Productivity evolution in the antarctic Weddell Sea and its paleoceanographic implication since MIS 5
-
摘要: 南大洋有关大气二氧化碳分压(pCO2)冰期旋回机制的最新假说表明,冰期南极带生产力降低指示的深部流通状况减弱对CO2的封存,以及亚南极带生产力升高对CO2的固定能够圆满解释冰期大气pCO2的降低。显然,测试该假说合理性的关键是验证冰期旋回中南极带与亚南极带呈“镜像”关系的生产力演化特征。通过沉积物岩芯中生源蛋白石含量重建了MIS 5期以来南极威德尔海(南极带)生产力演化。结果显示,南极威德尔海生产力呈现暖期(MIS 5和3期)高、冷期(MIS 4和2期)低的冰期旋回特征以及总体降低的长期演化趋势。联合该生产力记录与搜集的南大洋其他海区多个生产力记录,确证了南极带与亚南极带“镜像”的生产力演化模式。进一步,通过该生产力记录与其潜在环境影响因素的对比,发现西风带经向移动和海冰张缩通过影响深部流通状况,进而控制深部营养物进入表层的可利用性,最终驱动MIS 5期以来威德尔海生产力演化的冰期旋回和长期趋势。南极威德尔海的深部流通状况对CO2的“收押”与释放很可能贡献了MIS 5期以来大气pCO2演化的冰期旋回和长期趋势。该研究确证了上述南大洋有关大气pCO2冰期旋回机制假说的合理性,表明南大洋在全球气候演化中扮演重要角色。Abstract: The latest hypothesis on the mechanism of glacial/interglacial variation in atmospheric partial pressure of carbon dioxide (pCO2-atm) in the Southern Ocean suggests that the decrease of pCO2-atm during glaciation can be satisfactorily explained by CO2 sequestration via the reduced deep ventilation indicated by the decrease in the Antarctic zone productivity, and the CO2 fixation by the increase in the subantarctic zone productivity. Obviously, verifying the mirror-image relation between productivity evolution in the Antarctic zone and the subantarctic zone in glacial cycles is the key to examine this hypothesis. The productivity evolution in the Weddell Sea (in Antarctic Zone) since MIS 5 was reconstructed based on the biogenic opal content from sediment cores. The results indicate that the productivity in the Weddell Sea showed glacial-interglacial variations, with high productivity during warm periods (MIS 5 and 3) and low productivity during cold periods (MIS 4 and 2), and a long-term decreasing trend was also observed. By combining our productivity records with those of other areas in the Southern Ocean, the mirror-image model of productivity evolution in the Antarctic and subantarctic zones was confirmed. Furthermore, comparison between the productivity records and potential environmental influence factors indicated that the meridional movement of Westerlies as well as the expansion and retreat of sea ice controlled the nutrient availability from deep water into surface by affecting deep convection, and ultimately drove glacial-interglacial and long-term variations of productivity in the Weddell Sea since MIS 5. The sequestration and release of CO2 due to variation of deep convection in the Weddell Sea probably contributed to the long-term trend and glacial-interglacial cycles of pCO2-atm since MIS 5. This research confirms that the above hypothesis about the mechanism for glacial-interglacial pCO2-atm cycles in the Southern Ocean is reasonable, indicating that the Southern Ocean plays an important role in global climate evolution.
-
Keywords:
- biogenic opal /
- pCO2-atm /
- deep ocean ventilation /
- sea ice /
- Westerlies /
- Antarctic Zone
-
工业革命以来,化石燃料的燃烧导致大气二氧化碳分压(pCO2)的急剧升高,引起了人类社会对全球气候变暖的担忧。海洋是地球表生系统最为重要的碳储库之一,也是最大的活跃碳库,从而调节着大气pCO2的变化[1]。南大洋吸收了工业革命以来人为排放CO2的40%,是全球重要的碳汇海区[2]。古气候学研究进一步发现,轨道和千年尺度上大气pCO2的演化与南极温度、南大洋深部流通状况和表层生产力记录密切相关。这些结果表明,南大洋在调节海洋碳循环和全球气候演化中扮演着至关重要的角色[3]。
海洋浮游植物通过光合作用吸收CO2,将其转化为颗粒有机碳,其向深层水输出的过程中,一部分经有机质矿化生成“呼吸CO2(Respired CO2)”,封存在海洋深部,另一部分直接沉降到海底埋藏,从而降低了大气pCO2。南大洋深部水体富含大量营养物质与CO2,其上涌到表层时,会刺激浮游植物生长,并向大气中释放CO2。当通风作用直接排放的CO2的量大于生物泵吸收的CO2的量时,南大洋就会成为碳源,增加大气pCO2,反之,它会成为碳汇,使大气pCO2降低[4-7],这表明提高生产力可能会增加南大洋封存CO2的潜力。Jaccard等发现南大洋存在两种不同的生产力模式(即冰期南大洋南极带生产力降低而亚南极带生产力增加,间冰期则相反),从而提出一个假说解释冰期-间冰期旋回中大气pCO2演化[7]。该假说认为,冰期广泛增加的风尘通量带来的铁施肥使得亚南极海域生产力增长,从而促进了冰期大气pCO2的降低;南极带内生产力的降低则可能反映了风驱上升流与冬季垂直混合的减弱,从而也导致了冰期大气pCO2 的降低。间冰期,则正好相反。该假说成立的关键是确证南大洋南极带与亚南极带“镜像”的生产力演化模式,并揭示其控制机理。
