The subsidence by mining car traveling on deep-sea soft bottom based on Burger's creep model
-
摘要:
在陆地矿产资源日渐枯竭的今天,深海矿产资源已成为全球各个国家争相开采与利用的焦点,深海采矿车是实现深海矿产资源开采的重要装备。海底稀软底质是一种承载力与抗剪强度极低的特殊底质,在采矿作业中,深海稀软底质的物理力学特性直接影响采矿车行走的稳定性。文章选取Burger’s接触模型作为深海稀软底质的本构模型,对某海域海底稀软原状土开展室内三轴试验,通过PFC3D颗粒流数值模拟实验对比实际三轴试验,对稀软底质的Burger’s蠕变模型进行参数标定,同时依据标定结果改变相应参数,针对5种不同底质条件的工况,建立海底采矿车的数字仿真模型,模拟各工况下采矿车在不同行驶速度时的下陷深度。结果显示,下陷深度会随行驶速度呈非线性变化,在一定范围内随着行驶速度的增大而减少并逐渐趋于稳定。同时结果还表明,该区域海底稀软底质具有更高的黏粒含量(38.1%~48.4%)、含水率( 88.13%~137.79%)和压缩性(压缩系数:1.86~3.73 MPa−1,压缩模量:1.26 ~2.13 MPa),具有更低的密度(1.3 ~1.5 g/cm3)和强度特性(贯入阻力:0.19 ~1.32 N,黏聚力:3.7~6.9 kPa,内摩擦角:2.4°~3.9°),即承载力较低,蠕变性能较强。本研究在宏观上做了一般的探讨,为类似参数的稀软底质下海底采矿车的运行安全控制提供了较好借鉴与依据。
-
关键词:
- 海底采矿车 /
- 海底稀软底质 /
- Burger’s蠕变模型 /
- PFC3D颗粒流
Abstract:With the depletion of terrestrial mineral resources, the deep-sea mineral resources have become the focus of exploitation and utilization in all countries of the world. A deep-sea mining car is an important equipment for deep-sea mineral resources mining, and a soft marine sediment is a special substrate with very low bearing capacity and shear strength. In mining operations, the physical and mechanical properties of soft marine sediment directly affect the stability of mining vehicles. The Burger's contact model was selected as the constitutive model of deep-sea soft sediment, and a laboratory triaxial test was carried out on seafloor soft undisturbed soil in a certain area. By comparing the actual triaxial test with PFC3D particle flow numerical simulation experiment, parameters of the Burger's creep model of soft sediment were calibrated. Meanwhile, the corresponding parameters were modified according to the calibration results, the digital simulation model of the seabed mining vehicle was established under five working conditions with different soil beds, and the subsidence depth of the mining car under different driving speeds under each working condition was simulated. The results show that the subsidence depth changes nonlinearly with the driving speed, and the subsidence depth decreases with the increasing of the speed in a certain range and gradually tends to be stable. In addition, the soft sediment in the creep area features higher clay content (38.1%~48.4%), water content (88.13%~137.79%), and compressibility (compression coefficient: 1.86~3.73 MPa−1, compression modulus: 1.26~2.13 MPa), and lower density (1.3~1.5 g/cm3) and strength (penetration resistance: 0.19~1.32 N, cohesion: 3.7~6.9 kPa, internal friction angle: 2.4°~3.9°), indicating that the bearing capacity is low and the creep performance is strong. This study provided a reference on a macro level and a theoretical basis for safe operation of seabed mining vehicle on soft bottom with similar parameters.
