Characteristics of phosphatization and its effects on the geochemical compositions of basalts from the Mid-Pacific Mountains
-
摘要:
大洋玄武岩是研究地幔不均一性、岩浆起源与演化的重要对象。然而,由于其长期与周围的海水相互作用,极易发生蚀变和次生变化。磷酸盐化是大洋玄武岩最常见的次生变化之一,会影响到其全岩地球化学成分,且目前仍没有去除磷酸盐化的有效方法。因此,研究磷酸盐化特征以及评估其对玄武岩全岩地球化学成分的影响至关重要。本文以中太平洋海山群(九皋和紫檀海山)玄武岩为研究对象,通过能谱面扫描元素分布图、主量元素以及微量元素揭示玄武岩的磷酸盐化特征,评估磷酸盐化对其全岩主微量元素的影响。面扫描元素分布图显示,中太平洋海山群玄武岩的磷酸盐化作用主要发生在玄武岩气孔和裂隙周围,以交代早期的碳酸盐化基质,形成细小的磷酸盐矿物,呈浸染状分布在玄武岩基质中为特点,并且磷酸盐化会不同程度地改变玄武岩的主量元素和微量元素成分:比如磷酸盐化会使玄武岩的MgO、CaO、Na2O、MnO含量降低,K2O和Fe2O3T含量升高,同时也会对相容元素(如Cr、Co、Ni等)、大离子亲石元素(Rb、Ba、Cs等)和稀土元素造成不同程度的影响。值得注意的是,在磷酸盐化过程中,玄武岩的Al2O3、SiO2和高场强元素(Nb、Ta、Zr、Hf和Ti)几乎不受影响。
Abstract:Oceanic basalts are ideal samples in deciphering geodynamics, mantle heterogeneity, and magma origin and evolution. However, due to its long-term interaction with the surrounding seawater, it is easy to undergo alteration and secondary alteration. Phosphatization is one of the most common secondary alteration in oceanic basalts, which can affect the geochemical compositions of basalt and there is no effective method to eliminate it yet. Therefore, it is important to evaluate the effect of phosphatization on the geochemical compositions of basalt. The mapping of element distribution by energy spectrum surface scanning with energy dispersive spectrometer, and analyses of major and trace elements of the phosphatized basalts from the Mid-Pacific Mountains were conducted. The elemental mapping shows that the phosphatization occurred mainly around the vesicles and fissures of basalts. It metasomatized the early-formed carbonated matrix by which fine phosphate minerals were formed. Phosphatization would change the major elements and trace elements of basalt. For example, phosphatization could decrease the contents of MgO, CaO, Na2O and MnO, and increase the contents of K2O and Fe2O3T in the basalt. Meanwhile, it also affected the compatible elements (such as Cr, Co, Ni, etc.), large ion lithophile elements (Rb, Ba, Cs, etc.), and rare earth elements. It is noted that Al2O3, SiO2, and high field strength elements (Nb, Ta, Zr, Hf and Ti) of the basalts are nearly unaffected the the phosphatization.
