南极罗斯海末次冰盛期以来的古生产力变迁

龙飞江, 向波, 王逸卓, 张泳聪, 胡良明, 孙曦, 陆正元, 武文栋, 葛倩, 边叶萍, 韩喜彬

龙飞江,向波,王逸卓,等. 南极罗斯海末次冰盛期以来的古生产力变迁[J]. 海洋地质与第四纪地质,2024,44(1): 109-120. DOI: 10.16562/j.cnki.0256-1492.2022111601
引用本文: 龙飞江,向波,王逸卓,等. 南极罗斯海末次冰盛期以来的古生产力变迁[J]. 海洋地质与第四纪地质,2024,44(1): 109-120. DOI: 10.16562/j.cnki.0256-1492.2022111601
LONG Feijiang,XIANG Bo,WANG Yizhuo,et al. Evolution of paleoproductivity in the Antarctica Ross Sea since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology,2024,44(1):109-120. DOI: 10.16562/j.cnki.0256-1492.2022111601
Citation: LONG Feijiang,XIANG Bo,WANG Yizhuo,et al. Evolution of paleoproductivity in the Antarctica Ross Sea since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology,2024,44(1):109-120. DOI: 10.16562/j.cnki.0256-1492.2022111601

南极罗斯海末次冰盛期以来的古生产力变迁

基金项目: 国家重点研发计划“战略性能源金属矿产的深海原位快速探测技术与设备(2022YFC2905500)”;南极专项“南极重点海域对气候变化的响应和影响(IRASCC2020-2022)”;中央级公益性科研院所基本科研业务费专项资金项目“图们江河口地形变化监测及沉积环境演变研究”(SZ2102);上海交通大学“深蓝计划”基金“深海环境中基于等离子体声学特征的定量化激光诱导分解光谱方法”(SL2002)
详细信息
    作者简介:

    龙飞江(1996—),男,硕士研究生,主要从事海洋沉积研究,E-mail:2723328706@qq.com

    通讯作者:

    韩喜彬(1976—),男,副研究员,主要从事海洋沉积研究,E-mail:hanxibin@sio.org.cn

  • 中图分类号: P736.2

Evolution of paleoproductivity in the Antarctica Ross Sea since the Last Glacial Maximum

  • 摘要:

    研究罗斯海古生产力的目的在于揭示南极地区过去的气候变化和生态系统演变,为预测未来气候变化影响和提高气候模型准确性提供关键信息。通过对南极罗斯海ANT32-RB16C岩芯沉积物的有机碳、氮及同位素和主、微量元素等测试分析,重建了自24.8 cal.kaBP(末次冰盛期)以来的罗斯海研究区古生产力演变史。结果显示,ANT32-RB16C站位的沉积记录较好地反映了罗斯海在末次冰盛期、末次冰消期与全新世的古生产力变化情况,该地古生产力的演变趋势与南极地区的气温变化基本一致,整体表现为在温暖时期较高、寒冷时期较低的特征:24.8~17.5 cal.kaBP,海洋生产力较低;17.5~11.7 cal.kaBP,海洋生产力由低到高转变;11.7~0 cal.kaBP,海洋生产力逐渐恢复。罗斯海古生产力的演变受地区气候变化的影响较为明显,尤其是南极冷反转、新仙女木与小冰期等几次气候变化事件对研究区古生产力的影响较大。同时,海冰与营养盐含量的变化等也是影响罗斯海末次盛冰期以来古生产力演变的重要因素:在冷期,研究区的海冰覆盖及表层水分层增强,导致富含营养盐的深层水的上升减缓;同时表层海水中的硝酸盐等物质相对缺乏,海洋生产力总体较低。

    Abstract:

    To reveal the past climate changes and ecological system evolution in Antarctica and provide key information, predict the impact of future climate change, and improve the accuracy of climate models, the Ross Sea paleoproductivity was studied by testing and analyzing the organic carbon, nitrogen and their isotopes, and major and trace elements of the ANT32-RB16C core in the Antarctic Ross Sea. The evolution of paleoproductivity in the Ross Sea since 24.8 cal.kaBP (Last Glacial Maximum) was reconstructed. Results show that the ANT32-RB16C sedimentation record well reflected the change in paleoproductivity in three stages including the Last Glacial Maximum, the last deglaciation, and the Holocene, which is consistent with the change in temperature in the Antarctica. The core record shows a higher productivity during the warm period and a lower productivity during the cold period. Specifically, from 24.8 to 17.5 cal.kaBP, the ocean productivity was low, from 17.5 to 11.7 cal.kaBP, the ocean productivity changed from low to high status, and during 11.7~0 cal.kaBP, the ocean productivity gradually recovered. The paleoproductivity of the Ross Sea was influenced obviously by regional climate change, especially climate events such as the Antarctic Circumpolar Reversal, Younger Dryas, and Little Ice Age etc., which had a heavy impact on the evolution of paleoproductivity in the study area. At the same time, sea ice, nutrients, and so on play important roles in the evolution of paleoproductivity in the Ross Sea. In other words, during the cold period, sea ice coverage increased and the thickness of surface seawater layer slowed down the upwelling of deep water rich in nutrient salt. Meanwhile, there was a relative lack of nitrates in surface seawater, resulting in lower productivity at that time.

  • 海洋表层生产力与全球气候变化及CO2浓度之间存在紧密联系,前者主要通过全球碳循环来调节全球气候的平衡[1]。因此,研究海洋生产力有利于深入了解全球碳循环与大气组成的变化[2]。南大洋的初级生产力约占全球海洋初级生产力的20%,同时南大洋也是全球人为CO2的主要汇区之一,其在全球碳循环和气候调节中发挥着不可替代的作用[3-4]

    在全球变暖的背景下,海冰面积的减少和表层浮游植物光合作用速率的提高对南大洋吸收大气CO2的作用产生积极影响,随着南大洋对大气CO2吸收的加强,全球变暖在未来可能会有所减缓[5]。位于全球最大冰架罗斯冰架前缘的罗斯海是南大洋初级生产力年产量最高的区域[6]。罗斯海的有机碳含量较高,在该区域观察到的表层叶绿素和颗粒有机碳浓度分别超过15 μg/L与85 μmol/L[7],是白令海陆架区对应浓度最大值的两倍[8]

    前人指出,晚第四纪以来,南大洋生产力的变化不仅受到冰川活动和海冰变化的影响,其还与该地区风尘的供应具有一定的关系。Martin等[9]指出,冰期南极地区大量风尘的沉降可以为南大洋的浮游植物提供营养物质(如风尘铁),从而促进海洋生产力的提高,这得到了Erickson等[10]的支持。然而,关于晚第四纪风尘对南大洋生产力的影响仍存在争议。Kaufmann等[11]和Noble等[12]认为大气中粉尘通量的变化对南大洋生产力的影响不大。目前南极地区的海洋生产力大致呈现出冰期低、间冰期高的特征,其具有明显的冰期-间冰期旋回变化的趋势[13-15]。该地海洋生产力的冰期-间冰期旋回变化受到多种因素的影响:一方面,冰期时地区温度较低,较厚且持续时间长的海冰阻碍了浮游植物的光合作用,浮游植物的生长季节明显缩短,生产力明显减弱[16];另一方面,冰期海冰的覆盖抑制了深层水的上涌,表层海水的营养物质相对匮乏,不利于浮游植物的生长,该时期的海洋生产力总体较弱[17-18]。进入间冰期,冰架的消融使得开阔海域的面积大幅增加,为浮游植物的生长创造了适宜的环境,海洋生产力因此逐渐恢复[19]