-
-
表 1 Burger’s蠕变模型参数
Table 1 The parameters of Burger’s creep model
作用方向 Maxwell体 Kelvin体 滑动摩擦系数
f弹性系数Em/MPa 黏性系数ηm/(MP·s) 弹性系数Ek/MPa 黏性系数ηk/(MP·s) 法向 bur_knm bur_cnm bur_knk bur_cnk bur_fric 切向 bur_ksm bur_csm bur_ksk bur_csk 表 2 Burger’s蠕变模型参数对瞬时强度特性的影响
Table 2 The effect of Burger’s creep model parameters on instantaneous strength characteristics
瞬时强度特性 Maxwell体 Kelvin体 滑动摩擦系数f 弹性系数Em 黏性系数ηm 弹性系数Ek 黏性系数ηk 弹性模量 正相关 不相关 不相关 不相关 正相关 泊松比 正相关 不相关 不相关 不相关 负相关 单轴抗压强度 正相关 不相关 不相关 不相关 正相关 表 3 Burger’s蠕变模型参数对蠕变特性的影响
Table 3 The effect of Burger’s creep model parameters on creep characteristics
瞬时强度特性 Maxwell体 Kelvin体 滑动摩擦
系数f弹性系数
Em黏性系数
ηm弹性系数
Ek黏性系数
ηk瞬时应变量 负相关 不相关 不相关 不相关 负相关 起始应变量 不相关 不相关 不相关 不相关 不相关 起始应变率 不相关 负相关 不相关 负相关 不相关 稳定应变量 负相关 负相关 负相关 不相关 不相关 稳定应变率 不相关 不相关 不相关 不相关 不相关 瞬时恢复量 负相关 不相关 不相关 不相关 不相关 弹性后效回复率 不相关 不相关 负相关 负相关 不相关 残余应变量 不相关 负相关 不相关 不相关 不相关 表 4 研究海域海底底质物理力学性质范围
Table 4 Physical and mechanical properties of seabed sediments in the study area
物理性质 结果范围 力学性质 结果范围 天然含水率/% 88.13~137.79 粘聚力
/kPa3.7~6.9 天然密度/(g/cm3) 1.3~1.5 内摩擦角
/(°)2.4~3.9 孔隙比 2.46~3.85 压缩系数/MPa−1 1.86~3.73 液性指数 0.96~1.97 压缩模量/MPa 1.26~2.13 塑性指数 37.2~57.8 贯入阻力
/N0.19~1.32 表 5 三轴试验方案
Table 5 Triaxial test scheme
试验次数 试样尺寸
(直径/mm×高度/mm)剪切类型 围压
/kPa加载速率
/
(mm/min)1 38×76 固结排水 100 0.008 2 38×76 固结排水 150 0.008 3 38×76 固结排水 200 0.008 表 6 模型微观力学参数
Table 6 Micromechanical parameters of the model
参数类型 Maxwell体 Kelvin体 滑动摩擦
系数
f弹性系数
Em/MPa黏性系数
ηm/(MP·s)弹性系数
Ek/MPa黏性系数
ηk/MP·s参数取值 0.2 10 1.5 0.03 0.1 表 7 不同工况下的模型微观力学参数
Table 7 The micromechanical parameters of the model under different working conditions
工况 Maxwell体 Kelvin体 滑动摩擦
系数f弹性系数
Em/MPa黏性系数
ηm/(MP·s)弹性系数
Ek/MPa黏性系数
ηk/(MP·s)1 0.2 10 1.5 0.03 0.1 2 0.1 10 1.5 0.03 0.1 3 0.3 10 1.5 0.03 0.1 4 0.2 5 1.5 0.03 0.1 5 0.2 15 1.5 0.03 0.1 表 8 不同工况下采矿车各行驶速度的下陷数据
Table 8 Subsidence data of a mining car at different driving speeds under different working conditions
参数 工况 行驶速度 0 0.5/(m/s) 1.0/(m/s) 1.5/(m/s) 2.0/(m/s) 稳定
时间
/s1 9.5 7.4 6.8 5.8 3.5 2 9.6 7.8 6.5 6.1 3.8 3 9.5 8.0 6.3 5.6 3.2 4 9.7 8.9 7.9 7.0 6.3 5 8.2 6.3 5.6 4.9 2.6 稳定
下陷量/m1 0.331 0.183 0.162 0.132 0.114 2 0.372 0.226 0.184 0.165 0.130 3 0.281 0.163 0.137 0.116 0.091 4 0.335 0.186 0.163 0.130 0.115 5 0.331 0.179 0.159 0.129 0.109 -
[1] 王贤觉, 陈毓蔚, 吴明清. 铁锰结核的稀土和微量元素地球化学及其成因[J]. 海洋与湖沼, 1984, 15(6):501-514 WANG Xianjue, CHEN Yuwei, WU Mingqing. Geochemistry of RE and trace elements in ferromanganese nodules and their genesis[J]. Oceanologia et Limnologia Sinica, 1984, 15(6):501-514.]
[2] 仲义, 陈忠, 莫爱彬, 等. 南海北部铁锰结核成因及元素的赋存状态[J]. 热带海洋学报, 2017, 36(2):48-59 ZHONG Yi, CHEN Zhong, MO Aibin, et al. Genetic types and elemental occurrence phases of ferromanganese nodules in the northern South China Sea[J]. Journal of Tropical Oceanography, 2017, 36(2):48-59.]