威德尔海作为全球大洋深层水的主要源区之一,在链接大气、海洋表层与海洋深部之间的碳循环中扮演着重要的角色。表层海水对CO2的吸收主要发生在春夏季浮游植物勃发时期[8],深秋和冬季由于混合层加深与高CO2含量的绕极深层水上涌,导致表层海洋向大气释放CO2;随后,冬季海冰的覆盖导致表层海洋无法进一步向大气中释放CO2[9],这使得威德尔海存在碳收支的季节性不平衡。工业革命以前,威德尔海因季节性的碳收支不平衡,成为大气CO2的源[10]。工业革命以后,大气CO2浓度的迅速升高导致这种不平衡方向被改变,该海区成为碳汇[11];且这些被吸收的碳一部分随着南极底层水(AABW)被输送至全球深海封存,另一部分跟随着中层水向北传导至低纬海洋,影响着低纬海洋的气候环境[12]。总之,长时间尺度上,威德尔海能有效缓冲大气pCO2 的上升。因此,重建地史时期威德尔海生产力的演化、探讨环境要素变化对生产力的影响,有助于更好地理解南大洋在过去大气pCO2演化中的作用,并预测南大洋在全球气候变暖背景下作出的响应。
1. 区域水文概况
研究区位于南大洋最大边缘海威德尔海西北部(图1a),该海区沉积物以等深流沉积与半远洋沉积为主[13-14]。威德尔海是AABW的重要发源地之一[15],影响全球深海大部分区域的水文状况,从而调控全球气候[16]。威德尔环流是由风驱动的顺时针方向流动的沿岸流,其在自东向西流动的过程中因南极半岛的阻碍而转向北上,最终汇入德雷克海峡东部的南极绕极流(ACC)(图1b)。绕极深层水(CDW)流经南大西洋时在极锋附近发生上涌,一部分在艾克曼层北移成为南极中层水(AAIW)和亚南极模态水(SAMW)流向低纬海区[17],另一部分在威德尔海东部边界区侵入威德尔环流,并在流向威德尔海西南部海域时抬升,作为改良的暖深层水;其在随威德尔环流运移过程中侵入陆架,与陆架水混合,相互作用形成AABW,并沿陆坡流动,随深部环流向北输出(图1b)[18]。
图 1 南极威德尔海站位分布、洋流与水团与硅酸盐含量a. 生产力模式对比中所涉及站位, b. 岩芯D5-12位置及洋流分布,c. 硅酸盐浓度垂向剖面(39°W附近)。图a和b中红色五角星标示岩芯采样位置,图b中红色线示意图c的经向截面位置。图1a采用Mercator投影方式。Figure 1. Map of the Antarctic Weddell Sea showing core location, ocean circulation and water masses, and dissolved-silicate concentrationsa: the sites involved in the comparison of productivity models; b: location of Site D5-12 and ocean circulation; c: silicate concentration section along 39° W. The red stars indicate the sampling location, red dotted line indicates the location of the section of silicate concentrations shown in Fig.1c. Figure 1a is based on the Mercator projection.磷酸盐和硝酸盐浓度在威德尔海的垂向分布十分相似,这主要归因于它们受控于相似的环流与生物地球化学过程[19]。磷酸盐和硝酸盐在表层水体中由于初级生产者的利用,其浓度呈现极小值;在表层水体下方由于有机质再矿化和富营养物的CDW侵入,其浓度表现为极大值。与磷酸盐和硝酸盐相同,硅酸盐浓度也在表层水体中出现了极小值;不同的是,由于硅质浮游植物生物硅的溶解比有机质的矿化更难,硅酸盐浓度极大值出现的深度更深(图1c)。溶解氧含量的水深分布模式与上述营养物质相反,表层海洋中氧气的海-气交换以及植物的光合作用使得表层水体中溶解氧含量最大,随着深部有机物的再矿化,溶解氧含量出现极小值[19]。
2. 材料与方法
沉积物岩芯ANT34/D5-12(以下简称D5-12)是2018年中国第34 次南极科考航次“向阳红01”科考船采集的重力柱状岩芯。D5-12孔位于威德尔海西北部,水深2556 m,岩芯全长456 cm。该孔沉积物层理清晰,未见明显沉积间断,自上而下颜色变深,局部出现黑色纹层,整体可分为两段。岩芯上部0~265 cm沉积物主要为含有孔虫粉砂质黏土,所含有孔虫优势种为浮游有孔虫 Neogloboquadrina pachyderma (sinistral)。根据沉积物岩性差异可将其分为6层,0~55 cm为灰色含有孔虫粉砂质黏土,颜色分布均匀;55~86 cm为浅灰色含有孔虫粉砂质黏土,颜色分布不均匀;86~120 cm为灰黑色含有孔虫黏土质粉砂,自上而下颜色逐渐加深;120~258 cm为灰黄色含粉砂质黏土,该层有孔虫含量相对较少,且随着深度增加逐渐减少,并出现丰富的冰筏碎屑;258~265 cm为灰黑色夹黑色条带的粉砂质黏土,不见有孔虫但有大量冰筏碎屑出现。岩芯下部265~456 cm 沉积物主要为灰黄色黏土,颜色均匀,含较多放射虫及少量海绵骨针(图2a)。
图 2 南极威德尔海D5-12孔年龄模式图a. D5-12孔岩芯岩性柱,b. D5-12孔MS(磁化率)-深度变化曲线,c. EDML冰芯nssCa2+(非海盐钙)通量曲线[28], d. D5-12孔MS与EDML冰芯nssCa2+通量曲线对比,e. D5-12孔线性沉积速率。图b和c中的红点代表年龄控制点,图e中的水平虚线示意平均线性沉积速率。Figure 2. The age model of Core D5-12 in the Antarctic Weddell Seaa: Lithologic column of Core D5-12, b: MS-depth curve of Core D5-12, c: EDML nssCa2+ flux[28], d: comparison of nssCa2+ flux of EDML ice cores and MS of Core D5-12, e: linear sedimentation rate of Core D5-12. The red dots in Figures b and c represent age control points, the horizontal dashed line in Figure e indicates the mean linear sedimentation rate.D5-12孔在自然资源部第一海洋研究所对半剖分后,半管随即按 1 cm步长进行物理参数的扫描,获得磁化率等数据。另一半管以1 cm 间隔分样,共获得456个样品。进一步,以2 cm 间距取样进行生物硅(BSi)含量测试,共取样品228个。BSi的分析采用湿碱消解法[20],在中国海洋大学海底科学与探测技术教育部重点实验室完成。BSi具体分析测试方法为:冻干样品研磨至200 目以下,准确称取约130~140 mg 样品粉末,置于50 mL离心管中。将5 mL 10%过氧化氢溶液加入离心管中,震荡并静置30 min 以除去有机质;再在离心管中加入5 mL 1∶9 盐酸,震荡反应30 min 以去除碳酸盐。随后,加入40 mL 去离子水并以3000 rpm 离心10 min,滤出上清液,并重复该过程3 次后将样品烘干。在烘干后的样品中加入40 mL 2 mol/L 的Na2CO3 溶液,充分混合后放入85 ℃ 恒温水浴箱中提取生物硅。每小时从水浴箱中取出样品离心15 min,取125 μL 上清液加入钼酸铵溶液,配置还原剂使其显色。每次取样后用力摇晃试管使固体重新悬浮后,继续水浴加热提取,共提取6次;该过程快速完成,以减少可溶硅在固体表面的不可逆损失。通过钼酸盐蓝光分光光度法测量分步提取物中的溶解硅,并根据硅的质量百分比随时间变化得出线性回归方程,其截距为沉积物中BSi的含量。沉积物中生物硅(即生源蛋白石)含量按公式(Opal%= 2.4×BSi%)计算[21]。实验室该分析的长期精度(RSD)优于±3%。