-
Keywords:
- basalts /
- phosphatization /
- geochemical compositions /
- seamount groups /
- Mid-Pacific Mountains
-
南海位于亚欧大陆和太平洋之间,东临太平洋暖池,西近青藏高原,是西太平洋上最大的边缘海,独特的地理位置决定了南海对环境气候变化的高敏感性,使其成为古海洋学研究的热点区域[1]。
由于处于典型的亚洲季风影响区,南海的气候和表层环流格局受东亚季风影响,具有季节性反转的季风环流。冬季在东北季风的驱动下,南海形成海盆尺度的气旋式表层环流,夏季在西南季风的作用下,则在南海南部形成反气旋式表层环流[2, 3]。在季风的影响下,冬季在南海东北部的吕宋岸外,南部巽他陆坡海域,以及夏季在越南岸外发育了强烈的季节性上升流[4, 5]。季节性改变的环流结构及上升流发育使南海上层水体物理化学环境有着显著的季节变化和空间差异,从而强烈影响表层海洋生态系统,包括海洋初级生产力及生物群落结构等,例如夏季风导致的南海西部越南岸外上升流为表层水体带来了丰富的营养盐,促进浮游植物的生长,大大提高上层海洋初级生产力。
已有研究表明,在过去的冰期间冰期旋回中,东亚季风的强度和结构都有着显著的变化,主要表现在冰期时东亚冬季风增强,而间冰期时东亚夏季风强度增加[6, 7]。东亚季风的变化必然导致南海海洋环境的显著变化,此外冰期间冰期旋回过程中全球海平面的变化则导致南海地貌结构的变化,尤其是南海南部巽他陆架在冰期时出露[8],对整个南海表层环流及海盆区物质来源都有着巨大影响。
由于邻近东亚大陆,南海深海沉积物中生物成因的沉积物含量相对于陆源物质含量较低,但其丰度和组成变化可更直观的反映过去上层海洋环境,尤其是海洋初级生产力的变化情况[9],因而受到古海洋学家的普遍关注。其中生物蛋白石主要来源于硅藻、放射虫等硅质生物细胞壁或骨骼,沉积物中其相对含量及堆积速率作为古海洋表层生产力的指标之一被广泛应用于各大洋[10, 11]。此外,浮游植物通过一系列生物化学作用将二氧化碳等无机碳转化为有机碳或生物骨骼,随后输出至深海并埋藏于深海沉积物中,因此, 深海沉积物中有机碳和碳酸钙沉积不仅可以反映过去海洋生产力及海洋环境变化,也是地质历史上海洋碳循环研究的重要环节。
在过去几十年的多项国际合作科学考察航次中虽然取得了许多高质量的岩心,提供了新生代以来的连续深海沉积序列,在东亚古季风演变、古环境演化等领域取得重大进展[12-15],但是前人对深海沉积物的沉积组分及堆积过程研究还不够全面,多聚焦于一种或者几种成分的变化,如陆源物质不同矿物的来源变化[16, 17]、碳酸盐的旋回变化[12, 18]、有机质含量的变化[18, 19], 整体上对各组分系统研究比较少见[20, 21]。另一方面,以往研究主要集中在南海北部[22-24],对南海西部现代上升流区涉及较少,本文拟通过分析南海西南部越南岸外现代上升流影响区所采集的柱状沉积物样品中沉积物组成及堆积速率的变化,恢复140kaBP以来南海西南部上层海洋生产力及沉积物来源变化,并以此探讨末次间冰期以来东亚季风及海平面变化对南海西南部海洋环境的影响。
1. 材料与方法
1.1 样品材料
本研究中沉积物样品来自2006年德国“太阳号”科考船第187航次在南海西南部采集的一个直径12cm的重力柱状样,采样站位号为BIS-187-61,位于11°25.5′N、111°17.0′E(图 1),水深为2226m,柱样长度927cm。柱状心样岩性单一,为灰绿色粉砂质泥,无明显浊流沉积。用于沉积物组分分析的样品采样间距为10cm,共分析样品91个。
1.2 沉积物生物硅的测定
本文采用连续提取法来测定沉积物样品中生物硅的含量,样品的取样量和提取液的固液比值采用1.25g/L(不存在明显的吸附损失);提取液采用2 mol/L的Na2CO3溶液, 以保证较高生物硅含量样品的完全提取;另外采用外推法校正非生物硅的干扰[12, 13]。具体实验步骤如下:将采集的沉积物样品冷冻(-50℃)干燥,室温下平衡后,取150mg左右样品轻轻研磨至200目左右,烘干后室温下平衡后待用。称取100mg样品置于离心管中,加入5mL 10%的H2O2,超声0.5h后再加入1mol/L的HCl超声0.5h,静置2h。加入20mL超纯水,4000r/min离心5min后去除上清液,如此反复直至溶液呈中性。将上述处理好的样品置于102℃烘箱中烘干2h。加入40mL 2mol/L的Na2CO3超声5min后置于85℃水浴中加热提取生物硅。每隔1h用移液枪取1mL提取液后混入0.1mL酸性钼酸铵溶液后加入到石英比色管中在TU-1810型紫外可见分光光度计(吸收峰为650nm,检出限10-8g)测量吸光值, 并根据标准曲线利用回归方程计算得到生物硅含量(系统误差小于2%)。
