Petrogeochemical characteristics of mantle sources of volcanic rocks in the southern and middle Mariana Trough
-
摘要: 马里亚纳海槽作为正在活动的典型弧后盆地,是研究俯冲作用对岩浆作用和壳幔动力学影响的理想场所。通过对采自该海槽中南部的样品进行系统的岩石地球化学特征对比与研究,并结合前人已发表的岩石地球化学数据,探讨了马里亚纳海槽中南部的地幔富集(亏损)程度、地幔熔融程度、地幔熔融深度以及俯冲物质的加入程度。结果表明:(1)马里亚纳海槽中南部主要发育一套中低钾钙碱性系列玄武岩、玄武质安山岩;(2)海底岩石富集了大离子亲石元素、轻稀土元素,亏损高场强元素、重稀土元素;(3)将马里亚纳海槽沿扩张中心分为三段,对每段地幔熔融的程度和深度进行计算并且消除地幔不均一性的影响,发现在15°N和18°N附近二者呈现负相关关系,其余地区则呈现正相关关系,证明海槽存在两种地幔熔融模式;(4)微量元素比值显示海槽受多种俯冲组分影响,并且马里亚纳海槽南部的南段可能存在另一个富水熔体端元,可能是导致海槽扩张速率较快的原因。对俯冲物质的加入程度进行计算,发现靠近15°N与18°N俯冲组分的影响变弱,这进一步表明,马里亚纳海槽火山岩的变化可能是由于类似N-MORB的地幔源区与类似岛弧的地幔源区混合造成的;俯冲物质是控制地幔熔融程度的主要因素,并且扩张速率与地幔富集/亏损程度等也发挥了重要作用。Abstract: The Mariana Trough, as a typical active back-arc basin, is an ideal place to study the effects of subduction on magmatism and crust-mantle dynamics. The petrogeochemical characteristics of the samples from two areas of the trough were revealed based on the published petrogeochemical data, from which the degree of mantle enrichment/depletion, the degree of mantle melting, the depth of mantle melting, and the degree of subduction material incorporation in the southern and middle Mariana Trough were clarified. Results show that a set of medium-low potassium calc-alkaline series basalt and basaltic andesite occur in the southern and middle Mariana Trough. The volcanic rocks are rich in large ionic lithophile elements (LILE) and light rare earth elements (LREE) while deficient in high field strength elements (HFSE) and heavy rare earth elements (HREE). The Mariana Trough could be divided into three sectors along spreading center, and the mantle-melting degree and the depth of each sector were calculated and the effect of mantle heterogeneity eliminated. The correlation between mantle-melting degree and the depth in each sector was found negative near 15°N and 18°N, but positive in the other areas, which proves that there are two mantle-melting modes in the trough. Volcanic rocks in the southern and middle Mariana Trough are influenced by multiple subduction-components and there may be another water-rich melt end-member in the southern part of the trough that may be resulted from the faster spreading rate of the trough. Calculations of the extent of subduction accretion show that the influence of subduction components weakens near 15°N and 18°N. The variation of volcanic rocks in the Mariana Trough may be caused by the mixing of an N-MORB-like mantle source involved with an island arc-like mantle source. Therefore, subduction material is an important factor on mantle-melting degree, and spreading rate and mantle enrichment/depletion degree are also play an essential roles.
-
Keywords:
- subduction /
- mantle-melting degree /
- mantle melting depth /
- Mariana Trough
-
-
图 2 马里亚纳海槽火山岩分类图解
a: 马里亚纳海槽样品硅碱图,底图改自文献[17-18];b: 马里亚纳海槽样品硅钾图,底图改自文献[18]。
Figure 2. Petrological diagrams of bulk rocks in the Mariana Trough
a: The TAS classification of Mariana Trough sample [(Na2O+K2O)(wt.%) vs SiO2(wt.%)]; the base map is modified from references [17-18]; b: plot of K2O vs SiO2 [K2O(wt.%) vs SiO2(wt.%)]; the base map is modified from reference [18].
图 3 马里亚纳海槽火山岩原始地幔标准化的微量元素蛛网图(a, c, e)和球粒陨石标准化的稀土元素配分模式图(b, d, f)
标准化数据引自文献[19],本文研究区域的前人微量元素数据据文献[1-2,8,13]。
Figure 3. Trace element of volcanic rocks from the Mariana Trough (a,c,e) and REE distribution patterns from the Mariana Trough (b,d,f)
Normalized data are from reference [19]. The previous trace element data in this study area are from the reference [1-2,8,13].