3. 结果
3.1 年代模式
沉积物准确定年是重建古环境的基础。目前,在南大洋高纬海域,对于年代小于40~50 ka的地层,广泛采用生物壳体或有机质的AMS14C实现绝对定年,以获取沉积物的年代框架。对于年代大于40~50 ka的地层进行定年时,常使用有孔虫氧同位素与全球大洋底栖有孔虫氧同位素拟合记录LR04曲线对比[22],并辅以AMS14C测年来联合确定深海沉积物的年代框架,这种情况需要确保有孔虫壳体保存情况良好并且有孔虫沉积记录连续。在无法满足上述前提的情况下,也可使用其他特征记录指标(如磁化率和Ba/Ti等)与典型气候曲线对比,并结合AMS14C数据实现深海沉积物的年代框架确定[23]。岩芯D5-12取样位置虽位于碳酸盐补偿深度以上,有孔虫壳体保存完整,但我们未发表的其他数据表明,该孔中浮游有孔虫壳体N. pachyderma (sinistral)的δ18O信号受局部海水温度与冰雪融水信号影响强烈,因而“擦拭”了δ18O记录中的全球冰量演化信息,导致其无法与LR04曲线进行对比定年。沉积物中有机质的AMS14C绝对定年方法使用时,要求样品有机质含量高且来源单一,低含量的有机碳可能反映矿化程度严重,产生虚假年龄。D5-12孔未发表的有机质AMS14C测年结果显示,年代多次出现倒转现象,因而无法应用于该孔的年代模式确定。因此,本研究采用该孔沉积物中磁化率与南极冰芯风尘通量参数记录对比的方式,获得该站位年代模式。
南极冰芯的风尘通量记录保存了南半球过去的大气环流信息[24]。因此,南极冰芯的风尘颗粒浓度以及nssCa2+ 通量常被用于示踪大气环流[25]。冰期时,赤道和两极之间经向温度梯度更高,导致大气环流加强;间冰期则相反[4]。因此,风尘通量参数可以用于进行远距离年代地层对比,且在冰期-间冰期的时间尺度上不存在超前或者滞后,从而作为一种用于年代地层对比的类似于LR04的有效标准曲线[26]。前人研究表明,南大洋深海沉积物中的磁化率主要来自于风尘搬运的磁性物质,风尘输入加强对应于磁化率升高,减弱对应于磁化率降低[27]。冰芯中nssCa2+通量是大气风尘输送强度的可靠指标[28-29],因此,南大洋沉积物中磁化率与冰芯中nssCa2+对比的方法已广泛应用于岩芯年龄模式的确定[23]。研究区威德尔海与南极EDML冰芯站位的风尘沉积都主要来源于南美的巴塔哥尼亚地区[30-31];因此,本文将D5-12孔沉积物磁化率(图2b)和南极EDML冰芯nssCa2+通量(图2c)进行对比,选取曲线中的峰值或曲线形态的拐点作为年龄控制点,建立该孔的年代框架;在此基础上,采用线性内插的方法计算线性沉积速率。结果表明,D5-12孔MS记录与EDML冰芯nssCa2+通量曲线对比良好,该孔底界年龄约为110 ka(图2d),平均沉积速率为5.7 cm/ka(图2e)。D5-12孔年代模式表明该孔顶部缺失14 ka以来的沉积物,我们推测可能的原因有二。其一, 这段时期(主要为全新世)研究区沉积速率较低,导致沉积层较薄,其在重力取样过程中由于较强的洋流作用流失了。其二,该孔附近的ODP113航次的695、696和967站研究表明研究区在全新世存在沉积间断,普遍缺失沉积物[32]。
3.2 生源蛋白石
长期趋势上,D5-12孔生源蛋白石含量在110~71 ka较高,且表现为降低趋势,其值从9.11%减少到4.27%,平均值为3.21%;在71~14.3 ka较低,且变化较为平稳,其值在0.28%~3.08%之间波动,平均值为1.35%。冰期-间冰期尺度上,生源蛋白石含量记录与气候旋回表现出明显的一致性,呈现出冰期(冷期)较低,间冰期(暖期)较高的特征,即在MIS 3和5期间较高,在MIS 2和4期较低(图3a)。
利用岩芯中生源蛋白石含量指示生产力的前提是剔除其他主要组分对生物硅的稀释作用,具体措施是使用岩屑元素含量对生源蛋白石含量进行标准化[33]。Al、Ti等元素在陆地风化过程中地球化学行为保守,且在海水中含量极低,因此海洋沉积物中Al和Ti通常被认为主要来源于陆源碎屑物质,可用作扣除稀释作用的标准化措施[31, 34]。近年来研究发现,生源蛋白石可以通过“捕获”的方式将Al富集在沉积物中,因此这种“过剩铝”反映的是生产力而非岩屑通量的变化[35-36]。鉴于此,选用陆源来源更稳定且受生物地球化学行为扰动较小的Ti来对生源蛋白石含量进行标准化(图3b和c)。如图3c所示,经过Ti标准化的蛋白石含量与初始的蛋白石含量变化趋势完全相同,因此排除了稀释效应的影响。另外,深部氧化还原环境可能会对生产力替代指标的保存产生影响,但生源蛋白石的保存与沉积物的氧化还原状态无关,其主要受控于深部水体硅酸的饱和程度[37]。尽管目前没有研究区MIS 5期以来深部硅酸饱和程度(或浓度)的古海洋记录,但南大洋高的生源蛋白石埋藏效率对应于表层海水中较高的生源蛋白石雨率(rain rate),表明了沉积物中保存的生源蛋白石含量反映了其生产而非溶解信息[38]。综上所述,认为该孔生源蛋白石含量可靠地记录了研究区的生产力信息。
4. 讨论
4.1 南极威德尔海生产力演化模式
最近的研究显示,南大洋南极带通过成层化(表现为低生产力)封存深部“呼吸CO2”,可以解释0.8 Ma以来冰期大气pCO2降幅的前半部分(约40~50 mg/L);而亚南极带通过风尘铁刺激的高生产力吸收大气CO2,则可解释后半部分[7,39]。这个大气pCO2演化驱动机制假说表明,不依赖于其他大洋,南大洋自身就能引起完全的大气pCO2冰期旋回。测试该假说合理性的前提就是要验证南大洋冰期南极带生产力低而亚南极带生产力高的演化模式。位于南大洋南极带内的D5-12孔110 ka以来生产力呈现出冰期低、间冰期高的演化模式(图4a),因此支持该假说。南极带这种生产力冰期旋回模式同样出现在其他岩芯或海域。例如,斯科舍海U1537站的蛋白石含量记录[40]和威德尔海PS1768-8孔的过剩Ba通量记录[41]表明,暖期(MIS 5和3期)时生产力处于较高水平,但在冷期(MIS 4和 2期),生产力处于较低水平(图4b和c)。罗斯海RS15-GC40和RS15-GC41孔的蛋白石含量[42]也表现出这种冷期低、暖期高的生产力演化模式(图4d和e)。这些结果初步确证,南大洋南极带生产力呈现冰期低间冰期高的旋回模式。南极带这种生产力的演化模式很可能由南大洋西风带、海冰演化引起的营养物可利用性(Availability)变化所致(详述见第4.2节)。