[3] 戴瑜, 刘少军. 深海采矿机器人研究: 现状与发展[J]. 机器人, 2013, 35(3):363-375 doi: 10.3724/SP.J.1218.2013.00363 DAI Yu, LIU Shaojun. Researches on deep ocean mining robots: status and development[J]. Robot, 2013, 35(3):363-375.] doi: 10.3724/SP.J.1218.2013.00363
[4] 陈小玲. 大洋多金属结核矿区表层沉积物的物理性质[J]. 东海海洋, 2004, 22(1):28-33 CHEN Xiaoling. The physical properties of surface sediments in oceanic polymetallic nodule[J]. Donghai Marine Science, 2004, 22(1):28-33.]
[5] Deepak C R, Shajahan M A, Atmanand M A, et al. Development tests on the underwater mining system using flexible riser concept[C]//Proceedings of the 4th Ocean Mining Symposium. Cupertino, USA: ISOPE, 2001: 94-98.
[6] 殷征欣, 王海峰, 韩金生, 等. 南海边缘海多金属结核与大洋多金属结核对比[J]. 吉林大学学报:地球科学版, 2019, 49(1):261-277 YIN Zhengxin, WANG Haifeng, HAN Jinsheng, et al. Comparison between the marginal-sea polymetallic nodules in South China Sea and Ocean Polymetallic nodules[J]. Journal of Jilin University:Earth Science Edition, 2019, 49(1):261-277.]
[7] 吴绍渊. 南海海底稀土元素研究进展[J]. 海洋科学, 2014, 38(3):116-121 doi: 10.11759/hykx20130918004 WU Shaoyuan. Research progress of rare earth elements of the seafloor in the South China Sea[J]. Marine Sciences, 2014, 38(3):116-121.] doi: 10.11759/hykx20130918004
[8] 马雯波, 饶秋华, 吴鸿云, 等. 深海稀软底质土宏观性能与显微结构分析[J]. 岩土力学, 2014, 35(6):1641-1646 MA Wenbo, RAO Qiuhua, WU Hongyun, et al. Macroscopic properties and microstructure analyses of deep-sea sediment[J]. Rock and Soil Mechanics, 2014, 35(6):1641-1646.]
[9] 饶秋华, 刘泽霖, 许锋, 等. 深海稀软底质特性及采矿车行走性能研究进展[J]. 中国有色金属学报, 2021, 31(10):2795-2816 doi: 10.11817/j.ysxb.1004.0609.2021-42120 RAO Qiuhua, LIU Zelin, XU Feng, et al. Research progress on characteristics of deep-sea soft sediment and walking performance of mining vehicle[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10):2795-2816.] doi: 10.11817/j.ysxb.1004.0609.2021-42120
[10] Leng D X, Shao S, Xie Y C, et al. A brief review of recent progress on deep sea mining vehicle[J]. Ocean Engineering, 2021, 228:108565. doi: 10.1016/j.oceaneng.2020.108565
[11] Schulte E, Handschuh R, Schwarz W. Transferability of soil mechanical parameters to traction potential calculation of a tracked vehicle[C]//Proceedings of the Fifth ISOPE Ocean Mining Symposium. Tsukuba, Japan: The International Society of Offshore and Polar Engineers, 2003: 123-131.
[12] Hong S, Kim H W, Choi J S. Transient dynamic analysis of tracked vehicles on extremely soft cohesive soil[C]//Proceedings of the 5th ISOPE Pacific/Asia Offshore Mechanics Symposium. Daejeon, Korea: The International Society of Offshore and Polar Engineers, 2002: 100-107.
[13] 戴瑜, 刘核, 张滔, 等. 海底履带式采矿车行走牵引通过性能研究[J]. 中国科技论文, 2015, 10(10):1203-1208 DAI Yu, LIU He, ZHANG Tao, et al. Research on traction trafficability of seafloor tracked mining vehicle[J]. China Sciencepaper, 2015, 10(10):1203-1208.]