表 1 马里亚纳海槽火山岩样品的取样信息
Table 1 Sampling information of volcanic rocks in the Mariana Trough
样品编号 纬度 经度 水深/m 样品描述 T2-1 18°02′N 144°42′E 3659 Ol + Cpx + Opx + Pl T2-2 18°02′N 144°45′E 3854 Ol + Cpx + Opx + Pl T2-3 18°00′N 144°45′E 4038 Ol + Cpx + Pl T3-2 12°54′N 143°38′E 2974 Ol + Cpx + Opx + Pl 注:Ol为橄榄石,Cpx为单斜辉石,Opx为斜方辉石,Pl为斜长石。 表 2 马里亚纳海槽火山岩的主量元素和微量元素组成
Table 2 Major and trace element compositions of the volcanic rocks from the Mariana Trough
样品 T2-1-01 T2-1-02* T2-1-03* T2-2-01 T2-2-02* T2-3-01 T2-3-02* T3-2-01 T3-2-02* T3-2-03* 主量
元素/%SiO2 51.81 52.75 53.67 47.27 52.03 48.86 51.09 56.55 56.55 56.57 TiO2 1.08 1.08 1.04 1.28 1.14 1.2 1.1 1.56 1.64 1.6 Al2O3 16.7 16.17 15.58 16.16 16.32 17.71 18.19 15.05 14.98 14.88 Fe2O3T 9.15 9.36 9.21 9.46 8.42 8.33 8.02 10.09 10.3 10.12 MnO 0.159 0.16 0.16 0.156 0.14 0.142 0.14 0.194 0.19 0.19 MgO 5.59 5.67 5.63 6.62 6.94 6.24 6.67 2.74 2.78 2.83 CaO 10.27 10.25 9.92 12.82 10.86 11.68 10.88 6.02 6.51 6.41 Na2O 3.09 2.98 2.99 3.78 2.74 3.35 2.9 3.85 4.02 3.97 K2O 0.634 0.6 0.49 0.548 0.5 0.529 0.44 0.93 0.86 0.82 P2O5 0.156 0.17 0.16 0.141 0.15 0.149 0.16 0.23 0.24 0.24 LOI 0.83 0.8 1.05 1.17 0.65 1.23 0.32 2.27 1.9 2.3 总量 99.47 99.99 99.9 99.41 99.9 99.42 99.9 99.48 99.97 99.92 微量元素/10-6 Li 3.86 3.46 6.01 2.67 3.41 4.62 3.41 2.85 5.65 6.53 Be 0.854 0.648 0.694 0.470 0.615 0.789 0.588 0.544 0.865 0.92 Sc 29.4 33.5 33.4 27.4 35.6 21.4 30.2 27.9 22.7 25.4 V 239 263 263 199 247 157 218 204 171 169 Cr 24.5 30.2 29.7 165 244 23.4 217 184 1.83 1.78 Co 25.4 33.2 32.9 20.4 33.6 16.8 31.7 22.9 18.8 19.2 Ni 19.3 27.5 26.7 45.1 85.9 10.5 92.6 56.6 3.16 3.19 Cu 33.1 42.3 42.8 30.1 55.8 21.4 41.8 30.0 20.9 21.2 Zn 62.3 68.9 69 47.1 62.3 82.3 58.8 50.9 101 107 Ga 15.8 16.6 16.5 13.6 16.2 17.4 16.3 14.8 20 21.2 Rb 13.8 9.93 9.94 4.39 6.73 7.43 6.07 5.05 8.95 8.89 Sr 251 233 230 153 208 137 235 193 161 165 Y 21.1 24.8 24.7 17.6 26.2 34.1 24.2 19.2 48.7 49.2 Zr 79.0 81.3 80.8 67.4 93.1 133 91.1 76.1 161 159 Nb 3.51 2.98 2.98 2.49 3.26 3.48 2.74 2.40 4.39 4.5 Cs 0.215 0.148 0.141 0.069 0.0907 0.123 0.101 0.086 0.154 0.163 Ba 129 64.9 64.5 27.5 39.6 51.8 46.1 36.2 70.4 71.5 La 11.4 7.05 7.05 4.20 5.38 6.08 5.55 4.91 7.26 7.15 Ce 22.4 16 16 10.1 13.6 16.0 13.9 11.9 20.1 19.8 Pr 3.07 2.41 2.41 1.57 2.14 2.56 2.18 1.84 3.24 3.26 Nd 13.9 11.5 11.5 7.93 10.6 13.4 10.7 9.50 16.7 16.8 Sm 3.50 3.3 3.25 2.47 3.18 4.24 3.12 2.79 5.3 5.5 Eu 1.21 1.2 1.2 0.905 1.17 1.43 1.14 1.03 1.79 1.8 Gd 3.69 3.95 3.92 2.75 3.94 4.74 3.76 3.06 6.93 6.78 Tb 0.641 0.675 0.673 0.527 0.697 0.950 0.653 0.576 1.24 1.27 Dy 3.75 4.16 4.14 3.21 4.33 6.01 4.09 3.55 7.9 7.74 Ho 0.889 0.883 0.88 0.779 0.933 1.46 0.861 0.854 1.72 1.64 Er 2.27 2.5 2.51 2.00 2.64 3.82 2.45 2.19 4.99 4.84 Tm 0.348 0.386 0.381 0.317 0.408 0.614 0.374 0.335 0.774 0.754 Yb 2.20 2.36 2.35 1.99 2.52 3.88 2.32 2.11 4.82 4.69 Lu 0.349 0.364 0.364 0.316 0.385 0.611 0.358 0.334 0.757 0.75 Hf 1.96 2.03 2.02 1.74 2.24 3.19 2.18 1.94 4.09 4.12 Ta 0.184 0.183 0.18 0.160 0.207 0.213 0.179 0.154 0.284 0.32 Pb 1.73 1.07 1.05 1.37 0.856 1.39 0.989 1.03 1.39 1.4 Th 1.29 0.668 0.675 0.357 0.427 0.476 0.47 0.427 0.537 0.505 U 0.443 0.426 0.241 0.139 0.243 0.197 0.184 0.162 0.233 0.243 注:*数据来自文献[16]。 -