图 4 南大洋南极带与亚南极带生产力冰期-间冰期旋回模式对比a. D5-12孔生源蛋白石含量,b. U1537站蛋白石含量[40],c. PS1768-8孔过剩Ba通量[41],d. RS15-GC41孔蛋白石含量[42],e. RS15-GC40孔蛋白石含量[42],f. PS2082-1孔过剩Ba通量[41],g. MD02-2588孔蛋白石含量[45],h. PS97/093-2孔蛋白石含量[44],i. DCR-1PC孔蛋白石通量[46]。Figure 4. Comparison in productivity between the Antarctic zones and subantarctic zones in the Southern Ocean in glacial-interglacial cyclesa: Opal contents of Core D5-12, b: opal contents of Core U1537[40], c: Baexcess flux of Core PS1768-8[41], d: opal contents of Core RS15-GC41[42], e: opal contents of Core RS15-GC40[42], f: Baexcess flux of Core PS2082-1[41], g: opal contents of Core MD02-2588[45], h: opal contents of Core PS97/093-2[44], i: opal flux of Core DCR-1PC[46] .前人研究指出,南大洋不同海区对气候变化的反应可能是不同的[43],存在明显的生物地球化学分隔(Biogeochemical divide),使得南极带与亚南极带对气候产生不同的响应方式[17],这也体现在生产力演化模式上。东南太平洋德雷克海峡西入口处PS97/093-2孔[44]和东南大西洋MD02-2588孔[45]的蛋白石含量记录表明,亚南极带冷期(MIS 4和2期)生产力明显高于暖期(MIS 5和1期)(图4g和h)。南大洋宇航员海DCR-1PC孔的蛋白石通量记录[46]和威德尔海PS2082-1孔的过剩Ba通量记录[38]也表现出亚南极带内冷期高、暖期低的生产力演化特征,这种现象在PS2082-1孔尤为明显(图4f和i)。亚南极带这种生产力冰期高间冰期低的旋回模式主要受控于西风带强弱引起的风尘铁施肥效应变化所致[7,45, 47]。综上所述,现存生产力的古海洋学记录表明,南大洋南极带和亚南极带生产力演化模式在冰期-间冰期尺度上呈“镜像”关系。
4.2 南极威德尔海生产力演化的影响因素
总体来看,海洋生物生产力最直接的内部影响因素就是硅酸盐、硝酸盐、磷酸盐等营养物以及铁等营养物限制因子的可利用性。对于南大洋而言,西风带控制的深部流通状况变化、海冰导致的光照时间和水体层化强度变化、风尘输入引起的铁施肥效应变化都能影响营养物的来源与利用[48-52],从而是生产力演化的外部控制因子。因此,本节通过MIS 5期以来风尘、西风带和海冰演化记录与威德尔海生产力记录的对比,试图查明南大洋南极带生产力演化的控制机理。
4.2.1 风尘(铁)的影响
Gran最先提出,铁是限制海洋浮游植物初级生产力的重要因子之一[53]。Martin等发现冰芯中CO2浓度演化和风尘铁记录呈负相关,并由此提出了铁假说。一些研究认为冰期风尘通量的增加带来了额外的铁,从而解除了铁限制,提高了生物泵效率[49,54]。因此,假若南大洋的生产力演化模式受控于风尘铁,其应与风尘铁的供应模式相同,表现为在风尘铁输入较高的冰期,生产力较高;在风尘铁输入较低的间冰期,生产力较低。
威德尔海与东南极冰盖的风尘沉积主要来源于南美洲巴塔哥尼亚地区[30-31],且来自该源区的风尘在输运的过程中会途经斯科舍海域。因此,我们选取位于威德尔海另一站位ODP 1090[55]和斯科舍海U1537站[40]的铁质量堆积速率(MAR)记录来代表影响威德尔海的风尘输入强度(图5b和c)。D5-12孔蛋白石含量记录总体上与ODP 1090和U1537站的铁质量堆积速率记录呈反相位的关系:即冷期(MIS 4 和2期)风尘铁输入增强对应生产力低,暖期(MIS 5和3期)则相反。这种对应关系与前人推断的南极带冰期风尘通量高但生产力低,间冰期风尘通量低但生产力高的认识相一致[27]。从长期趋势看,MIS 5期以来D5-12孔生源蛋白石含量呈减小趋势,而铁MAR呈增加趋势;因此,两者的长期演化趋势也不满足南大洋生产力和风尘铁的同相位演化规律。这些结果表明,风尘及其铁的输入不是MIS 5期以来威德尔海生产力演化的主控因素。另外,我们注意到,在考虑定年误差的情况下,生产力在MIS 5期内86 ka、97 ka和102 ka表现的峰值与风尘铁输入通量可能有较好的对应关系。这种在千年尺度上的对应关系,已经超出了本文聚焦讨论轨道尺度上生产力演化及其机制的范围,因而将其另文讨论。
图 5 D5-12孔生源蛋白石含量记录与其他相关海洋-环境记录综合对比a. D5-12孔生源蛋白石含量,b. ODP 1090站Fe质量堆积速率[55],c. U1537站Fe质量堆积速率[40],d. 德雷克海峡可分选粉砂和细砂组分平均粒径[57],e. 南极EDC冰芯氘过剩[63],f. 底栖有孔虫Δδ13C[64],g. 南大洋大西洋扇面海冰强度演化曲线[52],h. 南极冰芯大气pCO2演化曲线[65]。图f中底栖有孔虫Δδ13C为南大洋大西洋扇区ODP 1089站和ODP 1088站底栖有孔虫δ13C之间的差值[64]。图g中紫色曲线表示均值,紫色阴影表示四分位误差范围。Figure 5. Overall comparison in opal content between Core D5-12 and other relevant ocean-environment recordsa: Opal contents of Core D5-12, b: Fe mass accumulation rates (MAR) of ODP Site 1090[55], c: Fe MAR of Site U1537[40], d: the mean grain size of sortable silt plus fine sand fractions in the central Drake Passage as the proxy of ACC flow speed[57], e: Antarctic EDC ice core dln anomaly[63], f: benthic Δδ13C records[64]. The benthic Δδ13C is the difference between the benthic δ13C from Site ODP 1089 and ODP 1088 in the Atlantic sector of the Southern Ocean[64]; g: stack of sea ice evolution in the Atlantic Southern Ocean [52], the purple curve marks the mean values and purple shading marks the interquartile ranges; h: compilation of the atmospheric pCO2 records in Antarctic ice cores[65]. In Figure f, the benthic Δδ13C is the difference between the benthic δ13C from Site ODP 1089 and ODP 1088 in the Atlantic sector of the Southern Ocean[64];In Figure g, the purple curve marks the mean values and purple shading marks the interquartile ranges.4.2.2 西风带的影响