计算生物蛋白石百分含量时,需要确定生物硅分子式SiO2·nH2O中n的数值,生物硅的含水率取决于硅质生物的类型与沉积年龄[14],对于年龄小于30Ma的硅藻生物硅平均含水率为10%[15],即生物硅分子式为SiO2 0.4H2O,此次研究采用opal%表示生物硅的含量。
1.3 有机碳和碳酸盐含量的测定
根据汪品先等[12]采用的方法,将采集的沉积物样品冷冻干燥放入干燥器平衡后,取部分样品研磨至200目,称取约100mg用1N盐酸去除碳酸盐,至完全反应后静置24h,反复多次用纯水洗至中性,烘干称量后将样品研磨粉碎后放入干燥器平衡24h。另称取3mg左右研磨过的原始样品和上述去除碳酸盐后的样品同时在有机元素仪(ThermoQuest Italia.S.P.A)上进行总碳(TC)和有机碳(TOC)的分析(数据误差小于0.2%),碳酸盐的含量是由总碳和有机碳含量含量之间的差值计算而来。陆源物质的含量用公式[24](1)计算:
$$ 陆源物质百分含量=1-碳酸盐百分含量-生\\物蛋白石百分含量-有机质百分含量(1\text{.8}\times 有机碳\\百分含量)\ $$ (1) 1.4 沉积物干密度测定
在基尔大学岩心库中,对BIS-187-61孔每隔5cm定量取2cm3的湿样,冷冻干燥后精确称量(精确到0.00001g,Sartorius CPA225D),计算所得质量体积比为沉积物样品干密度(DBD,g·cm-3)。
1.5 钻孔年龄框架确定
本研究的年龄框架主要依据BIS-187-61柱样中浮游有孔虫Globigerinoides ruber壳体的氧同位素值(数据由Martin G Wiesner提供)与SPECMAP stack氧同位素曲线[16]的对比来确定,采用“峰对峰、谷对谷、冰期-间冰期界限位于氧同位素曲线变化最快处”的形态对比法确定了本钻孔主要的年龄拐点(图 2)。此外,本文通过对比本钻孔与邻近海域已发表的MD972151孔[23](8°43.73′N、109°52.17′E,水深1598m)(图 1)的碳酸盐百分含量[18, 19],来进一步确定更为精细的年代框架。根据定年结果,BIS-187-61钻孔记录了约140ka以来,暨涵盖了末次间冰期(MIS 5期)以来南海西南部海洋环境的变化信息。
图 2 柱状样BIS-187-61的年龄框架a:柱状样BIS-187-61 Globigerinoides ruber氧同位素曲线;b:SPECMAP;c:柱状样BIS-187-61年龄控制点;d:MD92151孔碳酸盐百分含量;e:BIS-187-61孔碳酸盐百分含量Figure 2. Age model of core BIS-187-61 in the southwestern South China Seaa:oxygen isotope (δ18O) of Globigerinoides ruber in core BIS-187-61;b: SPECMAP; c:Control Point of the core BIS-187-61; d:Carbonate% of core MD972151;e:Carbonate% of core BIS-87-611.6 各沉积组分堆积速率的计算
为了量化展示出每个沉积组分真实变化情况,而避免百分比数据明显的反相关关系,本文计算了每个组分的堆积速率(Mass Accumulation Rate MAR, mg·cm2·ka -1)。根据钻孔年代框架及采样深度,计算可得该沉积柱样不同时期的线性沉积速率(Sedimentation Rate (SR),cm·ka-1),在此基础上MAR使用公式(2)求得:
$$ \text{MAR=1000}\times \text{wt}\text{. }\%\text{ }\times \text{DBD}\times \text{SR}\ $$ (2) 其中wt.%代表每个组分的质量百分比。
2. 结果
2.1 沉积物堆积速率
如图 3a所示,在约19~29、65~71以及120kaBP,研究区海域有较高的线性沉积速率。该柱样沉积物干密度变化范围较小,为0.6~0.9 g·cm-3。在此基础上,计算所得总的沉积物堆积速率与线性沉积速率变化基本保持一致,总体上表现为冰期(MIS 2和MIS 4期)高、间冰期(MIS 1, MIS 3和MIS 5期)低的特点。
2.2 末次间冰期以来BIS-187-61孔生源沉积相对含量变化
如图 4所示,陆源物质是BIS-187-61孔沉积物的主要贡献者,其质量百分比达65.28%~91.74%,碳酸盐的贡献次之,生物蛋白石和有机碳的含量则颇低。
过去140ka以来,BIS-187-61岩心中的碳酸盐含量变化范围为3.98%~28.43%,较低值出现在大约17~23、63~75、130~136kaBP,较高值出现在约1~12、50~55、79~84、100~109、119~128kaBP,其中最低值出现在69kaBP(3.98%),最高值出现在123kaBP(28.43%),平均值为15.26%(图 4d)。