    末次冰期是一个完整的冰期-间冰期旋回,在此期间全球气候发生了巨大的变化[20],全球海洋生产力表现出明显的阶段性特征[14]。其中,末次冰盛期(Last Glacial Maximum, LGM)是距离人类活动高峰期最近的寒冷期,期间全球冰川量达到峰值[21-22],海平面显著下降[23-24],大气CO2浓度与气温分别比工业革命前要低80~100 μL/L、10~12 ℃,全球陆地被冰川/冰盖覆盖的面积占比达到24%[25],海洋生产力处于明显低值期[13-15]。紧随LGM之后的末次冰消期,全球在该阶段经历了几次千年尺度的气候波动事件,如海因里希冰阶1期(Heinrich Stadial 1, HS1)[26]、南极冷反转(Antarctic Cold Reversal, ACR)[27]、波令-阿勒罗德暖期(Bolling-Allerød, B-A)[28]和新仙女木(Younger Dryas, YD)事件[29]等,期间全球海洋生产力的变化呈现出复杂多变的特征。末次冰消期之后的全新世,全球气候明显回暖,温度大幅上升,海洋生产力总体呈现恢复和繁荣的趋势[30]

    目前,研究南大洋生产力的主要指标包括化学元素、碳、氮及其同位素等。扈传昱等[31]通过分析沉积物中生物硅含量的变化,认为与初级生产力密切相关。Huo等[32]通过计算沉积物中的生源钡含量研究了晚第四纪以来罗斯海海洋生产力的变化特征。Kim等[17]通过沉积物中的碳、氮及其同位素,生物蛋白石,CaCO3等指标探讨了不同时期罗斯海表层生产力与营养盐的关系。樊加恩等[33]通过分析沉积物中底栖有孔虫组合的变化,进而揭示了LGM罗斯海海洋生产力的演变历史。

    为了更深入地了解南大洋在全球碳循环和气候变化中的地位和作用,本文拟通过测试分析南极罗斯海ANT32-RB16C岩芯沉积物中的主、微量元素与有机碳、氮及其同位素等内容,重建LGM以来研究区海洋生产力的演变过程,探讨影响区域古生产力变化的因素,进而为研究区后续相关研究的开展以及全球碳循环的研究提供新的证据。

    罗斯海总体位于南大洋太平洋扇区70°S以南的区域,其西邻维多利亚地,东接爱德华七世地,其南部为罗斯冰架(Ross Ice Shelf, RIS)[34-36]。RIS同时由东南极冰盖和西南极冰盖供给[36],其宽度约为800 km,面积大约为472000 km2[37]。罗斯海的海冰具有明显的季节性变化特征:在冬季,该地区的海冰可向北扩展至59°S;而在夏季,海冰覆盖范围大约缩减至冬季的20%,仅在东部陆架边缘和维多利亚地部分近岸地区存在海冰[38]

    罗斯海主要受到南极表层水、高密度陆架水、绕极深层水与变性绕极深层水的影响。在南极大陆边缘,逆时针运动的南极表层水在夏季温度可高达2.0 ℃,其盐度范围为33.5‰~34.5‰,南极表层水可将东部阿蒙森海的冰融水携带到罗斯海[39],为区域浮游植物的生长提供丰富的营养物质[40]。高密度陆架水的特点是低温、高盐、高密度,其受RIS扩张和收缩的控制[41]。分布于南大洋深层的绕极深层水是相对温暖且营养丰富的水团[42],绕极深层水的上涌能够为海洋表层带来大量营养盐和溶解铁[43],从而促进海洋表层生产力的提高。当绕极深层水与陆架水在罗斯海混合后会形成变性绕极深层水,其温度范围为1.0~1.5 ℃ [44]

    本文的研究对象为中国第32次南极科学考察在罗斯海西北陆架区采集的ANT32-RB16C岩芯沉积物(74°31ʹ06ʺS、175°07ʹ15ʺE,水深471 m),其位置见图1,岩芯长232 cm,岩性均一,为砂质粉砂,根据岩芯沉积物的剖面特征,自上而下可大致分为4段:

    图  1  ANT32-RB16C站位与其他岩芯位置及区域环流图
    AASW-南极表层水,DSW-高密度陆架水,CDW-绕极深层水,MCDW-变性绕极深层水,TD-塔洛斯多姆,TY-泰勒冰穹。 ANT31-JB06数据来自文献[45],BC008,BC010和BC006据文献[46],WDC据文献[47]。
    Figure  1.  The locations of Core ANT32-RB16C and other cores, and regional currents in the Ross Sea
    AASW: Antarctic Surface Water; DSW: Dense Shelf Water; CDW: Circumpolar Deep Water; MCDW: Modified Circumpolar Deep Water; TD: Talos Dome; TY: Taylor Dome; ANT31-JB06 is from reference[45]; BC008, BC010, and BC006 are from reference[46]; WDC is from reference[47].

    0~6 cm,黄绿色,质地较软,分选性良好,气味正常,为灰绿色硅藻黏土质粉砂;

    6~66 cm,灰绿色,质地较软,分选性良好,气味正常,为灰绿色粉砂质黏土;

    66~133 cm,黑灰色,分选性较差,气味正常,质地较软,含砾石、黏土为主,为黑灰色含砾粉砂质黏土;

    133~232 cm,黑灰色,分选性较差,气味正常,结构较为致密,含砂砾和硬核,为黑灰色含砾粉砂质黏土。

    实验依据中华人民共和国国家标准《海底沉积物化学分析方法(GB/T 20260-2006)》进行,分别称取0.6 g烘干后(105 ℃)的样品与6.0 g助融剂并置于瓷坩埚中,助融剂的成分比为49.75% LiBO2 : 49.75% Li2B4O7 : 0.5% LiBr。用玻璃棒将坩埚中的物质搅拌均匀后,倒入铂金坩埚中,并用设定为1100 ℃的熔样炉高温烘烤16 min,直至坩埚中的物质整体呈均匀通透的流体状。用坩埚钳夹出铂金坩埚,均匀摇晃直至流体中的气泡没有出现,放置冷却,形成玻璃片,并在玻璃片的背面写上测试编号。采用微区测试方法中的电子探针法测试样品中的主、微量元素,仪器型号为JXA-8100型电子探针。样品采样间隔为1 cm,共测试分析232个样品,实验在自然资源部第二海洋研究所海底科学实验室进行,定量测试精度达到0.1%以上。

    ANT32-RB16C沉积物中的Al/Ti比值范围为14.17~17.90,平均值为16.08,近似上地壳值,因此,可以选择Al作为背景元素,该方法在重建海洋生产力演变史中得到广泛应用[48]。故最终挑选的海洋生产力替代指标为Si/Al、Ba/Al与Zn/Al。