Trull等认为南极带的生产力主要受控于营养物质而不是营养物限制因子铁的浓度,而西风带可以通过两种方式来影响南大洋深部流通状况[48,56],进而影响深部营养物向表层的输送。首先,西风带可以通过控制南极带海冰的幅度来影响南大洋深部流通状况[56]。冰期时,西风带向赤道方向移动,导致南极带海冰扩张,从而减弱了深部流通状况;间冰期时则相反。其次,西风带可以通过强迫ACC来影响南大洋深部流通状况[57]。冰期时,西方带向北移动,一方面导致ACC北移远离南极带,从而使南极带深部流通状况减弱,另一方面,北移的西风带也导致ACC流速减弱,水体流动性变弱,从而导致深部流通性减弱;间冰期则相反[58]。总之,西风带不论是以何种方式影响南大洋深部流通状况,都表现为:冰期西风带北移,南极带深部流通状况减弱,不利于深部营养物上涌,导致生产力降低;间冰期,则导致生产力提高。
冰期旋回中,西风带南北移动、ACC强度、深部流通状况和威德尔海生产力确实表现为上述的协变规律(图5a和d-f)。具体表现为:MIS 4和2等冷期西风带的向北移动、ACC强度的减弱和深部流通状况的减弱对应威德尔海生产力的降低;MIS 5和3期等暖期则相反。长期趋势上,MIS 5期以来西风带总体北移,ACC逐渐减弱,深部流通状况逐渐减弱;同时,威德尔海生产力总体降低。西风带移动和威德尔海生产力的长期演化趋势也符合西风带对生产力的影响机理。因此,MIS 5期以来西风带的经向移动对威德尔海的生产力演化产生重要影响。
4.2.3 海冰的影响
威德尔海是南极海冰最为发育的边缘海,其东部海域海冰受季节主导,秋冬季迅速生长并受风力强迫随表层水运动,西部海域海冰受前一年海冰影响,是南大洋最厚海冰区之一[59-60]。海冰系统对海洋生产力的影响主要体现在两个方面。其一,海冰通过对调控光照条件影响着浮游植物生长条件[61]:温暖时期,海冰强度减弱、覆盖范围减小、持续时间缩短,使得光照增强,浮游植物的生产季节变长,促进生产力的提高;寒冷时期,则降低生产力。其二,海冰通过调节水体层化影响着浮游植物生长所需的营养物浓度[62]:寒冷时期,增加的海冰使近表层海水密度梯度增大,水体分层增加,阻碍了富含营养物的深层水上涌,导致表层水体营养盐匮乏而生产力降低;温暖时期,则生产力增加。总之,海冰强度增大导致生产力降低;海冰强度减少导致生产力升高。
尽管MIS 5期以来,南大洋不同海域海冰的量级、持续时间与变化幅度存在差异,但在冰期-间冰期尺度上表现为MIS 5和3期海冰强度低,MIS 4和2期海冰强度高;在长期趋势上表现为MIS 5期以来海冰强度总体升高[52]。很显然,MIS 5期以来海冰强度的演化过程与趋势明显与威德尔海生产力记录一致,满足上述海冰影响生产力的机制。例如,MIS 5和3期低的海冰强度导致威德尔海高的生产力;MIS 5期以来逐渐增加的海冰强度导致威德尔海总体降低的生产力。这些在不同时间尺度上海冰与生产力演化记录的耦合关系表明,海冰强度也对MIS 5期以来威德尔海生产力有重要影响。
4.3 南极威德尔海生产力与大气pCO2演化的关联
深部流通状况和表层生产力是控制海洋封存与释放CO2的两大因素,其最终链接到大气pCO2的变化[50, 62]。深部流通状况减弱时,有利于“呼吸CO2”在海洋深部封存,导致大气pCO2的降低;深部流通状况加强时,海洋深部“呼吸CO2”最终释放到大气中,导致pCO2的升高。生产力提高时,一方面有利于更多的有机碳埋藏到海底,另一方面能有更多的有机碳矿化成更多的“呼吸CO2”封存在海洋深部,最终都导致大气pCO2的降低;生产力降低时,则导致大气pCO2的升高[50, 62, 66]。对于冰期旋回中的南大洋,Jaccard等和Martínez-García等提出假说,认为冰期南大洋南极带流通状况减弱(即成层化加强)对“呼吸CO2”的封存导致了大气pCO2降幅的一半(约40~50 mg/L);冰期南大洋亚南极生产力加强对大气CO2的吸收能导致了大气pCO2降幅的另一半(约40~50 mg/L)[7,39,65]。在4.1和4.2节中,我们从威德尔海生产力的演化模式及影响因素视角,对该假说进行了验证。在本节中,从生产力与大气pCO2演化的关联视角,进一步对该假说进行验证。
依据上述讨论,MIS 5 和3期等暖期,威德尔海生产力升高对应于大气pCO2升高;MIS 4和2期等冷期,威德尔海生产力降低对应大气pCO2降低(图5a和h)。这种对应关系表明,威德尔海不可能通过生产力来控制大气pCO2的冰期旋回变化。我们注意到,威德尔海生产力演化实际上反映了南极带深部流通状况信息(详见第4.2节)。冷期(MIS 4和2期)时,降低的生产力指示减弱的深部流通状况,对应降低的pCO2;暖期(MIS 5和3期)时,提高的生产力指示加强的深部流通状况,对应升高的pCO2。很显然,威德尔海处于南极带的研究区很可能通过深部流通状况的演化对大气pCO2冰期旋回产生贡献。进一步,我们注意到MIS 5期以来威德尔海总体降低的生产力指示总体减弱的深部流通状况,正好与逐渐降低的大气pCO2对应(图5a和h),这表明深部流通状况的减弱加强了“呼吸CO2”在深层水体中的封存,从而导致大气pCO2降低。这也从长期趋势上验证了南极带通过深部流通状况影响大气pCO2演化(图6)。综上所述,威德尔海生产力记录及其与大气pCO2等相关古环境参数的对比,从冰期旋回和长期趋势两种时间尺度上验证了上述Jaccard等和Martínez-García等有关大气pCO2演化机制[7, 39, 65]的合理性。
5. 结论
(1)冰期-间冰期尺度上,MIS 5期以来威德尔海生产力呈明显的冰期旋回,表现为暖期(MIS 5和3期)生产力高,冷期(MIS 4和2期)生产力低。长期趋势上,MIS 5期以来威德尔海生产力总体上呈降低趋势。
(2)西风带的经向移动和海冰张缩主要通过影响深部流通状况,进而控制深部营养物进入表层的可利用性,最终驱动MIS 5期以来威德尔海生产力的冰期旋回和长期趋势。风尘(铁)似乎对威德尔海生产力演化没有明显影响。
(3)MIS 5期以来大气pCO2的冰期旋回和长期趋势变化与威德尔海生产力的耦合关系很可能受到南极带深部流通状况的调控,这与南大洋南极带驱动大气pCO2演化的机制假说相吻合。
-
图 1 南极威德尔海站位分布、洋流与水团与硅酸盐含量
a. 生产力模式对比中所涉及站位, b. 岩芯D5-12位置及洋流分布,c. 硅酸盐浓度垂向剖面(39°W附近)。图a和b中红色五角星标示岩芯采样位置,图b中红色线示意图c的经向截面位置。图1a采用Mercator投影方式。
Figure 1. Map of the Antarctic Weddell Sea showing core location, ocean circulation and water masses, and dissolved-silicate concentrations
a: the sites involved in the comparison of productivity models; b: location of Site D5-12 and ocean circulation; c: silicate concentration section along 39° W. The red stars indicate the sampling location, red dotted line indicates the location of the section of silicate concentrations shown in Fig.1c. Figure 1a is based on the Mercator projection.