[1] Fryer P. Basaltic glasses from the Mariana Trough [J]. Init. Rep. Deep Sea Drill. Proj., 1981, 60: 601-609.
[2] Pearce J A, Stern R J. Origin of back-arc basin magmas: trace element and isotope perspectives [J]. Geophysical Monograph-American Geophysical Union, 2006, 166: 63.
[3] Yan Q, Shi X. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: A review [J]. Acta Oceanologica Sinica, 2014, 33(4): 1-12. doi: 10.1007/s13131-014-0400-2
[4] Taylor B, Martinez F. Back-arc basin basalt systematics [J]. Earth and Planetary Science Letters, 2003, 210(3-4): 481-497. doi: 10.1016/S0012-821X(03)00167-5
[5] Yan Q, Zhang P, Metcalfe I, et al. Geochemistry of axial lavas from the mid-and southern Mariana Trough, and implications for back-arc magmatic processes [J]. Mineralogy and Petrology, 2019, 113(6): 803-820. doi: 10.1007/s00710-019-00683-x
[6] 张平阳, 鄢全树. 马里亚纳海槽玄武岩中斜长石矿物化学及意义[J]. 海洋科学进展, 2017, 35(02):234-248 doi: 10.3969/j.issn.1671-6647.2017.02.008 ZHANG Pingyang, YAN Quanshu. Compositions of Plagioclase Hosted by Basaltic Rocks Form the Mariana Trough and Their Petrogenesis Signficances [J]. Advances in Marine Science, 2017, 35(02): 234-248. doi: 10.3969/j.issn.1671-6647.2017.02.008
[7] Lai Z, Zhao G, Han Z, et al. The magma plumbing system in the Mariana Trough back-arc basin at 18° N [J]. Journal of Marine Systems, 2018, 180: 132-139. doi: 10.1016/j.jmarsys.2016.11.008
[8] Newman S, Stolper E, Stern R. H2O and CO2 in magmas from the Mariana arc and back arc systems[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(5).
[9] 孙海青, 高爱国, 倪培, 张德玉. 马里亚纳海槽玄武岩中熔融包裹体的初步研究[J]. 海洋科学进展, 2004(03):292-298 doi: 10.3969/j.issn.1671-6647.2004.03.005 SUN Haiqing, GAO Aiguo, NI Pei, et al. A Preliminary study on melt inclusions in basalts from the Mariana trough [J]. Advances in Marine Science, 2004(03): 292-298. doi: 10.3969/j.issn.1671-6647.2004.03.005
[10] Karig D E, Anderson R N, Bibee L D. Characteristics of back arc spreading in the Mariana Trough [J]. Journal of Geophysical Research:Solid Earth, 1978, 83(B3): 1213-1226. doi: 10.1029/JB083iB03p01213
[11] Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory [J]. GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION, 2003, 138: 175-222.
[12] Kato T, Beavan J, Matsushima T, et al. Geodetic evidence of back‐arc spreading in the Mariana Trough[J]. Geophysical Research Letters, 2003, 30(12).
