因素[J]. 海洋地质与第四纪地质, 2021, 41(6):53-66 YI Zhaohan, HU Rijun, LI Yi, et al. Characteristics and controlling factors of suspended sediment transportation in summer spring tide in Funing Bay [J]. Marine Geology & Quaternary Geology, 2021, 41(6): 53-66.
[32] 江甘兴. 福建海区的潮汐和潮流[J]. 台湾海峡, 1992(2):89-94 JIANG Ganxing. Tides and tidal currents in Fujian waters [J]. Journal of Oceanography in Taiwan Strait, 1992(2): 89-94.
[33] 孟令鹏, 胡日军, 李毅, 等. 福宁湾海域冬季大潮期悬浮泥沙输运特征[J]. 海洋地质与第四纪地质, 2020, 40(3):61-73 MENG Lingpeng, HU Rijun, LI Yi, et al. Transport characteristics of suspended sediment in Funing Bay during spring tide in winter [J]. Marine Geology & Quaternary Geology, 2020, 40(3): 61-73.
[34] 李家彪. 东海区域地质[M]. 北京: 海洋出版社, 2008 LI Jiabiao. Regional Geology of the East China Sea[M]. Beijing: China Ocean Press, 2008.
[35] Guan B X, Fang G H. Winter counter-wind currents off the southeastern China coast: A review [J]. Journal of Oceanography, 2006, 62(1): 1-24. doi: 10.1007/s10872-006-0028-8
[36] Yuan D L, Zhu J R, Li C Y, et al. Cross-shelf circulation in the Yellow and East China Seas indicated by MODIS satellite observations [J]. Journal of Marine Systems, 2008, 70(1-2): 134-149. doi: 10.1016/j.jmarsys.2007.04.002
[37] Guan B X. Patterns and structures of the currents in Bohai, Huanghai and East China Seas[M]//Zhao D, Liang Y B, Zeng C K. Oceanology of China Seas. Dordrecht: Springer, 1994: 17-26.
[38] McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques in Sedimentology. Oxford: Blackwell, 1988: 63-85.
[39] Shepard F P. Nomenclature based on sand-silt-clay ratios [J]. Journal of Sedimentary Research, 1954, 24(3): 151-158.
[40] Trowbridge J H. A simple description of the deepening and structure of a stably stratified flow driven by a surface stress [J]. Journal of Geophysical Research:Oceans, 1992, 97(C10): 15529-15543. doi: 10.1029/92JC01512
[41] 滕立志. 长江口北港最大浑浊带沉积动力过程对围垦工程自适应机理研究[D]. 华东师范大学博士学位论文, 2022 TENG Lizhi. On the mechanism behind the nature behaviour of sediment dynamics within the turbidity maximum zone in Reponse to reclamations in the north channel of Yangtze estuary[D]. Doctor Dissertation of East China Normal University, 2022.
[42] 李占海, 高抒, 陈沈良. 江苏大丰潮滩底质与悬沙的粒径组成特征[J]. 泥沙研究, 2007(3):30-37 LI Zhanhai, GAO Shu, CHEN Shenliang. Characteristics of grain size distributions of seabed and suspended sediment over the Dafeng tidalflat of Jiangsu Coast [J]. Journal of Sediment Research, 2007(3): 30-37.
[43] 李占海, 陈沈良, 张国安. 长江口崇明东滩水域悬沙粒径组成和再悬浮作用特征[J]. 海洋学报, 2008, 30(6):154-163 LI Zhanhai, CHEN Shenliang, ZHANG Guoan. The study on grain-size distribution of suspended sediment and resuspension process on the Chongming east intertidal and subtidal zones in the Changjiang Estuary in China [J]. Acta Oceanologica Sinica, 2008, 30(6): 154-163.
[44] 李东义, 徐勇航, 王爱军, 等. 福建安海湾表层沉积物粒度特征及其现代沉积过程分析[J]. 沉积学报, 2015, 33(4):724-734 LI Dongyi, XU Yonghang, WANG Aijun, et al. Analysis of surface sediment grain size characteristics and modern sedimentary process in Fujian Anhai Gulf [J]. Acta Sedimentologica Sinica, 2015, 33(4): 724-734.
[45] 苏世兵. 辽东半岛碧流河口潮滩沉积环境特征及其影响因素分析[D]. 辽宁师范大学硕士学位论文, 2022 SU Shibing. Sedimentary environment characteristics and influencing factors of tidal flats at Biliu estuary in Liaodong Peninsula[D]. Master Dissertation of Liaoning Normal University, 2022.