生物蛋白石质量百分比为1.59%~6.23%,平均值是3.27%(图 4b)。大约在140~116kaBP期间,生物蛋白石含量相对较高,随后迅速下降,至107kaBP达到极小值1.76%,自107kaBP至14kaBP,生物蛋白石百分含量有一个缓慢上升的趋势,但在末次冰期晚期至全新世初生物蛋白石含量再次出现极低值,而后在全新世期间逐渐回升。有机碳在沉积物中仅占0.4%~0.93%,总体变化幅度不大,其平均值为0.68%,最低值出现在约123kaBP,最高值则出现在约36kaBP(图 4a)。
2.3 末次间冰期以来BIS-187-61孔生源沉积堆积速率变化
如图 5a所示,碳酸盐的堆积速率变化范围为210.1~1949.2mg·cm-2·ka-1,平均值为787.5 mg·cm-2·ka-1,在约123、78、65和29kaBP出现明显的极大值,分别为1740.55、1432.36、945.05和1949.19mg·cm-2·ka-1。
有机碳的堆积速率变化范围是16.2~82.9 mg·cm-2·ka-1,平均值为37.4 mg·cm-2 ka-1。在118~122、65~78、19~29kaBP有机碳平均堆积速率分别为36.2、64.9、63.8mg·cm-2·ka-1,高于相邻的时期(图 5b)。
如图 5c所示,生物蛋白石的堆积速率变化范围为60.9~199.8mg·cm-2·ka-1,平均值为180.1 mg·cm-2·ka-1。最小值出现在约107kaBP,最大值出现在29kaBP。与有机碳的堆积速率相似,生物硅堆积速率在118~122、65~71、19~29kaBP出现较高的值,分别为242.7、283.6、280.3mg·cm-2·ka-1。
如图 3及5所示,除碳酸盐以外,其他沉积物组分堆积速率与沉积物总的堆积速率基本保持一致,均表现为冰期(即MIS 4和MIS 2)时堆积速率较高,间冰期时较低。此外,末次间冰期MIS 5e期各组分堆积速率都出现了极大值。碳酸盐堆积速率在MIS 2期和MIS 5e期也出现了极大值,但在MIS 4期及MIS 5后期,其变化与其他组分存在差异。
3. 讨论
3.1 BIS-187-61孔碳酸盐沉积记录及其古海洋学意义
碳酸盐丰度是沉积物中最常用的古海洋环境指标,一直以来也是古海洋学研究的热点之一,早期南海的古海洋学即始于沉积物碳酸盐旋回的研究[24]。
研究表明,低纬度海域沉积物中碳酸盐相对含量变化主要取决于3个因素[18]:(1)表层海水的生产力,主要是有孔虫、颗石藻等钙质骨骼生物的生产力;(2)深层海水对碳酸盐的溶解作用,一般而言深度越大水压增大,水温下降,碳酸盐溶解作用越强;(3)陆源物质输入量的变化,即陆源输入的增加对碳酸盐造成了稀释作用。
如图 3a所示,BIS-187-61孔140kaBP以来的碳酸盐百分含量变化总体表现为冰期高、间冰期低的特征,呈现出典型的“大西洋型旋回”特征,这表明南海南部海域碳酸盐含量变化主要反映陆源物输入量的变化和稀释作用。如图 4b, c所示,BIS-187-61孔碳酸盐百分含量与该孔陆源物质含量呈现明显的负相关,而与生物硅和有机质百分含量无明显关系,这进一步证实南海南部MIS 5期以来沉积物碳酸盐旋回主要受控于陆源物质输入量。研究表明冰期时全球海平面下降80~150m,彼时南海西南部广阔的巽他陆架出露,并发育大型网状的古巺他河口[25],这可能是冰期时南海南部海域大量陆源物质的主要来源。BIS-187-61孔碳酸盐百分含量与XRF岩心扫描元素Ca的相对含量(图 4f)具有很好的线性相关性(R2=0.87),这表明该柱状样中碳酸钙是主要的碳酸盐矿物。
3.2 南海西南部古海洋生产力变化探讨
如图 5b, c所示,BIS-187-61孔有机碳和生物蛋白石堆积速率都有着较大幅度的波动,可能指示南海西南部海域140kaBP以来古海洋生产力存在明显的波动。海洋自生有机质C/N比值为6~7[26],由于浮游植物有机质降解时N相对于C优先损失[27],因此,典型的海洋沉积物有机质C/N比值为8~9。而陆生植物因富含纤维素和木质素等,其有机质C/N比值则较高(20~200)[28]。因此,海洋沉积物有机质中碳、氮元素比值可作为一个较好的指示海洋沉积物中有机质来源的指标。如图 4e所示,过去140kaBP以来BIS-187-61孔沉积物有机C/N比值变化为4~12,绝大部分时期C/N比均小于9,说明该孔沉积物中的有机质主要来自海洋自生生物,陆源有机质输入相对有限。因此,140 kaBP以来BIS-187-61孔有机碳的堆积速率可以一定程度上反映古海洋生产力的变化。根据Sarnthein等[29]提出的计算古海洋生产力计算公式(3),我们估算了BIS-187-61孔过去15万年的新生产力变化(图 6):