    实验依据中华人民共和国国家标准《地质样品有机地球化学分析方法,有机质稳定碳同位素测定同位素质谱法(GB/T 18340.2-2010)》进行。称取约0.7 g研磨后的沉积物样品于离心管中,加入足量的1 mol/L盐酸并用玻璃棒搅拌,静置24 h。24 h后,离心分离出上层清液,加入离子水并用玻璃棒充分搅拌,再次离心,重复操作,直至离心管中的溶液为中性。将洗酸后的样品放入60 ℃的烘箱中进行烘干,而后精确称取30~35 mg干燥后的样品,装入锡杯中上机测试。样品中的有机碳和氮含量使用元素分析仪(Elementar Vario, 德国)进行测定,相对标准偏差值低于2%;样品中的氮同位素(δ15N)组成采用同位素比值质谱仪(Thermo Delta Plus AD, 德国)进行测试,分别用USGS-24、GBW4408 与IAEA-N1标准物质对实验室钢瓶中N2气体进行标定,其中氮同位素以大气氮为参考标准,测定精度为±0.2‰。样品采样间隔为1 cm,共分析232个样品,实验在自然资源部第二海洋研究所海底科学实验室完成。

    沉积物年龄的建立方法参考宋乐慧等[49]的研究成果,首先用Bacon 2.3.3程序校正8个层位的有效年龄控制点数,得到了沉积物顶部年龄为5.0 cal.kaBP,底部年龄为29.7 cal.kaBP(图2)。结合沉积物210Pbex比活度的测试结果,判断沉积物顶层为现代沉积,因此将岩芯顶部的年龄定为0 cal.kaBP。假设碳库年龄与老碳年龄之和为5.0 ka[37],计算得到沉积物底端年龄为24.8 cal.kaBP,沉积物的平均线性沉积速率为9.4 cm/ka,每个样品的平均时间分辨率约为106.4 a。

    图  2  ANT32-RB16C岩芯深度-年龄示意图[49]
    Figure  2.  Sedimentary column and age model of Core ANT32-RB16C [49]

    ANT32-RB16C沉积物的TOC/TN比值变化范围为7.51~32.17,平均值为14.78。一般而言,若沉积物中的TOC与TN具有较强的正相关性,则可以用TOC/TN比值判断沉积物有机质的来源,TOC/TN比值越高则指示陆源有机质的占比越大[50]。研究表明,南大洋近岸表层沉积物中的有机质大多为海源有机质[31, 51]。如图3a所示,沉积物TOC与TN的相关性在24.8~14.8 cal.kaBP与14.8~0 cal.kaBP明显不同,这可能与沉积物中有机质的氧化沉积过程有关:当沉积物有机质处于氧化沉积过程时,TON相对于TOC更易降解,从而导致沉积物C/N比值较高[52]图4a);而降解后的有机质,其C/N比值明显增加,C/N比值与TOC呈现一定的正相关关系(图3b)。

    图  3  ANT32-RB16C沉积物TOC与TN(a)及TOC与TOC / TN(b)的相关性分析
    Figure  3.  Correlation analysis between TOC and TN (a), TOC and TOC/TN (b) in the ANT32-RB16C sediment
    图  4  LGM以来罗斯海古生产力的变化趋势
    HS1:海因里希冰阶1期,ACR:南极冷反转,YD:新仙女木事件。a:TOC/TN,b:δ15N,c-g:海洋生产力指标,h:WDC ssNa+ [47],g:TOC/TN,i:南极EDC冰芯氘过剩记录[67],j:NGRIP δ18O[22],k:塔洛斯多姆冰芯δ18O[68],l:GGC5 232Pa/230Th[69],m:泰勒冰穹冰芯铁通量[70],n:74°S夏季日照量[71]
    Figure  4.  Variation trends of the paleoproductivity in the Ross Sea since LGM
    HS1: Heinrich Stadial 1; ACR: Antarctic Cold Reversal; YD: Younger Dryas a: TOC/TN, b: δ15N, c-g: paleoproductivity indicators, h: WDC ssNa+[47], g: TOC/TN, i: Antarctic EDC Ice Core dln anomaly[67], j: NGRIP δ18O[22], k: Talos Dome δ18O[68], l: GGC5 232Pa/230Th[69], m: Taylor Dome Fe flux[70], n: summer insolation of 74°S[71].

    ANT32-RB16C沉积物中的δ15N值变化范围为1.91~4.85,平均值为3.24(图4b)。24.8~17.5 cal.kaBP期间,沉积物中的δ15N值逐渐增加;17.5~14.8 cal.kaBP期间,δ15N值整体处于低值区;进入14.8~12.5 cal.kaBP,δ15N值有所上升;此后的12.5~0 cal.kaBP,δ15N值呈现总体下降的趋势。目前,沉积物中的δ15N值被广泛应用于指示海洋硝酸盐利用率[53]:当δ15N变大时,表明沉积物的硝酸盐利用率较高,海洋表层水体总体缺乏营养盐,硝酸盐被消耗[54]

    生产力替代指标在不同沉积环境下的相似性,一方面反映了产硅浮游植物是有机质的主要来源,这与前人的研究结果一致[19],另一方面则反映了生产力替代指标的真实可靠。本文将ANT32-RB16C沉积物的海洋生产力替代指标、氮同位素和沉积环境的变化特征相结合,从而将研究区的古环境演变划分为4个阶段:阶段I(24.8~17.5 cal.kaBP)、阶段II(17.5~14.8 cal.kaBP)、阶段III(14.8~11.7 cal.kaBP)和阶段IV(11.7~0 cal.kaBP),阶段IV可以进一步细分为IV1期(11.7~1.6 cal.kaBP)和IV2期(1.6~0 cal.kaBP)。

    Si/Al比值(图4c)在阶段I的变化范围为3.26~3.87,平均值为3.66。其在阶段II整体处于低值,整体的变化波动较为平缓,并在3.49~3.75之间变化,平均值为3.63。阶段III,Si/Al比值开始上升,其整体在3.67 ~ 4.21之间变化,平均值为3.87。阶段IV,Si/Al比值在IV1期平稳上升,变化范围为4.09~5.37;进入IV2期,Si/Al比值出现下降趋势,其变化范围为4.93~5.19,平均值为5.04。

    Ba/Al(10-4)比值(图4d)在阶段I的变化范围为36.03~114.04,平均值为75.71。其在阶段II的变化波动较平缓,变化范围为63.01~73.93,平均值为67.46,变化不明显。阶段III,Ba/Al比值整体处于上升期。阶段IV,Ba/Al比值在IV1期平稳上升;其在IV2期开始下降,并在131.55~149.02内变化,平均值为140.67。

    Zn/Al(10-4)比值(图4e)在阶段I的变化范围为11.99~18.84,平均值为15.34。在阶段II,其整体处于低值,变化不明显,变化范围为12.63~17.62,平均值为13.84。进入阶段III,Zn/Al比值有所上升,其在13.65~22.56内变化,平均值为17.70。在阶段IV,Zn/Al比值在IV1期平稳上升,变化范围为22.95~34.42;其在IV2期出现下降趋势,变化范围为22.2~28.35,平均值为24.72。

    沉积物中的TOC含量(图4f)在阶段I的波动起伏较大,呈现增-减-增的变化特征,其变化范围为0.364~0.988,平均值为0.618。TOC含量在阶段II呈现减少的特征,变化范围为0.439~0.870,平均值为0.650。进入阶段III,沉积物中的TOC含量开始增加,其变化范围为0.524~0.761,平均值为0.627。阶段IV,TOC含量在IV1期平稳增加,其变化范围为0.626~1.456,在IV2期则出现减少的趋势,其变化范围为0.877~1.564,平均值为1.068。