[46] 王可, 郑洪波, Prins M, 等. 东海内陆架泥质沉积反映的古环境演化[J]. 海洋地质与第四纪地质, 2008, 28(4):1-10 WANG Ke, ZHENG Hongbo, Prins M, et al. High-resolution paleoenvironmental record of the mud sediments of the East China Sea inner shelf [J]. Marine Geology & Quaternary Geology, 2008, 28(4): 1-10.
[47] 李云海, 陈坚, 黄财宾, 等. 浙闽沿岸南部泥质沉积中心表层沉积物粒度特征及其季节性差异[J]. 沉积学报, 2010, 28(1):150-157 LI Yunhai, CHEN Jian, HUANG Caibin, et al. Grain-size characteristics of the surface sediments and their seasonal variability in the mud depocenter off the southern Zhejiang-Fujian coast [J]. Acta Sedimentologica Sinica, 2010, 28(1): 150-157.
[48] 李军, 高抒, 曾志刚, 等. 长江口悬浮体粒度特征及其季节性差异[J]. 海洋与湖沼, 2003, 34(5):499-510 LI Jun, GAO Shu, ZENG Zhigang, et al. Particle-size characteristics and seasonal variability of suspended particulate matters in the Changjiang River Estuary [J]. Oceanologia et Limnologia Sinica, 2003, 34(5): 499-510.
[49] 郭俊杰, 胡日军, 陈娟娟, 等. 福建福宁湾表层沉积物粒度特征及沉积动力环境分区[J]. 海洋湖沼通报, 2021, 43(5):50-59 GUO Junjie, HU Rijun, CHEN Juanjuan, et al. Grain size characteristics of surface sediments and subdivisions of dynamic sediment environment in Funing Bay, Fujian province [J]. Transactions of Oceanology and Limnology, 2021, 43(5): 50-59.
[50] 杨华. 关于淤泥质海岸与粉沙质海岸界定的探讨[J]. 水道港口, 2008, 29(3):153-157 YANG Hua. Study on definition of muddy coast and silty coast [J]. Journal of Waterway and Harbor, 2008, 29(3): 153-157.
[51] 曹祖德, 孔令双. 粉沙质海岸泥沙运动特性研究[J]. 海洋学报, 2011, 33(5):152-162 CAO Zude, KONG Lingshuang. Sediment problems of harbor on silt-sandy beach [J]. Acta Oceanologica Sinica, 2011, 33(5): 152-162.
[52] Shields A. Anwendung der aehnlichkeitsmechanik und der turbulenzforschung auf die geschiebebewegung[D]. Doctor Dissertation of Preussischen Versuchsanstalt fur Wasserbau, 1936.
[53] 窦国仁. 再论泥沙起动流速[J]. 泥沙研究, 1999(6):1-9 DOU Guoren. Incipient motion of coarse and fine sediment [J]. Journal of Sediment Research, 1999(6): 1-9.
[54] Xiong C B, Bian S H, Hu Z J, et al. Characteristics and resuspension-subsidence movement of suspension after storm in Ningjin Shidao sea, China[C]//The Twenty-first International Offshore and Polar Engineering Conference. Maui: The International Society of Offshore and Polar Engineers, 2011: 19-24.
[55] 刘红, 何青, 王亚, 等. 长江河口悬浮泥沙的混合过程[J]. 地理学报, 2012, 67(9):1269-1281 LIU Hong, HE Qing, WANG Ya, et al. Processes of suspended sediment mixture in the Yangtze River estuary [J]. Acta Geographica Sinica, 2012, 67(9): 1269-1281.
[56] Bian S H, Hu Z, Liu J Q, et al. Sediment suspension and the dynamic mechanism during storms in the Yellow River Delta [J]. Environmental Monitoring and Assessment, 2017, 189(1): 3. doi: 10.1007/s10661-016-5688-2
[57] 宁泽, 韩宗珠, 毕世普, 等. 浙闽近岸海域表层沉积物稀土元素的物源指示[J]. 海洋地质前沿, 2018, 34(8):34-44 NING Ze, HAN Zongzhu, BI Shipu, et al. Rare earth geochemistry of coastal surficial sediments off Zhejiang and Fujian provinces and its implications for provenance [J]. Marine Geology Frontiers, 2018, 34(8): 34-44.
[58] 张兴泽, 朱丽东, 胡凯程, 等. 浙闽沿岸泥质潮滩沉积磁性特征及其物源判别[J]. 沉积学报, 2022, 40(3):774-786 ZHANG Xingze, ZHU Lidong, HU Kaicheng, et al. Sedimentary magnetic characteristics and provenance identification of muddy tidal flats along the coast of Zhejiang and Fujian [J]. Acta Sedimentologica Sinica, 2022, 40(3): 774-786.