$$ \begin{align} & {{\text{P}}_{\text{new}}}=0.0238(\text{ }\%\text{ }{{\text{C}}^{0.6429}})(\text{S}{{\text{R}}^{\text{0}\text{.8575}}})(\text{DB}{{\text{D}}^{\text{0}\text{.5364}}})\times \\ & ({{\text{Z}}^{0.8292}}){{(\text{SR(1}-\%\text{ C)})}^{-0.2392}} \\ \end{align} $$ (3) 其中%C表示沉积物有机碳的百分含量,SR是沉积物线性沉积速率,Z是水深。考虑到仍然有少量的陆源有机碳的贡献,此处估算应该被认为是该海域过去新生产力的最高水平。此外,根据Eppley和Peterson[30]提出的Pnew=PP2/400(Pnew<100,PP表示初级生产力(以碳计)),我们进一步计算出该海域过去140ka以来的初级生产力变化(图 6)。如图 6所示,估算出的新生产力和初级生产力水平的变化范围分别为21.3~77.5和92.40~176.03 g·m-2·a-1,平均值是为41.7和127.41 g·m-2·a-1。估算结果显示该海域生产力在冰期,即MIS 4期和MIS 2期,高于邻近间冰期,但在MIS 5e和全新世后期也有明显增加。
如图 5,6所示,BIS-187-61孔生物蛋白石堆积速率和有机碳堆积速率及新生产力的变化有很好的相关性,高值均出现在MIS 2期、MIS 4期和MIS 5e期,而碳酸盐堆积速率的变化与生物蛋白石和有机碳的堆积速率变化则存在明显的差异,这表明该海域古海洋生产力的变化可能主要由硅质浮游生物生产力变化所引起,而与钙质生物生产力的变化关系较小。
3.3 过去140kaBP以来南海西南部海洋环境变化
已有的研究表明,在第四纪冰期间冰期旋回中,南海古生产力的变化主要受到东亚季风和海平面升降的控制(表 1),主要表现为冰期时东亚冬季风增强一方面导致上层海水的混合作用加强,另一方面导致南海北部冬季离岸上升流增强,同时陆源物质输入的增加也为南海带来更多的营养物质,导致南海北部生产力的升高。相反地,间冰期夏季风增强导致南海西部或西南部夏季上升流增强, 混合作用加强,为相应海域带来较多的营养物质,使得南海南部生产力得以提高。
表 1 南海不同海域的第四纪古生产力特征Table 1. Characteristics of the reconstructed productivity in different areas in the SCS位置 站位 北纬 东经 指标 变化特征 可能的影响因素 参考文献 南海
北部17928 18°9′36″ 119°26′24″ 底栖有孔虫丰度 末次冰期和MIS 6
期生产力较高冰期冬季风增强,冬季上升
流加强,而且陆源营养物质
输入量增加[31] 17937 19°30′ 117°39.9′ 沉积物中有机碳的含
量及不同有机碳比值生产力在MIS 2期
较高冰期冬季风强化, 海水混合程
度加强, 营养物质利用更充分
以及陆源输入增多导致营养
物质增加[32] 南海
西部17954 14°48′ 111°31′48″ Ba/(Zr+Rb)值底栖
有孔虫丰度和有机碳
通量间冰期生产力高,
MIS 3期最大夏季风增强,上升流发育,带
来大量营养物质[33, 34] MD05-2901 14°13′12″ 110°26′24″ 生源组分、颗石藻丰度 冰期生产力高间冰
期生产力低、末次冰
期生产力最高冰期海平面下降,陆源物质输
入增加,东北风发育也促进生
产力的提高[35, 36] BIS-187-61 11°25.5′ 111°17.0′ 有机碳通量、蛋白石通
量冰期生产力高,间冰
期低冰期陆源物质输入增多,营养
物质增多促进生产力提高本研究 南海
南部ODP1143 9°12′36″ 113°10′12″ 蛋白石百分含量及其堆积
速率钙质超微化
石丰度及堆积速率间冰期生产力高,冰
期生产力低间冰期夏季风增
强,上升流增强,营养物质增加[21, 22] MD05-2896 8°29′24″ 111°15′36″ Ba/Al比值 间冰期生产力高,
MIS 3期生产力较
高间冰期夏季风增强,上升流增
强,陆源有机物质输入增多[37] 如图 1所示,BIS-187-61孔处在南海西南部越南岸外夏季上升流影响的海域,夏季风导致的季节性上升流将为该海域上层水体带来较丰富的营养物质,从而刺激浮游植物的生长旺盛[38]。此外,现代东亚夏季风导致南海西部发育两个对称涡旋,并随之产生的离岸流(jet)[39, 40],也可能将沿岸的营养物质和颗粒物输送至本钻孔所在区域。据此可以推测间冰期时夏季风增强所导致的南海西南部上升流强度增加,会为本研究区域浮游植物生长带来更丰富的营养物质,从而导致海洋初级生产力和生源物质堆积速率的增加。然而如图 5, 6所示,BIS-187-61孔有机碳和生物蛋白石堆积速率以及根据有机碳估算出的古海洋生产力的高值出现在MIS 5e、MIS 4和MIS 2期,其中仅MIS 5e处在末次间冰期。总体而言该孔生源物质堆积速率表现为冰期高,而间冰期相对较低的变化趋势,与之前推测的间冰期夏季风增强、上升流增强可能引起海洋初级生产力和生源物质堆积速率增加的变化趋势相去甚远,因此, 本孔所记录的冰期时生源物质堆积速率的增加必然存在其他原因。