    沉积物中的TN含量(图4g)在阶段I变化范围为0.024~0.050,平均值为0.037。其在阶段II的最大值为0.040,最小值为0.025,平均值为0.032。阶段III,TN含量开始增加,其在0.039~0.071内变化,平均值为0.053。进入阶段IV,TN含量的变化与TOC含量的变化相似。

    通常情况下,南极的海洋生产力受到多种环境因素的制约,如营养盐(硅酸盐、硝酸盐等)、海冰范围、气温、光照强度和水动力条件等[55-57]。由图4可知, ANT32-RB16C岩芯沉积物的古生产力替代指标的变化与南极气温的波动具有相似的趋势,即气温较低时生产力下降,气温较高时生产力上升。研究指出,南极海域中硝酸盐的利用水平与海冰变化的趋势一致,冰期内硝酸盐利用率的提高与大范围海冰覆盖密切相关[47, 58]

    前人指出,南极地区的海冰与气温之间存在密切的相互作用[58-59]:在冷期,南极气温较低,海冰面积扩大,其密度与厚度增加,从而限制了浮游植物的光合作用,导致海洋生产力降低[16, 60];在暖期,随着地区气温升高,海冰减少,光照环境改善,浮游植物生长与繁殖的季节延长,区域海洋生产力大幅提高[59, 61]

    据研究发现,由于冷期海冰的存在隔绝了风对南大洋的作用,表层海水处于相对静止的环境,深层水的上涌减缓[62],从而使得该时期南大洋上层的翻转环流总体要弱,不利于深层硝酸盐往上层的输送。Stephens等指出,进入暖期,由于南极地区冰川与冰山的融化释放出大量的淡水,从而使得南大洋上层形成一个低密度水层,进而引发了上、下层海水的分层现象。由于上、下层海水分层现象的出现,表层与深层水体之间的营养盐传递效率大为降低[63]。有学者指出,处于末次冰期的南大洋,当海冰生成时会促进高盐度的底层水的发育,而在开阔海域,海冰融化则可能导致上、下层水体分层现象的出现[64]。总的来说,南大洋海冰的扩张限制了该地深层水的上涌,富含硝酸盐和硅酸盐等物质的深层水无法顺利上涌至表层,进而使表层海水中的硝酸盐含量大大减少,从而最终导致研究区海洋生产力的下降[53-54, 65]

    自LGM以来,南半球西风带(Southern Hemisphere Westerlies, SHW)的南移(图4i)驱使海冰强度的演变(图4h)与罗斯海古生产力之间(图4c-g)表现出反向变化的趋势,表明海冰对古生产力具有明显抑制。例如, LGM期间,海冰强度较高导致罗斯海的古生产力较低;相反,自末次冰消期以来,随着海冰强度逐渐减弱,罗斯海的古生产力逐渐恢复。因此,海冰强度的变化在罗斯海古生产力的变化中扮演着关键的角色。

    风尘铁被认为是南大洋生产力的另一个重要影响因素[9],铁元素的缺乏总体上会限制生产力的发展[66]。因此,从理论上讲,罗斯海的古生产力演变应该与研究区风尘铁输入的变化具有一定的联系。然而,本文发现研究区的古生产力记录与冰芯中的Fe通量(图4 m)记录呈现出反相关的关系:自LGM以来,研究区的古生产力呈现上升的趋势(图4 c-g),而冰芯中的Fe通量则表现出减少的趋势(图4 m)。基于这点,本文判断在长时间尺度上研究区古生产力的变化与地区风尘铁的输入并不同步,且风尘铁并非研究区古生产力变化的一个主要控制因素。

    综上所述,通过对LGM以来相关环境因素与研究区古生产力记录变化的对比分析,本文推测海冰在地区气候波动、海水中营养盐的分布和研究区古生产力变化之间的相互响应发挥了核心的纽带作用,其是研究区古生产力变化的最主要控制因素,研究区古生产力的变化受大气输入来源(如风尘输入的铁等微量元素沉降)的影响总体较小。

    (1)24.8~17.5 cal.kaBP

    此时期 TD冰芯的δ18O值较小,表明此时南极的气温较低(图4k)。该阶段研究区的古生产力相对较低(图4c-g),WDC冰芯的ssNa+值较高表明存在海冰强度较强的情况(图4h)。该阶段罗斯海冰盖的接地线接近陆架边缘,大体位于74°S以南[72]。樊加恩等[33]指出,在此阶段RIS在ANT31-JB06站位上方扩张。同时,由于罗斯海Joides海槽的走向与冰流的方向一致,因此本文推测该阶段RIS依次从ANT32-RB16C和ANT31-JB06两个站位向外扩张,该阶段ANT32-RB16C站位可能长期处于冰架或常年冰覆盖之下。

    研究指出,在冷期,由于RIS和海冰的扩张,表层浮游植物接收到的光照非常有限[16, 60]。同时,海冰覆盖和风作用共同导致研究区上、下层水体交换的减弱,水体层化加剧,上层海水中的营养物质供给不足,同期表层海水中的浮游生物对营养物质的同化吸收率高于供给率(图5a);同时,由于表层水体中的营养盐逐渐减少,硝酸盐的利用率逐渐增加(图4h),进一步限制了该阶段研究区生产力的发展[53-54, 65]

    图  5  LGM以来罗斯海古生产力演化模式图[84]
    CDW-绕极深层水,MCDW-变性绕极深层水,APF-南极极锋,WSI-冬季海冰,SSI-夏季海冰,AASW-南极表层水,HSSW-高盐度陆架水。
    Figure  5.  Evolution pattern of paleoproductivity in the Ross Sea since LGM[84]
    CDW-Circumpolar deep water, MCDW-Modified circumpolar deep water, APF-Antarctic Polar Front, WSI-Winter sea ice, SSI-Summer sea ice, AASW-Antarctic surface water, HSSW-High salinity shelf water.

    (2)17.5~11.7 cal.kaBP

    17.5~14.8 cal.kaBP期间,研究区的古生产力保持在较低的水平(图4c-g),同期的δ15N值(图4 h)也维持在较低的水平。前人指出,南极地区的末次冰消期大约始于20~18 cal.kaBP[47],同期的北半球受到HS1事件的影响,气温急剧下降(图4j)。该阶段北大西洋GGC5岩芯的231Pa / 230Th比值上升(图4l),表明大西洋经向翻转环流(Atlantic Meridional Overturning Circulation, AMOC)的减弱,热量总体在南半球的南大洋中积聚[73]。TD冰芯δ18O值的上升表明该阶段南极地区回暖(图4k),半球之间呈现出“北寒南暖”的气候格局。另外,南、北半球间的气温差异使得南半球经向海表面温度梯度的减小,热带地区与南极之间的SST差异总体缩小,这种变化导致了南半球西风带向南迁移(图4i),进而促使南大洋深层水上涌增强[74]

    崔超等[46]基于BC008、BC006与BC010岩芯沉积物中生物硅含量的变化指出罗斯海深层水上涌最为剧烈的时间在16 cal.kaBP左右。当深层水上涌至陆架时,其会与陆架水混合,从而形成变性绕极深层水。变性绕极深层水通常是南大洋近岸一带温度最高的水团,其入侵冰架/冰川的位置位于表层海水之下,由于变性绕极深层水通常与局地冰点之间存在较大的温差,使得其对冰腔侵蚀的作用尤为显著[75]。在末次冰消期,罗斯海陆架区和南大洋大西洋扇区的沉积记录中出现了大量的冰筏碎屑(Ice Rafted Debris, IRD),这种现象很可能是由于变性绕极深层水对RIS的侵蚀导致掺杂其中的大颗粒碎屑随融水一同注入海洋,并最终沉降到研究区底部所致[45, 76]。本文推测该阶段研究区古生产力以及δ15N值(图4b)的变化受到了IRD注入的影响,其对生产力的发展起到稀释的作用可能导致了该阶段研究区古生产力与δ15N值总体水平较低,这种现象通常出现在冰架消融后退的附近区域[77]