[13] Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of the Mariana arc‐basin system: Implications for the nature and distribution of subduction components[J]. Geochemistry, geophysics, geosystems, 2005, 6(7).
[14] Martínez F, Fryer P, Baker N A, et al. Evolution of backarc rifting: Mariana Trough, 20–24 N [J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B3): 3807-3827. doi: 10.1029/94JB02466
[15] Martinez F, Fryer P, Becker N. Geophysical characteristics of the southern Mariana Trough, 11 50′ N–13 40′ N [J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B7): 16591-16607. doi: 10.1029/2000JB900117
[16] Li X, Yan Q, Zeng Z, et al. Across-arc variations in Mo isotopes and implications for subducted oceanic crust in the source of back-arc basin volcanic rocks [J]. Geology, 2021, 49(10): 1165-1170. doi: 10.1130/G48754.1
[17] BAS M J L E, Maitre R W L, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram [J]. Journal of petrology, 1986, 27(3): 745-750. doi: 10.1093/petrology/27.3.745
[18] Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks [J]. Canadian journal of earth sciences, 1971, 8(5): 523-548. doi: 10.1139/e71-055
[19] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[20] Niu Y, O'Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4).
[21] Asimow P D, Langmuir C H. The importance of water to oceanic mantle melting regimes [J]. Nature, 2003, 421(6925): 815-820. doi: 10.1038/nature01429
[22] Cushman B, Sinton J , Ito G , et al. Glass compositions, plume-ridge interaction, and hydrous melting along the Galápagos Spreading Center, 90.5°W to 98°W[J]. John Wiley and Sons, Ltd, 2004(8).
[23] Langmuir C H, Bezos A, Escrig S, et al. Chemical systematics and hydrous melting of the mantle in back-arc basins [J]. Geophysical Monograph-American Geophysical Union, 2006, 166: 87.
[24] Parman S W, Grove T L, Kelley K A, et al. Along-arc variations in the pre-eruptive H2O contents of Mariana arc magmas inferred from fractionation paths [J]. Journal of Petrology, 2011, 52(2): 257-278. doi: 10.1093/petrology/egq079
[25] Stolper E, Newman S. The role of water in the petrogenesis of Mariana trough magmas [J]. Earth and Planetary Science Letters, 1994, 121(3-4): 293-325. doi: 10.1016/0012-821X(94)90074-4
[26] Kelley K A, Plank T, Newman S, et al. Mantle melting as a function of water content beneath the Mariana Arc [J]. Journal of Petrology, 2010, 51(8): 1711-1738. doi: 10.1093/petrology/egq036
[27] Niu Y. Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites [J]. Journal of Petrology, 1997, 38(8): 1047-1074. doi: 10.1093/petroj/38.8.1047
[28] Turner I M, Peirce C, Sinha M C. Seismic imaging of the axial region of the Valu Fa Ridge, Lau Basin—The accretionary processes of an intermediate back-arc spreading ridge [J]. Geophysical Journal International, 1999, 138(2): 495-519. doi: 10.1046/j.1365-246X.1999.00883.x
[29] Martinez F, Taylor B. Mantle wedge control on back-arc crustal accretion [J]. Nature, 2002, 416(6879): 417-420. doi: 10.1038/416417a
[30] Martinez F, Taylor B. Controls on back-arc crustal accretion: insights from the Lau, Manus and Mariana basins [J]. Geological Society, London, Special Publications, 2003, 219(1): 19-54. doi: 10.1144/GSL.SP.2003.219.01.02
[31] Arai R, Dunn R A. Seismological study of Lau back arc crust: Mantle water, magmatic differentiation, and a compositionally zoned basin [J]. Earth and Planetary Science Letters, 2014, 390: 304-317. doi: 10.1016/j.jpgl.2014.01.014
[32] Jacobs A M, Harding A J, Kent G M. Axial crustal structure of the Lau back-arc basin from velocity modeling of multichannel seismic data [J]. Earth and Planetary Science Letters, 2007, 259(3-4): 239-255. doi: 10.1016/j.jpgl.2007.04.021
[33] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas [J]. Annual review of Earth and planetary sciences, 1995, 23: 251-286. doi: 10.1146/annurev.ea.23.050195.001343
[34] Woodhead J D, Hergt J M, Davidson J P, et al. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes [J]. Earth and Planetary Science Letters, 2001, 192(3): 331-346. doi: 10.1016/S0012-821X(01)00453-8
[35] Duggen S, Portnyagin M, Baker J, et al. Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting [J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 452-480. doi: 10.1016/j.gca.2006.09.018
[36] Todd E, Gill J B, Wysoczanski R J, et al. Sources of constructional cross-chain volcanism in the southern Havre Trough: New insights from HFSE and REE concentration and isotope systematics[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(4).