根据刘志飞等的研究结果[25](图 7a, b), 冰期时整个南海南部巽他陆架出露。与现代南海相比,BIS-187-61孔所处位置离陆地距离更近,这可能导致本研究区域在冰期时接受大量来自巽他陆架的陆源物质输入。此外,冰期时东亚冬季风增强,也将使整个南海接收更多来自亚洲大陆的陆源物质。如图 5d所示,陆源物质堆积速率在MIS 2和MIS 4期明显增加,与有机质和蛋白石堆积速率变化趋势基本保持一致(图 5),且这两个时期陆源物质百分含量也相对较高,证明冰期时本研究海域确实接收了更多来自东亚大陆或巽他陆架的陆源物质。陆源物质输入的增加一方面会为上层海洋带来更多的营养物质,从而刺激上层海洋浮游植物的生长,另一方面,陆源物质作为海洋沉降颗粒物最重要的压载物之一,其沉积通量(即堆积速率)的增加也将会携带更多的上层生源颗粒物往深海沉降,从而提高颗粒物的沉降速率,减少生源颗粒物在水柱中的停留时间,有利于生源物质的保存[41-43], 即发现大西洋有机碳向海底的输出通量随着离岸距离的增加(即接受的陆源输入的减少)而减少,而与上层海洋初级生产力的变化趋势无明显关系。综上所述,我们认为BIS-187-61孔所记录的冰期时(MIS 2和MIS 4期)生源物质和陆源物质的协同增加,反映了冰期时由于东亚季风增强以及巺他陆架出露,为研究海域带来大量陆源物质,可能促进浮游植物生长,生产力提高,同时对海洋上层颗粒物起到强烈的清扫作用,提高沉积物堆积速率,并在一定程度上增加了生源颗粒物的保存效率。
图 7 间冰期(a)和冰期(b)时南海地形地貌[25],及末次间冰期以来全球海平面的平均变化(c)Figure 7. The South China Sea during interglacial (a) and glacial periods (b) and the average global sea level change since last interglacial period (c)在约120kaBP,即MIS 5e期,可以看到所有的沉积物组分堆积速率都明显增加。区别于MIS 2和MIS 4期,MIS 5e期沉积碳酸盐的相对含量处于一个显著的高值,而陆源物质含量则出现相应的低值,这说明此时陆源输入相对较低,生源物质的增加主导了MIS 5e期沉积物堆积速率的增加。MIS 5e作为末次间冰期最盛期,被广泛深入的研究,以更好的与现代间冰期即全新世做对比,并帮助更好的预测全球变暖可能导致的未来全球环境变化。如图 7c(海平面变化)所示,MIS 5e期南海海平面和现今海平面相差不大[44, 45], 可以推测该时期南海地貌格局与现代相仿。因此,MIS 5e期BIS-187-61孔较高的有机碳、生物硅和碳酸钙等生源物质堆积速率可能是由于末次间冰期夏季风增强导致沿岸上升流增强,为研究海域带来更多营养物质,促使浮游生物大量繁盛,海洋生产力增加。该时期陆源物质堆积速率的相应增加则可能与浮游植物与陆源物质的相互作用有关,研究认为浮游植物藻类分泌的黏液会增加陆源颗粒物,尤其是一些细颗粒的陆源物质的胶结聚合,因此在陆源输入颗粒物向深海沉降过程中起到关键作用[29]。
4. 结论
(1) 碳酸钙是南海西南部柱样BIS-187-61孔主要的碳酸盐矿物,碳酸盐含量变化为3.98%~28.43%,总体表现出冰期低、间冰期高的特征,表现为典型的“大西洋型碳酸盐旋回”,表明南海南部深海沉积物中碳酸盐沉积主要受控于周边陆源物质输入稀释的控制;
(2) 南海西南部研究区沉积物有机碳和生物蛋白石堆积速率在MIS 2期和MIS4期和MIS 5e出现较高值。沉积有机质碳氮元素比表明该孔有机质主要来源于海洋自生有机碳,并据此估算出过去140kaBP以来该区域新生产力和初级生产力水平变化范围分别为21.3~77.5和92.40~176.03g·m-2·a-1;
(3) 冰期时(MIS 2和MIS 4期)南海西南部海域接受了更多来自东亚大陆和巽他陆架的陆源物质沉积,大量陆源物质输入可能为研究区域带来更丰富的营养物质,从而刺激上层生产力的增加,另外也提高了生源颗粒物的沉降速率和保存效率,从而导致生源物质堆积速率的增加;而MIS 5e期各沉积物组分堆积速率的高值则与末次间冰期夏季风增强、上升流增强有关。
-
图 6 九皋玄武岩气孔周围能谱面扫描元素含量分布图
a:单偏光图像,b、c:背散射图像,d-i:硅、铝、镁、铁、钙、磷元素能谱面扫描图。
Figure 6. EDS (energy dispersive spectrometer) images around the vesicles of the Jiugao basalts
a: Photograph of plane-polarized light; b-c: photograph of BSE; d-i: EDS (backscattered electrons) images of Si, Al, Mg, Fe, Ca, and P.