    两极地区的气候在14.8~11.7 cal.kaBP经历了重大变化,该阶段南极地区的HS1事件结束,转而受到ACR事件的影响[27]。该阶段北大西洋深层水的活跃度增加,AMOC整体较为活跃(图4 l),北极地区与南极地区的热量分别是增加与减少[78]。受此影响,南极地区的气温迅速降低(图4k),南大洋海冰范围持续扩大(图4h)。该阶段研究区古生产力处于较低值(图4 c-g)与以下机制有关:海冰的扩张加剧了上、下层水的分层现象,温度较高且富含营养盐的深层水的上涌放缓(图5b),表层海水的硝酸盐逐渐消耗(表现为硝酸盐利用率逐渐增加, 图4b),最终导致ANT32-RB16C沉积物的古生产力上升不明显。

    ACR事件过后,北半球处于YD事件的影响下,而同期的南极地区气温迅速升高(图4k),海冰范围缩小(图4h),表层水中的营养物质供应增加,海水中硝酸盐的利用率有所减小(图4b),研究区古生产力显著提高(图4c-g)。

    (3)11.7~0 cal.kaBP

    进入全新世,研究区的古生产力表现出较高的水平,并出现小幅波动的特征。该阶段南极地区的气温与现代气温相近(图4k),表明此时的气候环境相对稳定。与此同时,南大洋的海冰范围明显缩小并降至相对较低的水平[47, 79]。随着海冰范围的持续缩小,风应力驱动深层水的上涌逐渐增强,富含营养物质的深层水得以上涌至表层海域的范围[80-81],这有利于增加对表层海水硝酸盐的供应,其硝酸盐利用率逐渐减小(图4b),这种环境有利于浮游生物的生长与繁殖,最终导致了罗斯海古生产力的提高(图5c)。

    此外,在光照增强的背景下(图4n),该阶段浮游生物(例如硅藻等硅质生物)的光合作用有所加强,全新世总体温暖适宜的环境促进了浮游生物的勃发,使得研究区的海洋生产力显著提高。

    1.6 cal.kaBP以来,罗斯海的海洋生产力呈现出下降的趋势,这可能与晚全新世小冰期的出现有关[82],南极半岛海域的沉积物中也有关于晚全新世小冰期的记录[83]。受晚全新世小冰期的影响,南极地区气温下降,海冰出现小幅扩张,不利于研究区生产力发展的环境再次出现,这很可能是晚全新世期间罗斯海生产力出现波动的重要原因。

    (1)罗斯海古生产力的变化可分为3个阶段:24.8~17.5 cal.kaBP,研究区总体处于末次冰盛期的环境下,地区温度较低,冰川扩张,海冰范围增加,表层海水中的营养物质较少,海洋生产力总体较低;17.5~11.7 cal.kaBP,研究区总体处于末次冰消期的环境下,研究区的古生产力出现了小幅的上升,但总体维持在较低的水平,其可能与随冰川融水注入的冰筏碎屑对生产力起到稀释的作用有关,同时14.8~11.7 cal.kaBP期间研究区的古生产力对南、北半球之间的气候波动表现出较高的敏感性;11.7~0 cal.kaBP期间,进入全新世的研究区总体处于气候回暖的环境下,地区光照强度增加,海冰范围缩小,表层海水的营养盐供应充足,区域海洋生产力逐渐恢复。

    (2)自末次冰盛期以来,罗斯海的海冰在地区气候波动、海水中的营养盐分布与古生产力变化的相互响应中起到了纽带的作用,海冰的变化是影响罗斯海古生产力变化的最主要因素,风尘输入对该阶段罗斯海古生产力演化的影响并不显著。

    致谢:对所有参加中国第32次南极科学考察的队员及“雪龙”号全体船员在采样时提供的帮助和支持,国家海洋局极地考察办公室、中国极地研究中心给予的全方位支持,温珍河老师和温家洪老师对本文给予了宝贵意见,自然资源部第二海洋研究所于晓果老师和姚旭莹老师在有机碳、氮及其同位素测试中提供的帮助,朱继浩老师在主、微量元素测试中提供的帮助和支持,在此一并致谢。

  • 图  1   ANT32-RB16C站位与其他岩芯位置及区域环流图

    AASW-南极表层水,DSW-高密度陆架水,CDW-绕极深层水,MCDW-变性绕极深层水,TD-塔洛斯多姆,TY-泰勒冰穹。 ANT31-JB06数据来自文献[45],BC008,BC010和BC006据文献[46],WDC据文献[47]。

    Figure  1.   The locations of Core ANT32-RB16C and other cores, and regional currents in the Ross Sea

    AASW: Antarctic Surface Water; DSW: Dense Shelf Water; CDW: Circumpolar Deep Water; MCDW: Modified Circumpolar Deep Water; TD: Talos Dome; TY: Taylor Dome; ANT31-JB06 is from reference[45]; BC008, BC010, and BC006 are from reference[46]; WDC is from reference[47].

    图  2   ANT32-RB16C岩芯深度-年龄示意图[49]

    Figure  2.   Sedimentary column and age model of Core ANT32-RB16C [49]

    图  3   ANT32-RB16C沉积物TOC与TN(a)及TOC与TOC / TN(b)的相关性分析

    Figure  3.   Correlation analysis between TOC and TN (a), TOC and TOC/TN (b) in the ANT32-RB16C sediment

    图  4   LGM以来罗斯海古生产力的变化趋势

    HS1:海因里希冰阶1期,ACR:南极冷反转,YD:新仙女木事件。a:TOC/TN,b:δ15N,c-g:海洋生产力指标,h:WDC ssNa+ [47],g:TOC/TN,i:南极EDC冰芯氘过剩记录[67],j:NGRIP δ18O[22],k:塔洛斯多姆冰芯δ18O[68],l:GGC5 232Pa/230Th[69],m:泰勒冰穹冰芯铁通量[70],n:74°S夏季日照量[71]

    Figure  4.   Variation trends of the paleoproductivity in the Ross Sea since LGM

    HS1: Heinrich Stadial 1; ACR: Antarctic Cold Reversal; YD: Younger Dryas a: TOC/TN, b: δ15N, c-g: paleoproductivity indicators, h: WDC ssNa+[47], g: TOC/TN, i: Antarctic EDC Ice Core dln anomaly[67], j: NGRIP δ18O[22], k: Talos Dome δ18O[68], l: GGC5 232Pa/230Th[69], m: Taylor Dome Fe flux[70], n: summer insolation of 74°S[71].

    图  5   LGM以来罗斯海古生产力演化模式图[84]

    CDW-绕极深层水,MCDW-变性绕极深层水,APF-南极极锋,WSI-冬季海冰,SSI-夏季海冰,AASW-南极表层水,HSSW-高盐度陆架水。

    Figure  5.   Evolution pattern of paleoproductivity in the Ross Sea since LGM[84]

    CDW-Circumpolar deep water, MCDW-Modified circumpolar deep water, APF-Antarctic Polar Front, WSI-Winter sea ice, SSI-Summer sea ice, AASW-Antarctic surface water, HSSW-High salinity shelf water.