图 2 南极威德尔海D5-12孔年龄模式图
a. D5-12孔岩芯岩性柱,b. D5-12孔MS(磁化率)-深度变化曲线,c. EDML冰芯nssCa2+(非海盐钙)通量曲线[28], d. D5-12孔MS与EDML冰芯nssCa2+通量曲线对比,e. D5-12孔线性沉积速率。图b和c中的红点代表年龄控制点,图e中的水平虚线示意平均线性沉积速率。
Figure 2. The age model of Core D5-12 in the Antarctic Weddell Sea
a: Lithologic column of Core D5-12, b: MS-depth curve of Core D5-12, c: EDML nssCa2+ flux[28], d: comparison of nssCa2+ flux of EDML ice cores and MS of Core D5-12, e: linear sedimentation rate of Core D5-12. The red dots in Figures b and c represent age control points, the horizontal dashed line in Figure e indicates the mean linear sedimentation rate.
图 4 南大洋南极带与亚南极带生产力冰期-间冰期旋回模式对比
a. D5-12孔生源蛋白石含量,b. U1537站蛋白石含量[40],c. PS1768-8孔过剩Ba通量[41],d. RS15-GC41孔蛋白石含量[42],e. RS15-GC40孔蛋白石含量[42],f. PS2082-1孔过剩Ba通量[41],g. MD02-2588孔蛋白石含量[45],h. PS97/093-2孔蛋白石含量[44],i. DCR-1PC孔蛋白石通量[46]。
Figure 4. Comparison in productivity between the Antarctic zones and subantarctic zones in the Southern Ocean in glacial-interglacial cycles
a: Opal contents of Core D5-12, b: opal contents of Core U1537[40], c: Baexcess flux of Core PS1768-8[41], d: opal contents of Core RS15-GC41[42], e: opal contents of Core RS15-GC40[42], f: Baexcess flux of Core PS2082-1[41], g: opal contents of Core MD02-2588[45], h: opal contents of Core PS97/093-2[44], i: opal flux of Core DCR-1PC[46] .
图 5 D5-12孔生源蛋白石含量记录与其他相关海洋-环境记录综合对比
a. D5-12孔生源蛋白石含量,b. ODP 1090站Fe质量堆积速率[55],c. U1537站Fe质量堆积速率[40],d. 德雷克海峡可分选粉砂和细砂组分平均粒径[57],e. 南极EDC冰芯氘过剩[63],f. 底栖有孔虫Δδ13C[64],g. 南大洋大西洋扇面海冰强度演化曲线[52],h. 南极冰芯大气pCO2演化曲线[65]。图f中底栖有孔虫Δδ13C为南大洋大西洋扇区ODP 1089站和ODP 1088站底栖有孔虫δ13C之间的差值[64]。图g中紫色曲线表示均值,紫色阴影表示四分位误差范围。
Figure 5. Overall comparison in opal content between Core D5-12 and other relevant ocean-environment records
a: Opal contents of Core D5-12, b: Fe mass accumulation rates (MAR) of ODP Site 1090[55], c: Fe MAR of Site U1537[40], d: the mean grain size of sortable silt plus fine sand fractions in the central Drake Passage as the proxy of ACC flow speed[57], e: Antarctic EDC ice core dln anomaly[63], f: benthic Δδ13C records[64]. The benthic Δδ13C is the difference between the benthic δ13C from Site ODP 1089 and ODP 1088 in the Atlantic sector of the Southern Ocean[64]; g: stack of sea ice evolution in the Atlantic Southern Ocean [52], the purple curve marks the mean values and purple shading marks the interquartile ranges; h: compilation of the atmospheric pCO2 records in Antarctic ice cores[65]. In Figure f, the benthic Δδ13C is the difference between the benthic δ13C from Site ODP 1089 and ODP 1088 in the Atlantic sector of the Southern Ocean[64];In Figure g, the purple curve marks the mean values and purple shading marks the interquartile ranges.
-
[1] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2 [J]. Science, 2004, 305(5682): 367-371. doi: 10.1126/science.1097403
[2] Frölicher T L, Sarmiento J L, Paynter D J, et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models [J]. Journal of Climate, 2015, 28(2): 862-886. doi: 10.1175/JCLI-D-14-00117.1
[3] Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present [J]. Nature, 2008, 453(7193): 379-382. doi: 10.1038/nature06949
[4] Toggweiler J R, Russell J L, Carson S R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages [J]. Paleoceanography, 2006, 21(2): PA2005.