表 1 九皋和紫檀海山玄武岩主量元素地球化学数据
Table 1 Major elements of the Jiugao and Zitan basalts
% 海山 样品编号 SiO2 TiO2 Al2O3 Fe2O3T MnO MgO CaO Na2O K2O P2O5 LOI SUM 九皋
海山CWD16-1.1 49.80 2.29 17.75 12.77 0.07 2.91 3.16 1.31 1.95 0.57 7.43 100.01 CWD16-1.2 47.94 2.32 17.89 11.40 0.19 2.42 5.18 1.55 2.06 1.47 7.10 99.51 CWD16-1.3 48.16 2.31 17.36 12.65 0.09 3.18 4.49 1.59 2.25 0.51 6.80 99.38 CWD16-1.4 46.90 2.46 18.85 12.76 0.10 3.53 6.20 1.51 1.39 0.47 6.09 100.27 CWD16-1.5 48.78 2.34 17.79 13.30 0.09 3.04 3.90 1.23 1.87 0.60 7.29 100.23 CWD16-1.6 48.67 2.39 18.29 12.21 0.11 3.05 3.75 1.42 2.06 0.32 7.18 99.46 CWD16-2.1 47.56 2.43 18.15 13.61 0.07 2.34 3.14 1.08 1.88 0.71 8.39 99.36 CWD16-2.2 48.85 2.43 17.21 14.19 0.04 2.50 2.94 1.01 2.42 0.52 7.87 99.98 CWD16-2.4 48.29 2.46 18.58 11.49 0.19 3.35 6.26 1.63 1.29 0.38 5.94 99.84 CWD16-2.5 46.02 2.42 16.73 13.23 0.14 5.22 8.10 1.11 0.95 0.35 5.76 100.03 CWD16-2.6 45.92 2.62 18.90 13.51 0.09 2.08 4.93 1.47 1.47 1.00 7.33 99.30 CWD10-2② 47.81 1.34 15.13 12.57 0.10 7.58 7.98 1.88 0.82 0.08 4.58 99.87 CWD10-3 47.75 1.28 15.30 13.05 0.10 7.41 7.26 1.84 1.06 0.13 4.59 99.75 紫檀
海山CWD12-1① 51.03 1.30 15.20 14.19 0.02 2.88 4.88 1.86 3.57 0.41 4.79 100.13 CWD12-2 51.08 1.62 17.85 11.65 0.06 2.42 6.58 2.63 2.01 0.09 3.41 99.39 CWD12-3② 50.46 1.57 17.17 12.75 0.07 2.51 6.89 2.53 2.12 0.09 3.29 99.44 表 2 九皋和紫檀玄武岩微量元素地球化学数据
Table 2 Trace elements of the Jiugao and Zitan basalts
海山 样品编号 Sc V Cr Co Ni Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu 九皋海山 CWD16-1.1 24.9 103 319 10 104 18.4 50.8 627 64.1 286 63.6 2.31 567 55.1 58.9 9.93 40.3 7.54 2.31 CWD16-1.2 21.5 118 321 25.9 180 18.5 45.3 763 109 288 65.8 1.6 1070 117 64.9 13.4 54 9.21 2.78 CWD16-1.3 26.7 135 359 20.3 135 18.1 47.9 782 66.3 305 64.3 1.56 688 65.4 61.9 11.7 47.6 8.76 2.67 CWD16-1.4 28.1 212 350 24.1 113 17.9 34.9 735 44 320 69.1 1.39 601 47.1 64.2 9.7 39.1 7.55 2.4 CWD16-1.5 24.4 111 330 14.7 102 18.1 48.5 638 59.4 299 66.1 2.04 517 55.3 63.2 10.5 42.3 7.95 2.45 CWD16-1.6 25.4 156 335 22.6 124 18.5 43.2 704 43.4 314 68.5 1.43 579 46.1 60.2 9.38 38 7.25 2.26 CWD16-2.1 24.8 91 263 8.1 82.9 17.4 55 553 83.9 299 65.7 2.55 428 75.6 53.5 11.5 46.9 8.13 2.44 CWD16-2.2 24.9 120 326 5.67 57.6 14.4 56.9 499 107 329 67.7 2.37 427 97.3 52.6 17.9 74.6 13.7 3.92 CWD16-2.4 26.6 159 356 24.9 146 17.4 31.1 758 52.1 314 66.3 1.31 627 52.7 65.6 10.2 41.3 7.79 2.48 CWD16-2.5 27.6 243 258 32.2 121 18.4 21.5 619 46.3 291 63.3 0.86 411 42.4 61.3 8.86 