  • [1]

    Mortlock R A, Charles C D, Froelich P N, et al. Evidence for lower productivity in the Antarctic Ocean during the last glaciation [J]. Nature, 1991, 351(6323): 220-223. doi: 10.1038/351220a0

    [2]

    Lin H L, Lai C T, Ting H C, et al. Late Pleistocene nutrients and sea surface productivity in the South China Sea: A record of teleconnections with Northern Hemisphere events [J]. Marine Geology, 1999, 156(1-4): 197-210. doi: 10.1016/S0025-3227(98)00179-0

    [3]

    Hiscock M R, Marra J, Smith Jr W O, et al. Primary productivity and its regulation in the Pacific sector of the Southern Ocean [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(3-4): 533-558. doi: 10.1016/S0967-0645(02)00583-0

    [4] 高众勇, 陈立奇, 王伟强. 南大洋二氧化碳源汇分布及其海-气通量研究[J]. 极地研究, 2001, 13(3):175-186

    GAO Zhongyong, CHEN Liqi, WANG Weiqiang. AIR-SEA fluxes and the distribution of sink and source of CO2 between 80°W and 80°E in the Southern Ocean [J]. Chinese Journal of Polar Research, 2001, 13(3): 175-186.

    [5]

    Petrou K, Kranz S A, Trimborn S, et al. Southern Ocean phytoplankton physiology in a changing climate [J]. Journal of Plant Physiology, 2016, 203: 135-150. doi: 10.1016/j.jplph.2016.05.004

    [6]

    Arrigo K R, Van Dijken G L, Bushinsky S. Primary production in the Southern Ocean, 1997-2006 [J]. Journal of Geophysical Research:Oceans, 2008, 113(C8): C08004.

    [7]

    Smith Jr W O, Nelson D M, DiTullio G R, et al. Temporal and spatial patterns in the Ross Sea: phytoplankton biomass, elemental composition, productivity and growth rates [J]. Journal of Geophysical Research:Oceans, 1996, 101(C8): 18455-18465. doi: 10.1029/96JC01304

    [8]

    Ichikawa T. Particulate organic carbon and nitrogen in the adjacent seas of the Pacific Ocean [J]. Marine Biology, 1982, 68(1): 49-60. doi: 10.1007/BF00393140

    [9]

    Martin J H. Glacial‐interglacial CO2 change: The iron hypothesis [J]. Paleoceanography, 1990, 5(1): 1-13. doi: 10.1029/PA005i001p00001

    [10]

    Erickson III D J, Hernandez J L, Ginoux P, et al. Atmospheric iron delivery and surface ocean biological activity in the Southern Ocean and Patagonian region [J]. Geophysical Research Letters, 2003, 30(12): 1609.

    [11]

    Kaufmann P, Fundel F, Fischer H, et al. Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of biological activity in the Southern Ocean [J]. Quaternary Science Reviews, 2010, 29(1-2): 313-323. doi: 10.1016/j.quascirev.2009.11.009

    [12]

    Noble T L, Piotrowski A M, Robinson L F, et al. Greater supply of Patagonian-sourced detritus and transport by the ACC to the Atlantic sector of the Southern Ocean during the last glacial period [J]. Earth and Planetary Science Letters, 2012, 317-318: 374-385. doi: 10.1016/j.jpgl.2011.10.007

    [13]

    Manoj M C, Thamban M. Shifting frontal regimes and its influence on bioproductivity variations during the Late Quaternary in the Indian sector of Southern Ocean [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 118: 261-274. doi: 10.1016/j.dsr2.2015.03.011

    [14]

    Jaccard S L, Hayes C T, Martinez-Garcia A, et al. Two modes of change in Southern Ocean productivity over the past million years [J]. Science, 2013, 339(6126): 1419-1423. doi: 10.1126/science.1227545

    [15]

    Nürnberg C C. Bariumfluß und sedimentation im südlichen südatlantik: hinweise auf produktivitätsänderungen im quartär [J]. GEOMAR Report, 1995, 38: 105.

    [16]

    Harris P T. Ripple cross-laminated sediments on the East Antarctic Shelf: evidence for episodic bottom water production during the Holocene? [J]. Marine Geology, 2000, 170(3-4): 317-330. doi: 10.1016/S0025-3227(00)00096-7

    [17]

    Kim S, Lee J I, McKay R M, et al. Late Pleistocene paleoceanographic changes in the Ross Sea — Glacial-interglacial variations in paleoproductivity, nutrient utilization, and deep-water formation [J]. Quaternary Science Reviews, 2020, 239: 106356. doi: 10.1016/j.quascirev.2020.106356

    [18]

    Kaiser E A, Billups K, Bradtmiller L. A 1 million year record of biogenic silica in the Indian Ocean sector of the Southern Ocean: Regional versus global forcing of primary productivity [J]. Paleoceanography and Paleoclimatology, 2021, 36(3): e2020PA004033.

    [19]

    Xiu C, DU M, Zhang X, et al. Changes of marine productivity and sedimentary environment recorded by biogenic components in the Antarctica Ross Sea since the last deglaciation [J]. Journal of Oceanology and Limnology, 2020, 38(6): 1746-1754. doi: 10.1007/s00343-019-9218-2

    [20] 周尚哲, 赵井东, 王杰, 等. 第四纪冰冻圈: 全球变化长尺度研究[J]. 中国科学院院刊, 2020, 35(4):475-483

    ZHOU Shangzhe, ZHAO Jingdong, WANG Jie, et al. Quaternary Cryosphere: study on global change in long terms [J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 475-483.

    [21]

    Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles [J]. Quaternary Science Reviews, 2002, 21(1-3): 203-231. doi: 10.1016/S0277-3791(01)00082-8

    [22]

    North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period [J]. Nature, 2004, 431(7005): 147-151. doi: 10.1038/nature02805

    [23]

    Mix A C, Bard E, Schneider R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG) [J]. Quaternary Science Reviews, 2001, 20(4): 627-657. doi: 10.1016/S0277-3791(00)00145-1

    [24]

    Wang P X, Sun X J. Last glacial maximum in China: comparison between land and sea [J]. CATENA, 1994, 23(3-4): 341-353. doi: 10.1016/0341-8162(94)90077-9

    [25] 王绍武, 闻新宇. 末次冰期冰盛期[J]. 气候变化研究进展, 2011, 7(5):381-382

    WANG Shaowu, WEN Xinyu. Last glacial maximum [J]. Advances in Climate Change Research, 2011, 7(5): 381-382.

    [26]

    Heinrich H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130, 000 years [J]. Quaternary Research, 1988, 29(2): 142-152. doi: 10.1016/0033-5894(88)90057-9

    [27]

    Morgan V, Delmotte M, Van Ommen T, et al. Relative timing of deglacial climate events in Antarctica and Greenland [J]. Science, 2002, 297(5588): 1862-1864. doi: 10.1126/science.1074257

    [28]

    Mangerud J, Andersen S T, Berglund B E, et al. Quaternary stratigraphy of Norden, a proposal for terminology and classification [J]. Boreas, 1974, 3(3): 109-126.