[59] 徐茂泉, 许文彬, 孙美琴, 等. 福建兴化湾表层沉积物中重矿物组分及其分布特征[J]. 海洋学报:中文版, 2004, 26(5):74-82 XU Maoquan, XU Wenbin, SUN Meiqin, et al. The characteristics of heavy minerals composition and distribution in surface sediment from the Xinghua Bay of Fujian [J]. Acta Oceanologica Sinica, 2004, 26(5): 74-82.
[60] 杨蕙, 郑斌鑫, 于东生, 等. 福建平海湾外湾表层沉积物粒度特征及冲淤变化[J]. 应用海洋学学报, 2017, 36(2):233-242 YANG Hui, ZHENG Binxin, YU Dongsheng, et al. Characteristics of surface sediment grain size and the erosion/deposition evolution in the outer Pinghai Bay, Fujian [J]. Journal of Applied Oceanography, 2017, 36(2): 233-242.
[61] 王兆夺, 于东生. 泉州湾表层沉积物粒度与元素地球化学特征分析[J]. 应用海洋学学报, 2015, 34(4):568-579 WANG Zhaoduo, YU Dongsheng. Analysis on the grain size and the geochemical characteristics of surface sediments in Quanzhou Bay [J]. Journal of Applied Oceanography, 2015, 34(4): 568-579.
[62] 黄龙, 张志珣, 耿威, 等. 闽浙沿岸东部海域表层沉积物粒度特征及其沉积环境[J]. 海洋地质与第四纪地质, 2014, 34(6):161-169 HUANG Long, ZHANG Zhixun, GENG Wei, et al. Grain size of surface sediments in the eastern Min-Zhe coast: an indicator of sedimentary environments [J]. Marine Geology & Quaternary Geology, 2014, 34(6): 161-169.
[63] 刘胜璟, 高建华, 徐笑梅, 等. 浙闽沿岸泥质区沉积物粒度组分对长江入海输沙量减少的响应[J]. 海洋学报, 2021, 43(3):105-115 LIU Shengjing, GAO Jianhua, XU Xiaomei, et al. Response of sediment grain size composition of the Zhe-Min coastal mud to the sediment load reduction of the Changjiang River entering the sea [J]. Acta Oceanologica Sinica, 2021, 43(3): 105-115.
[64] Li Y H, Qiao L, Wang A J, et al. Seasonal variation of water column structure and sediment transport in a mud depo-center off the Zhejiang-Fujian coast in China [J]. Ocean Dynamics, 2013, 63(6): 679-690. doi: 10.1007/s10236-013-0620-6
[65] 陈瑞瑞. 长江河口悬浮泥沙向浙闽沿岸输运近期变化的遥感分析[D]. 华东师范大学硕士学位论文, 2017 CHEN Ruirui. Remote sensed analysis of the suspended sedirnent variations from the Yangtze Estuary to Zhejiang-Fujian provincial coastal waters[D]. Master Dissertation of East China Normal University, 2017.
[66] 曾定勇, 倪晓波, 黄大吉. 冬季浙闽沿岸流与台湾暖流在浙南海域的时空变化[J]. 中国科学:地球科学, 2012, 42(7):1123-1134 doi: 10.1360/zd-2012-42-7-1123 ZENG Dingyong, NI Xiaobo, HUANG Daji. Temporal and spatial variability of the Zhe-Min coastal current and the Taiwan Warm current in winter in the southern Zhejiang coastal sea [J]. Scientia Sinica Terrae, 2012, 42(7): 1123-1134. doi: 10.1360/zd-2012-42-7-1123
[67] 陈沈良, 张国安, 杨世伦, 等. 长江口水域悬沙浓度时空变化与泥沙再悬浮[J]. 地理学报, 2004, 59(2):260-266 CHEN Shenliang, ZHANG Guoan, YANG Shilun, et al. Temporal and spatial changes of suspended sediment concentrationand resuspension in the Yangtze River Estuary and its adjacent waters [J]. Acta Geographica Sinica, 2004, 59(2): 260-266.
[68] 陶建峰, 蒯宇, 康彦彦, 等. 杭州湾及甬江口外海域悬沙时空动态研究[C]//窦希萍, 左其华. 第十八届中国海洋(岸)工程学术讨论会论文集(下). 舟山: 海洋出版社, 2017: 370-374. TAO Jianfeng, KUAI Yu, KANG Yanyan, et al. Study on temporal and spatial dynamics of suspended sediment in Hangzhou Bay and the Sea Area outside the Yongjiang Estuary[C]//DOU Xiping, ZUO Qihua. Proceedings of the 18th China Ocean (Coastal) Engineering Symposium (Part 2). Zhoushan: Ocean Press, 2017: 370-374.