[37] Yogodzinski G M, Vervoort J D, Brown S T, et al. Subduction controls of Hf and Nd isotopes in lavas of the Aleutian island arc [J]. Earth and Planetary Science Letters, 2010, 300(3-4): 226-238. doi: 10.1016/j.jpgl.2010.09.035
[38] Nebel O, Vroon P Z, van Westrenen W, et al. The effect of sediment recycling in subduction zones on the Hf isotope character of new arc crust, Banda arc, Indonesia [J]. Earth and Planetary Science Letters, 2011, 303(3-4): 240-250. doi: 10.1016/j.jpgl.2010.12.053
[39] 李正刚. 西南太平洋Lau盆地孤后岩浆作用及地幔动力学研究[D]. 浙江大学, 2015 LI Zhenggang. Magmatism and mantle dynamics in the Lau back-arc basin, SW Pacific[D]. Zhejiang University, 2015.
[40] 张平阳. 马里亚纳海槽玄武岩特征及对弧后盆地岩浆作用的指示意义[D]. 国家海洋局第一海洋研究所, 2017 ZHANG Pingyang. Petrological and Geochemical Studies on Mariana Trough lavas: Implications for Back-arc Basin Magmatic Processes[D]. The First Institute of Oceanography, 2017.
[41] Hellebrand E, Snow J E, Dick H J B, et al. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites [J]. Nature, 2001, 410(6829): 677-681. doi: 10.1038/35070546
[42] Niu Y, O’Hara M J. Global correlations of ocean ridge basalt chemistry with axial depth: a new perspective [J]. Journal of Petrology, 2008, 49(4): 633-664. doi: 10.1093/petrology/egm051
[43] Herzberg C, Asimow P D. PRIMELT 3 MEGA. XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(2): 563-578. doi: 10.1002/2014GC005631
[44] Workman R K, Hart S R. Major and trace element composition of the depleted MORB mantle (DMM) [J]. Earth and Planetary Science Letters, 2005, 231(1-2): 53-72. doi: 10.1016/j.jpgl.2004.12.005
[45] Wang K, Plank T, Walker J D, et al. A mantle melting profile across the Basin and Range, SW USA[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B1): ECV 5-1-ECV 5-21.
[46] 李敏. EPR和SWIR玄武岩岩石地球化学特征对比及其对岩浆过程的指示意义[D]. 中国海洋大学, 2014 LI Min. Petrogeochemical characteristics comparison and implications for magmatic processes of the MORBs between EPR and SWIR[D]. Ocean University of China, 2014.
[47] Niu Y, Hekinian R. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges [J]. Nature, 1997, 385(6614): 326-329. doi: 10.1038/385326a0
[48] Niu Y, Waggoner D G, Sinton J M, et al. Mantle source heterogeneity and melting processes beneath seafloor spreading centers: the East Pacific Rise, 18–19 S [J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B12): 27711-27733. doi: 10.1029/96JB01923
[49] Niu Y, Batiza R. An empirical method for calculating melt compositions produced beneath mid ocean ridges: Application for axis and off axis (seamounts) melting [J]. Journal of Geophysical Research:Solid Earth, 1991, 96(B13): 21753-21777. doi: 10.1029/91JB01933
[50] Kelley K A, Plank T, Grove T L, et al. Mantle melting as a function of water content beneath back-arc basins[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B9).
[51] Emily M. Klein, Charles H. Langmuir. Local versus global variations in ocean ridge basalt composition: A reply[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4).
[52] Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust [J]. Earth and planetary science letters, 1994, 121(1-2): 227-244. doi: 10.1016/0012-821X(94)90042-6
[53] Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone [J]. Contributions to mineralogy and petrology, 1996, 123(3): 263-281. doi: 10.1007/s004100050155
[54] Cai Y, LaGatta A, Goldstein S L, et al. Hafnium isotope evidence for slab melt contributions in the Central Mexican Volcanic Belt and implications for slab melting in hot and cold slab arcs [J]. Chemical Geology, 2014, 377: 45-55. doi: 10.1016/j.chemgeo.2014.04.002
[55] Plank T, Langmuir C H. Tracing trace elements from sediment input to volcanic output at subduction zones [J]. Nature, 1993, 362(6422): 739-743. doi: 10.1038/362739a0
[56] Elliott T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc [J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B7): 14991-15019. doi: 10.1029/97JB00788
[57] Elliott T. Tracers of the slab [J]. Geophysical Monograph-American Geophysical Union, 2003, 138: 23-46.