    [29]

    Alley R B, Marotzke J, Nordhaus W D, et al. Abrupt climate change [J]. Science, 2003, 299(5615): 2005-2010. doi: 10.1126/science.1081056

    [30]

    Bentley M J, Hodgson D A, Smith J A, et al. Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region [J]. The Holocene, 2009, 19(1): 51-69. doi: 10.1177/0959683608096603

    [31] 扈传昱, 潘建明, 张海生, 等. 南极普里兹湾外海沉降颗粒物通量、组成变化及其与罗斯海对比研究[J]. 海洋学报, 2006, 28(5):49-55

    HU Chuanyu, PAN Jianming, ZHANG Haisheng, et al. Study of vertical particle fluxes and their composition in the deep ocean of the north open sea of the Prydz Bay, Antarctica and the comparison with the Ross Sea [J]. Acta Oceanologica Sinica, 2006, 28(5): 49-55.

    [32]

    Huo S X, Xiu C, Zhang X, et al. Geochemical characteristics of biogenic barium in sediments of the Antarctica Ross Sea and their indication for paleoproductivity [J]. Indian Journal of Geo-Marine Sciences, 2020, 49(2): 241-248.

    [33] 樊加恩, 王汝建, 丁旋, 等. 南极罗斯海JOIDES海槽末次冰期以来底栖有孔虫组合及其对冰架扩张与消融的响应[J]. 微体古生物学报, 2021, 38(1):93-111

    FAN Jiaen, WANG Rujian, DING Xuan, et al. Benthic foraminifera assemblages and their response to ice shelf changes in the Joides Trough of the Ross Sea, Antarctica since the last glacial period [J]. Acta Micropalaeontologica Sinica, 2021, 38(1): 93-111.

    [34]

    Smith Jr W O, Sedwick P N, Arrigo K R, et al. The Ross Sea in a sea of change [J]. Oceanography, 2012, 25(3): 90-103. doi: 10.5670/oceanog.2012.80

    [35]

    Mosola A B, Anderson J B. Expansion and rapid retreat of the West Antarctic Ice Sheet in eastern Ross Sea: possible consequence of over-extended ice streams? [J]. Quaternary Science Reviews, 2006, 25(17-18): 2177-2196. doi: 10.1016/j.quascirev.2005.12.013

    [36]

    Anderson J B, Conway H, Bart P J, et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM [J]. Quaternary Science Reviews, 2014, 100: 31-54. doi: 10.1016/j.quascirev.2013.08.020

    [37]

    Anderson J B, Shipp S S, Lowe A L, et al. The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review [J]. Quaternary Science Reviews, 2002, 21(1-3): 49-70. doi: 10.1016/S0277-3791(01)00083-X

    [38] 刘帅斌, 周春霞, 王泽民. 罗斯海和普里兹湾海域海冰范围变化对比分析[J]. 极地研究, 2016, 28(2):228-234

    LIU Shuaibin, ZHOU Chunxia, WANG Zemin. Comparative analysis of changes in sea ice extent in Ross Sea and Prydz bay [J]. Chinese Journal of Polar Research, 2016, 28(2): 228-234.

    [39]

    Smith Jr W O, Ainley D G, Arrigo K R, et al. The oceanography and ecology of the Ross Sea [J]. Annual Review of Marine Science, 2014, 6: 469-487. doi: 10.1146/annurev-marine-010213-135114

    [40]

    Marsay C M, Barrett P M, McGillicuddy Jr D J et al. Distributions, sources, and transformations of dissolved and particulate iron on the Ross Sea continental shelf during summer [J]. Journal of Geophysical Research:Oceans, 2017, 122(8): 6371-6393. doi: 10.1002/2017JC013068

    [41]

    Tamura T, Ohshima K I, Nihashi S. Mapping of sea ice production for Antarctic coastal polynyas [J]. Geophysical Research Letters, 2008, 35(7): L07606.

    [42]

    Whitworth III T, Nowlin Jr W D. Water masses and currents of the Southern Ocean at the Greenwich Meridian [J]. Journal of Geophysical Research:Oceans, 1987, 92(C6): 6462-6476. doi: 10.1029/JC092iC06p06462

    [43]

    Peloquin J A, Smith Jr W O. Phytoplankton blooms in the Ross Sea, Antarctica: Interannual variability in magnitude, temporal patterns, and composition [J]. Journal of Geophysical Research:Oceans, 2007, 112(C8): C08013.

    [44]

    Cincinelli A, Martellini T, Bittoni L, et al. Natural and anthropogenic hydrocarbons in the water column of the Ross Sea (Antarctica) [J]. Journal of Marine Systems, 2008, 73(1-2): 208-220. doi: 10.1016/j.jmarsys.2007.10.010

    [45] 黄梦雪, 王汝建, 肖文申, 等. 罗斯海西北陆架(JOIDES海槽)末次冰期以来冰架消融过程及水动力变化[J]. 海洋地质与第四纪地质, 2016, 36(5):97-108

    HUANG Mengxue, WANG Rujian, XIAO Wenshen, et al. Retreat process of Ross Ice Shelf and hydrodynamic changes on northwestern Ross continental shelf since the last glacial [J]. Marine geology & Quaternary Geology, 2016, 36(5): 97-108.

    [46] 崔超, 唐正, Rebesco M, 等. 末次冰消期南大洋深部流通性增强的罗斯海沉积记录[J]. 第四纪研究, 2021, 41(3):678-690

    CUI Chao, TANG Zheng, Rebesco M, et al. Sedimentary records of enhanced deep ventilation during the last deglacialtion in the Ross Sea, Southern Ocean [J]. Quaternary Sciences, 2021, 41(3): 678-690.

    [47]

    WAIS Divide Project Members. Precise interpolar phasing of abrupt climate change during the last ice age [J]. Nature, 2015, 520(7549): 661-665. doi: 10.1038/nature14401

    [48]

    Murray R W, Knowlton C, Leinen M, et al. Export production and terrigenous matter in the Central Equatorial Pacific Ocean during interglacial oxygen isotope Stage 11 [J]. Global and Planetary Change, 2000, 24(1): 59-78. doi: 10.1016/S0921-8181(99)00066-1

    [49] 宋乐慧, 韩喜彬, 李家彪, 等. 罗斯海西部末次冰盛期以来沉积环境重建: 有机碳与生物标志化合物分析[J]. 海洋学报, 2019, 41(9):52-64

    SONG Lehui, HAN Xibin, LI Jiabiao, et al. Western Ross Sea sedimentary environment reconstruction since the Last Glacial Maximum based on organic carbon and biomarker analyses [J]. Acta Oceanologica Sinica, 2019, 41(9): 52-64.

    [50]

    Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter [J]. Chemical Geology, 1994, 114(3-4): 289-302. doi: 10.1016/0009-2541(94)90059-0

    [51] 刘瑞娟, 于培松, 扈传昱, 等. 南极普里兹湾沉积物中有机碳和总氮的含量与分布[J]. 海洋学报, 2014, 36(4):118-125

    LIU Ruijuan, YU Peisong, HU Chuanyu, et al. Contents and distributions of organic carbon and total nitrogen in sediments of Prydz Bay, Antarctic [J]. Acta Oceanologica Sinica, 2014, 36(4): 118-125.