[5] Watson A J, Garabato A C N. The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change [J]. Tellus B:Chemical and Physical Meteorology, 2006, 58(1): 73-87. doi: 10.1111/j.1600-0889.2005.00167.x
[6] Watson A J, Vallis G K, Nikurashin M. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2 [J]. Nature Geoscience, 2015, 8(11): 861-864. doi: 10.1038/ngeo2538
[7] Jaccard S L, Hayes C T, Martinez-Garcia A, et al. Two modes of change in Southern Ocean productivity over the past million years [J]. Science, 2013, 339(6126): 1419-1423. doi: 10.1126/science.1227545
[8] Hoppema M, Fahrbach E, Stoll M H C, et al. Annual uptake of atmospheric CO2 by the Weddell Sea derived from a surface layer balance, including estimations of entrainment and new production [J]. Journal of Marine Systems, 1999, 19(4): 219-233. doi: 10.1016/S0924-7963(98)00091-8
[9] Brown P J, Jullion L, Landschützer P, et al. Carbon dynamics of the Weddell Gyre, Southern Ocean [J]. Global Biogeochemical Cycles, 2015, 29(3): 288-306. doi: 10.1002/2014GB005006
[10] Hoppema M. Weddell Sea turned from source to sink for atmospheric CO2 between pre-industrial time and present [J]. Global and Planetary Change, 2004, 40(3-4): 219-231. doi: 10.1016/j.gloplacha.2003.08.001
[11] Hauck J, Völker C. Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor [J]. Geophysical Research Letters, 2015, 42(5): 1459-1464. doi: 10.1002/2015GL063070
[12] Brzezinski M A, Pride C J, Franck V M, et al. A switch from Si(OH)4 to NO3− depletion in the glacial Southern Ocean [J]. Geophysical Research Letters, 2002, 29(12): 5-1-5-4.
[13] Gilbert I M, Pudsey C J, Murray J W. A sediment record of cyclic bottom-current variability from the northwest Weddell Sea [J]. Sedimentary Geology, 1998, 115(1-4): 185-214. doi: 10.1016/S0037-0738(97)00093-6
[14] Pudsey C J, Barker P F, Hamilton N. Weddell Sea abyssal sediments a record of Antarctic Bottom Water flow [J]. Marine Geology, 1988, 81(1-4): 289-314. doi: 10.1016/0025-3227(88)90032-1
[15] Carsey F D. Microwave observation of the Weddell Polynya [J]. Monthly Weather Review, 1980, 108(12): 2032-2044. doi: 10.1175/1520-0493(1980)108<2032:MOOTWP>2.0.CO;2
[16] Marshall J, Speer K. Closure of the meridional overturning circulation through Southern Ocean upwelling [J]. Nature Geoscience, 2012, 5(3): 171-180. doi: 10.1038/ngeo1391
[17] Marinov I, Gnanadesikan A, Toggweiler J R, et al. The southern ocean biogeochemical divide [J]. Nature, 2006, 441(7096): 964-967. doi: 10.1038/nature04883
[18] Orsi A H, Nowlin W D Jr, Whitworth T III. On the circulation and stratification of the Weddell Gyre [J]. Deep Sea Research Part I:Oceanographic Research Papers, 1993, 40(1): 169-203. doi: 10.1016/0967-0637(93)90060-G
[19] Vernet M, Geibert W, Hoppema M, et al. The Weddell Gyre, Southern Ocean: present knowledge and future challenges [J]. Reviews of Geophysics, 2019, 57(3): 623-708. doi: 10.1029/2018RG000604
[20] Müller P J, Schneider R. An automated leaching method for the determination of opal in sediments and particulate matter [J]. Deep Sea Research Part I:Oceanographic Research Papers, 1993, 40(3): 425-444. doi: 10.1016/0967-0637(93)90140-X
[21] Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7
[22] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003.
[23] Lu L J, Zheng X F, Chen Z, et al. One-to-one coupling between southern ocean productivity and Antarctica climate [J]. Geophysical Research Letters, 2022, 49(13): e2022GL098761.
[24] Weber M E, Kuhn G, Sprenk D, et al. Dust transport from Patagonia to Antarctica–a new stratigraphic approach from the Scotia Sea and its implications for the last glacial cycle [J]. Quaternary Science Reviews, 2012, 36: 177-188. doi: 10.1016/j.quascirev.2012.01.016
[25] Lambert F, Bigler M, Steffensen J P, et al. The calcium-dust relationship in high-resolution data from Dome C, Antarctica [J]. Climate of the Past Discussions, 2011, 7(2): 1113-1137.
[26] Skinner L C, Fallon S, Waelbroeck C, et al. Ventilation of the deep Southern Ocean and deglacial CO2 rise [J]. Science, 2010, 328(5982): 1147-1151. doi: 10.1126/science.1183627
[27] Pugh R S, McCave I N, Hillenbrand C D, et al. Circum-Antarctic age modelling of Quaternary marine cores under the Antarctic Circumpolar Current: ice-core dust–magnetic correlation [J]. Earth and Planetary Science Letters, 2009, 284(1-2): 113-123. doi: 10.1016/j.jpgl.2009.04.016
[28] Fischer H, Fundel F, Ruth U, et al. Reconstruction of millennial changes in transport, dust emission and regional differences in sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica [J]. Earth and Planetary Science Letters, 2007, 260(1-2): 340-354. doi: 10.1016/j.jpgl.2007.06.014
[29] Röthlisberger R, Bigler M, Wolff E W, et al. Ice core evidence for the extent of past atmospheric CO2 change due to iron fertilisation [J]. Geophysical Research Letters, 2004, 31(16): L16207. doi: 10.1029/2004GL020338
[30] Lunt D J, Valdes P J. Dust transport to Dome C, Antarctica, at the Last Glacial Maximum and present day [J]. Geophysical Research Letters, 2001, 28(2): 295-298. doi: 10.1029/2000GL012170
[31] Li F Y, Ginoux P, Ramaswamy V. Transport of Patagonian dust to Antarctica [J]. Journal of Geophysical Research:Atmospheres, 2010, 115(D18): D18217. doi: 10.1029/2009JD012356
[32] Barker P F, Kennett J P, Scientific P. Weddell Sea palaeoceanography: preliminary results of ODP leg 113 [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 67(1-2): 75-102. doi: 10.1016/0031-0182(88)90123-X
[33] Van der Weijden C H. Pitfalls of normalization of marine geochemical data using a common divisor [J]. Marine Geology, 2002, 184(3-4): 167-187. doi: 10.1016/S0025-3227(01)00297-3
[34] Wedepohl K H. Environmental influences on the chemical composition of shales and clays [J]. Physics and Chemistry of the Earth, 1971, 8: 307-333. doi: 10.1016/0079-1946(71)90020-6
[35] Murray R W, Leinen M, Isern A R. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean: Evidence for increased productivity during glacial periods [J]. Paleoceanography, 1993, 8(5): 651-670. doi: 10.1029/93PA02195