[69] 恽才兴, 蔡孟裔, 王宝全. 利用卫星象片分析长江入海悬浮泥沙扩散问题[J]. 海洋与湖沼, 1981, 12(5):391-401 YUN Caixing, CAI Mengyi, WANG Baoquan. An analysis of the diffusion of suspended sediment discharged from the Changjiang River based on the satellite images [J]. Oceanologia et Limnologia Sinica, 1981, 12(5): 391-401.
[70] 蔡爱智. 长江入海泥沙的扩散[J]. 海洋学报, 1982, 4(1):78-88 CAI Aizhi. Diffusion of sediments of the Changjiang River discharging into the sea [J]. Acta Oceanologica Sinica, 1982, 4(1): 78-88.
[71] Milliman J D, Chen H T, Yang Z S, et al. Transport and deposition of river sediment in the Changjiang Estuary and adjacent continental shelf [J]. Continental Shelf Research, 1985, 4(1-2): 37-45. doi: 10.1016/0278-4343(85)90020-2
[72] 周笑笑, 陈秀玲, 范逸飞, 等. 福建近岸罗源湾沉积环境及表层沉积物物质来源探讨[J]. 第四纪研究, 2021, 41(5):1281-1293 ZHOU Xiaoxiao, CHEN Xiuling, FAN Yifei, et al. Discussion on the sedimentary environment and provenance of surface sediment in Luoyuan Bay offshore of Fujian province [J]. Quaternary Sciences, 2021, 41(5): 1281-1293.
[73] 刘苍字, 郭成涛. 福建沙埕港的沉积特征与泥沙来源研究[J]. 地理学报, 1992, 47(4):344-352 LIU Cangzi, GUO Chengtao. Sedimentary characteristics and sediments source of the Shacheng Bay, Fujian province [J]. Acta Geographica Sinica, 1992, 47(4): 344-352.
[74] 张开泉, 刘焕芳. 悬移质分选沉降及其在工程上的应用[J]. 泥沙研究, 1999(5):31-35 ZHANG Kaiquan, LIU Huanfang. Sort settling of suspended load and it’s engineering application [J]. Journal of Sediment Research, 1999(5): 31-35.
[75] 钱宁, 万兆惠. 泥沙运动力学[M]. 北京: 科学出版社, 1983 QIAN Ning, WAN Zhaohui. Mechanics of Sediment Transport[M]. Beijing: Science Press, 1983.
[76] 黄建维. 粘性泥沙在静水中沉降特性的试验研究[J]. 泥沙研究, 1981(2):30-41 HUANG Jianwei. Experimental study of settling properties of cohesive sediment in still water [J]. Journal of Sediment Research, 1981(2): 30-41.
[77] 黄建东. 几种沉积物粒度参数间的相关关系[J]. 台湾海峡, 1988, 7(3):72-79 HUANG Jiandong. Correlative relationships between the grain-size parameters by different authors [J]. Journal of Oceanography in Taiwan Strait, 1988, 7(3): 72-79.
[78] 蒋国俊. 潮滩悬沙粒度参数的动力沉积学意义[J]. 海洋与湖沼, 1995, 26(1):90-97 JIANG Guojun. The dynamic sedimentological meaning of grain-size parameters of tidal flat suspended sediments [J]. Oceanologia et Limnologia Sinica, 1995, 26(1): 90-97.
-
期刊类型引用(5)
1. 李彦杰,朱友生,陈冠军,王姝,王微微. 基于AUV观测数据的南海东沙北部浅表层精细地质特征及其灾害因素分析. 热带海洋学报. 2023(01): 114-123 . 百度学术
2. 杨天宇,邹立,赵彦彦,宋晓帅,权永峥,贾永刚. 南海东北部上层沉积物有机碳的沉积特征. 海洋环境科学. 2022(01): 16-23 . 百度学术
3. 王大伟,曾凡长,王微微,孙悦. 海底冲沟——深水沉积输运系统的“毛细血管”. 地球科学进展. 2022(04): 331-343 . 百度学术
4. Xishuang Li,Chengyi Zhang,Baohua Liu,Lejun Liu. Mounded seismic units in the modern canyon system in the Shenhu area, northern South China Sea: Sediment deformation, depositional structures or the mixed system?. Acta Oceanologica Sinica. 2022(09): 107-116 . 必应学术
5. 龚广传,李磊,何旺,张威,高毅凡,程琳燕,杨志鹏. 块体搬运沉积顶面沉积过程模拟--以南海北部坡为例. 海洋地质前沿. 2022(12): 75-83 . 百度学术
其他类型引用(0)