    [52]

    Kristensen E, Blackburn T H. The fate of organic carbon and nitrogen in experimental marine sediment systems: influence of bioturbation and anoxia [J]. Journal of Marine Research, 1987, 45(1): 231-257. doi: 10.1357/002224087788400927

    [53]

    Francois R, Altabet M A, Burckle L H, et al. Glacial to interglacial changes in surface nitrate utilization in the Indian Sector of the Southern Ocean as recorded by sediment δ15N [J]. Paleoceanography, 1992, 7(5): 589-606. doi: 10.1029/92PA01573

    [54]

    Altabet M A, Francois R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization [J]. Global biogeochemical cycles, 1994, 8(1): 103-116. doi: 10.1029/93GB03396

    [55]

    Holmansen O, Naganobu M, Kawaguchi S, et al. Factors influencing the distribution, biomass, and productivity of phytoplankton in the Scotia Sea and adjoining waters [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2004, 51(12-13): 1333-1350. doi: 10.1016/j.dsr2.2004.06.015

    [56]

    Korb R E, Whitehouse M J, Ward P, et al. Regional and seasonal differences in microplankton biomass, productivity, and structure across the Scotia Sea: Implications for the export of biogenic carbon [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2012, 59: 67-77.

    [57]

    Studer A S, Sigman D M, Martínez‐García A, et al. Antarctic Zone nutrient conditions during the last two glacial cycles [J]. Paleoceanography, 2015, 30(7): 845-862. doi: 10.1002/2014PA002745

    [58]

    Fudge, T. J., et al. Onset of deglacial warming in West Antarctica driven by local orbital forcing [J]. Nature, 2013, 500(7463): 440-444. doi: 10.1038/nature12376

    [59]

    Wolff E W, Fischer H, Fundel F, et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles [J]. Nature, 2006, 440(7083): 491-496. doi: 10.1038/nature04614

    [60]

    Mackintosh A, Golledge N, Domack E, et al. Retreat of the East Antarctic ice sheet during the last glacial termination [J]. Nature Geoscience, 2011, 4(3): 195-202. doi: 10.1038/ngeo1061

    [61]

    Xiao W, Esper O, Gersonde R. Last Glacial-Holocene climate variability in the Atlantic sector of the Southern Ocean [J]. Quaternary Science Reviews, 2016, 135: 115-137. doi: 10.1016/j.quascirev.2016.01.023

    [62]

    Kemeny P C, Kast E R, Hain M P, et al. A seasonal model of nitrogen isotopes in the ice age Antarctic Zone: Support for weakening of the Southern Ocean upper overturning cell [J]. Paleoceanography and Paleoclimatology, 2018, 33(12): 1453-1471. doi: 10.1029/2018PA003478

    [63]

    Stephens B B, Keeling R F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations [J]. Nature, 2000, 404(6774): 171-174. doi: 10.1038/35004556

    [64]

    Sigman D M, Jaccard S L, Haug G H. Polar ocean stratification in a cold climate [J]. Nature, 2004, 428(6978): 59-63. doi: 10.1038/nature02357

    [65]

    Robinson R S, Kienast M, Albuquerque A L, et al. A review of nitrogen isotopic alteration in marine sediments [J]. Paleoceanography, 2012, 27(4): 89-108.

    [66]

    Martin J H, Gordon M, Fitzwater S E. The case for iron [J]. Limnology and Oceanography, 1991, 36(8): 1793-1802. doi: 10.4319/lo.1991.36.8.1793

    [67]

    Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present [J]. Geophysical Research Letters, 2015, 42(2): 542-549. doi: 10.1002/2014GL061957

    [68]

    Veres D, Bazin L, Landais A, et al. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years [J]. Climate of the Past, 2013, 9(4): 1733-1748. doi: 10.5194/cp-9-1733-2013

    [69]

    McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes [J]. Nature, 2004, 428(6985): 834-837. doi: 10.1038/nature02494

    [70]

    Hinkley T K, Matsumoto A. Atmospheric regime of dust and salt through 75, 000 years of Taylor Dome ice core: Refinement by measurement of major, minor, and trace metal suites [J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D16): 18487-18493. doi: 10.1029/2000JD900550

    [71]

    Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the earth [J]. Astronomy and Astrophysics, 2004, 428(2): 261-285.

    [72]

    Ship S, Anderson J, Domack E. Late Pleistocene–Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 1-geophysical results [J]. GSA Bulletin, 1999, 111(10): 1486-1516. doi: 10.1130/0016-7606(1999)111<1486:LPHROT>2.3.CO;2

    [73]

    Wang Z M, Zhang X D, Guan Z Y, et al. An atmospheric origin of the multi-decadal bipolar seesaw [J]. Scientific Reports, 2015, 5(1): 8909. doi: 10.1038/srep08909

    [74]

    Siani G, Michel E, De Pol-Holz R, et al. Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation [J]. Nature Communications, 2013, 4(1): 2758. doi: 10.1038/ncomms3758

    [75] 史久新. 南极冰架-海洋相互作用研究综述[J]. 极地研究, 2018, 30(3):287-302 doi: 10.13679/j.jdyj.20180046

    SHI Jiuxin. A review of ice shelf - ocean interaction in Antarctica [J]. Chinese Journal of Polar Research, 2018, 30(3): 287-302. doi: 10.13679/j.jdyj.20180046

    [76]

    Hall B L, Denton G H, Heath S L, et al. Accumulation and marine forcing of ice dynamics in the western Ross Sea during the last deglaciation [J]. Nature Geoscience, 2015, 8(8): 625-628. doi: 10.1038/ngeo2478

    [77]

    Taylor F, Whitehead J, Domack E. Holocene paleoclimate change in the Antarctic Peninsula: evidence from the diatom, sedimentary and geochemical record [J]. Marine Micropaleontology, 2001, 41(1-2): 25-43. doi: 10.1016/S0377-8398(00)00049-9

    [78]

    Rahmstorf S. Ocean circulation and climate during the past 120, 000 years [J]. Nature, 2002, 419(6903): 207-214. doi: 10.1038/nature01090

    [79]

    Barbante C, Barnola J M, Becagli S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica [J]. Nature, 2006, 444(7116): 195-198. doi: 10.1038/nature05301

    [80]

    Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 [J]. Science, 2009, 323(5920): 1443-1448. doi: 10.1126/science.1167441

    [81]

    Ellwood M J, Wille M, Maher W. Glacial silicic acid concentrations in the Southern Ocean [J]. Science, 2010, 330(6007): 1088-1091. doi: 10.1126/science.1194614

    [82]

    Waldmann N, Ariztegui D, Anselmetti F S, et al. Holocene climatic fluctuations and positioning of the Southern Hemisphere westerlies in Tierra del Fuego (54°S), Patagonia [J]. Journal of Quaternary Science, 2010, 25(7): 1063-1075. doi: 10.1002/jqs.1263

    [83]

    Domack E, Leventer A, Dunbar R, et al. Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic [J]. The Holocene, 2001, 11(1): 1-9. doi: 10.1191/095968301673881493

    [84]

    Torricella F, Melis R, Malinverno E, et al. Environmental and oceanographic conditions at the continental margin of the central basin, Northwestern Ross Sea (Antarctica) since the Last Glacial Maximum [J]. Geosciences, 2021, 11(4): 155. doi: 10.3390/geosciences11040155

图(5)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  128
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2023-03-06
  • 录用日期:  2023-03-06
  • 网络出版日期:  2023-06-08
  • 刊出日期:  2024-02-27

目录

/

返回文章
返回