[36] Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869-3878. doi: 10.1016/0016-7037(96)00236-0
[37] Sayles F L, Martin W R, Chase Z, et al. Benthic remineralization and burial of biogenic SiO2, CaCO3, organic carbon, and detrital material in the Southern Ocean along a transect at 170° West [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2001, 48(19-20): 4323-4383. doi: 10.1016/S0967-0645(01)00091-1
[38] Pondaven P, Ragueneau O, Tréguer P, et al. Resolving the ‘opal paradox’ in the Southern Ocean [J]. Nature, 2000, 405(6783): 168-172. doi: 10.1038/35012046
[39] Martínez-García A, Sigman D M, Ren H J, et al. Iron fertilization of the Subantarctic Ocean during the last ice age [J]. Science, 2014, 343(6177): 1347-1350. doi: 10.1126/science.1246848
[40] Weber M E, Bailey I, Hemming S R, et al. Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years [J]. Nature Communications, 2022, 13(1): 2044. doi: 10.1038/s41467-022-29642-5
[41] Nürnberg C C, Bohrmann G, Schlüter M, et al. Barium accumulation in the Atlantic sector of the Southern Ocean: Results from 190, 000 year records [J]. Paleoceanography, 1997, 12(4): 594-603. doi: 10.1029/97PA01130
[42] Kim S, Lee J I, McKay R M, et al. Late pleistocene paleoceanographic changes in the Ross Sea–Glacial-interglacial variations in paleoproductivity, nutrient utilization, and deep-water formation [J]. Quaternary Science Reviews, 2020, 239: 106356. doi: 10.1016/j.quascirev.2020.106356
[43] Kohfeld K E, Quéré C L, Harrison S P, et al. Role of marine biology in glacial-interglacial CO2 cycles [J]. Science, 2005, 308(5718): 74-78. doi: 10.1126/science.1105375
[44] Toyos M H, Winckler G, Arz H W, et al. Variations in export production, lithogenic sediment transport and iron fertilization in the Pacific sector of the Drake Passage over the past 400 kyr [J]. Climate of the Past, 2022, 18(1): 147-166. doi: 10.5194/cp-18-147-2022
[45] Romero O E, Kim J H, Bárcena M A, et al. High-latitude forcing of diatom productivity in the southern Agulhas Plateau during the past 350 kyr [J]. Paleoceanography, 2015, 30(2): 118-132. doi: 10.1002/2014PA002636
[46] Amsler H E, Thöle L M, Stimac I, et al. Bottom water oxygenation changes in the Southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception [J]. Climate of the Past, 2022, 18(8): 1797-1813. doi: 10.5194/cp-18-1797-2022
[47] Anderson R F, Barker S, Fleisher M, et al. Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2019): 20130054. doi: 10.1098/rsta.2013.0054
[48] Trull T W, Bray S G, Manganini S J, et al. Moored sediment trap measurements of carbon export in the Subantarctic and Polar Frontal Zones of the Southern Ocean, south of Australia [J]. Journal of Geophysical Research:Oceans, 2001, 106(C12): 31489-31509. doi: 10.1029/2000JC000308
[49] Boyd P W, Jickells T, Law C S, et al. Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions [J]. Science, 2007, 315(5812): 612-617. doi: 10.1126/science.1131669
[50] Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 [J]. Science, 2009, 323(5920): 1443-1448. doi: 10.1126/science.1167441
[51] Petrou K, Kranz S A, Trimborn S, et al. Southern Ocean phytoplankton physiology in a changing climate [J]. Journal of Plant Physiology, 2016, 203: 135-150. doi: 10.1016/j.jplph.2016.05.004
[52] Chadwick M, Crosta X, Esper O, et al. Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12-130 ka) [J]. Climate of the Past, 2022, 18(8): 1815-1829. doi: 10.5194/cp-18-1815-2022
[53] Gran H H. On the conditions for the production of plankton in the sea [J]. Rapp. proc. verb. reun. cons. int. explor. Mer, 1931, 75: 37-46.
[54] Martin J H, Gordon M, Fitzwater S E. The case for iron [J]. Limnology and Oceanography, 1991, 36(8): 1793-1802. doi: 10.4319/lo.1991.36.8.1793
[55] Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust-climate coupling over the past four million years [J]. Nature, 2011, 476(7360): 312-315. doi: 10.1038/nature10310
[56] Toggweiler J R, Samuels B. Is the magnitude of the deep outflow from the Atlantic Ocean actually governed by Southern Hemisphere winds?[M]//Heimann M. The Global Carbon Cycle. Berlin, Heidelberg: Springer, 1993: 303-331.
[57] Wu S Z, Lembke-Jene L, Lamy F, et al. Orbital- and millennial-scale Antarctic Circumpolar Current variability in Drake Passage over the past 140, 000 years [J]. Nature Communications, 2021, 12(1): 3948. doi: 10.1038/s41467-021-24264-9
[58] Wolff E W, Barbante C, Becagli S, et al. Changes in environment over the last 800, 000 years from chemical analysis of the EPICA Dome C ice core [J]. Quaternary Science Reviews, 2010, 29(1-2): 285-295. doi: 10.1016/j.quascirev.2009.06.013
[59] Lange M A, Ackley S F, Wadhams P, et al. Development of sea ice in the Weddell Sea [J]. Annals of Glaciology, 1989, 12: 92-96. doi: 10.3189/S0260305500007023
[60] Haumann F A, Gruber N, Münnich M, et al. Sea-ice transport driving Southern Ocean salinity and its recent trends [J]. Nature, 2016, 537(7618): 89-92. doi: 10.1038/nature19101
[61] Garibotti I A, Vernet M, Ferrario M E, et al. Phytoplankton spatial distribution patterns along the western Antarctic Peninsula (Southern Ocean) [J]. Marine Ecology Progress Series, 2003, 261: 21-39. doi: 10.3354/meps261021
[62] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide [J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000
[63] Ullermann J, Lamy F, Ninnemann U, et al. Pacific-Atlantic Circumpolar Deep Water coupling during the last 500 ka [J]. Paleoceanography, 2016, 31(6): 639-650. doi: 10.1002/2016PA002932
[64] Hodell D A, Venz K A, Charles C D, et al. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(1): 1-19.
[65] Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present [J]. Geophysical Research Letters, 2015, 42(2): 542-549. doi: 10.1002/2014GL061957
[66] Sigman D M, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration [J]. Nature, 2010, 466(7302): 47-55. doi: 10.1038/nature09149