[14] 陈峰, 桂卫华, 王随平, 等. 深海底履带机器车建模及仿真研究[J]. 机器人, 2004, 26(6):510-514 doi: 10.3321/j.issn:1002-0446.2004.06.007 CHEN Feng, GUI Weihua, WANG Suiping, et al. Modeling and simulation of a deep seabed tracked vehicle[J]. Robot, 2004, 26(6):510-514.] doi: 10.3321/j.issn:1002-0446.2004.06.007
[15] Qi C L, Rao Q H, Liu Q, et al. Traction rheological properties of simulative soil for deep-sea sediment[J]. Journal of Oceanology and Limnology, 2019, 37(1):62-71. doi: 10.1007/s00343-018-7258-7
[16] 房后国, 刘娉慧, 袁志刚. 海积软土固结过程中微观结构变化特征分析[J]. 水文地质工程地质, 2007, 34(2):49-52,56 doi: 10.3969/j.issn.1000-3665.2007.02.012 FANG Houguo, LIU Pinghui, YUAN Zhigang. Analysis on characteristics of microstructure change during marine soft soil consolidation[J]. Hydrogeology and Engineering Geology, 2007, 34(2):49-52,56.] doi: 10.3969/j.issn.1000-3665.2007.02.012
[17] 石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[M]. 北京: 中国建筑工业出版社, 2018 SHI Chong, ZHANG Qiang, WANG Shengnian. Numerical Simulation Technology and Application with Particle Flow Code (PFC5.0)[M]. Beijing: China Architecture & Building Press, 2018.]
[18] 杨振伟, 金爱兵, 周喻, 等. 伯格斯模型参数调试与岩石蠕变特性颗粒流分析[J]. 岩土力学, 2015, 36(1):240-248 doi: 10.16285/j.rsm.2015.01.033 YANG Zhenwei, JIN Aibing, ZHOU Yu, et al. Parametric analysis of Burgers model and creep properties of rock with particle flow code[J]. Rock and Soil Mechanics, 2015, 36(1):240-248.] doi: 10.16285/j.rsm.2015.01.033
[19] Itasca Consulting Group. PFC3D (Particle flow code in 3 dimensions) theory and background[R]. Minneapolis, USA: Itasca Consulting Group, 2008: 33-39.
[20] 中华人民共和国住房和城乡建设部. GB/T 50123-2019 土工试验方法标准[S]. 北京: 中国计划出版社, 2019 Ministry of Housing and Urban Rural Development of the People's Republic of China. GB/T 50123-2019 Standard for geotechnical test method[S]. Beijing: China Planning Press, 2019.]
[21] Huang X, Hanley K J, O'Sullivan C, et al. Effect of sample size on the response of DEM samples with a realistic grading[J]. Particuology, 2014, 15:107-115. doi: 10.1016/j.partic.2013.07.006
[22] 石崇, 徐卫亚. 颗粒流数值模拟技巧与实践[M]. 北京: 中国建筑工业出版社, 2015 SHI Chong, XU Weiya. Numerical Simulation Technique and Practice with Particle Flow Code[M]. Beijing: China Architecture & Building Press, 2015.]
[23] Shafipour R, Soroush A. Fluid coupled-DEM modelling of undrained behavior of granular media[J]. Computers and Geotechnics, 2008, 35(5):673-685. doi: 10.1016/j.compgeo.2007.12.003
[24] Shimizu H, Murata S, Ishida T. The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(5):712-727. doi: 10.1016/j.ijrmms.2011.04.013
[25] Tomac I, Gutierrez M. Fluid lubrication effects on particle flow and transport in a channel[J]. International Journal of Multiphase Flow, 2014, 65:143-156. doi: 10.1016/j.ijmultiphaseflow.2014.04.007
[26] Catalano E, Chareyre B, Barthélémy E. Pore-scale modeling of fluid-particles interaction and emerging poromechanical effects[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(1):51-71. doi: 10.1002/nag.2198
[27] 吴静. 岩溶隧道突水通道扩展机理、最小防突厚度及逃生路线优化研究[D]. 山东大学博士学位论文, 2018 WU Jing. Expansion of water inrush channel, minimum rock thickness and escape routes optimization of karst tunnel[D]. Doctor Dissertation of Shandong University, 2018.]
[28] Bekker M G. Introduction to Terrain-vehicle Systems[M]. Ann Arbor: University of Michigan Press, 1969.
[29] Xu F, Rao Q H, Ma W B. Predicting the sinkage of a moving tracked mining vehicle using a new rheological formulation for soft deep-sea sediment[J]. Journal of Oceanology and Limnology, 2018, 36(2):230-237. doi: 10.1007/s00343-018-6344-1