36 7.04 2.24 CWD16-2.6 23.5 175 372 16.1 80.1 16.1 37.7 769 81.3 332 71.4 1.35 657 73.6 68.3 13.2 53.6 9.75 2.93 紫檀海山 CWD10-2② 30.5 220 418 44.1 337 17.3 30.2 141 18.7 74.2 7.52 2.62 41.9 6.15 9.38 1.72 8.32 2.22 0.842 CWD10-3 29.3 187 495 44.5 297 17.3 37.9 142 22.8 71.4 7.13 3.27 43.5 8.89 9.61 1.94 9.21 2.38 0.87 CWD12-1① 22.7 67 256 10.6 83.2 16.7 95.4 228 61.1 93 12.6 4.13 134 43.8 12.5 6.51 28.6 5.41 1.59 CWD12-2 30.1 162 186 29.5 136 20.2 56 224 16.3 97.7 13.6 2.89 105 7.25 11.7 1.68 7.74 1.91 0.79 CWD12-3② 31 171 185 24.2 99 20 61.2 221 18.4 97 13.4 3.02 99.8 8 12.8 1.99 9.22 2.28 0.875 海山 样品编号 Gd Tb Dy Ho Er Tm Yb Lu Hf Ta Pb Th U δEu δCe δY (La/Sm)N ∑REE 九
皋
海
山CWD16-1.1 8.48 1.25 7.56 1.67 4.78 0.71 4.42 0.716 5.92 3.68 10.9 4.98 1.15 0.88 0.61 1.38 4.6 203.67 CWD16-1.2 11.2 1.56 9.52 2.16 6.15 0.88 5.32 0.863 5.89 3.83 16.6 4.95 1.04 0.84 0.39 1.84 7.99 298.94 CWD16-1.3 9.73 1.41 8.28 1.76 4.88 0.714 4.4 0.696 6.2 3.89 13.7 5.21 1.04 0.88 0.54 1.33 4.7 229.9 CWD16-1.4 7.75 1.17 6.88 1.43 4.01 0.602 3.81 0.6 6.52 4.09 12.1 5.47 0.94 0.96 0.72 1.07 3.92 196.3 CWD16-1.5 8.7 1.29 7.65 1.66 4.75 0.71 4.45 0.727 6.12 3.82 20 5.06 0.96 0.9 0.63 1.27 4.38 211.64 CWD16-1.6 7.49 1.11 6.42 1.33 3.67 0.535 3.33 0.522 6.43 4.03 17.7 5.4 0.84 0.94 0.7 1.13 4 187.6 CWD16-2.1 9.82 1.39 8.39 1.93 5.45 0.791 4.84 0.792 6.24 3.85 15.2 4.87 1.12 0.83 0.44 1.59 5.85 231.47 CWD16-2.2 15.9 2.26 13.4 2.88 7.95 1.14 6.84 1.08 6.45 3.91 19.5 5.53 1.19 0.81 0.3 1.32 4.47 311.47 CWD16-2.4 8.22 1.21 7.07 1.49 4.11 0.599 3.72 0.592 6.47 4.07 14.7 5.2 0.67 0.95 0.68 1.23 4.26 207.08 CWD16-2.5 7.38 1.12 6.54 1.39 3.87 0.576 3.63 0.58 6.12 3.7 7.7 4.67 0.57 0.95 0.76 1.17 3.79 182.93 CWD16-2.6 10.9 1.59 9.58 2.1 5.93 0.87 5.35 0.849 6.83 4.37 13.7 5.56 1.35 0.87 0.53 1.38 4.75 258.55 紫
檀
海
山CWD10-2② 2.85 0.48 2.96 0.631 1.77 0.261 1.61 0.246 1.9 0.475 1.03 0.358 0.16 1.02 0.69 1.05 1.74 39.44 CWD10-3 3.1 0.514 3.2 0.699 1.94 0.285 1.78 0.274 1.83 0.452 0.943 0.374 0.18 0.98 0.56 1.16 2.35 44.69 CWD12-1① 7.02 0.982 5.94 1.33 3.68 0.517 3.04 0.479 2.01 0.752 9.07 0.67 0.42 0.79 0.18 1.66 5.09 121.4 CWD12-2 2.32 0.391 2.4 0.526 1.49 0.223 1.4 0.216 2.39 0.815 1.61 0.59 0.39 1.15 0.81 1.11 2.39 40.04 CWD12-3② 2.79 0.469 2.89 0.61 1.7 0.25 1.54 0.237 2.36 0.776 1.38 0.618 0.3 1.06 0.77 1.06 2.21 45.65 注:微量元素单位为10-6;δEu= EuN/(SmN × GdN)0.5,δCe= CeN/(LaN × PrN)0.5,δY=YN/(DyN × HoN)0.5。 -
[1] White W M. Isotopes, DUPAL, LLSVPs, and Anekantavada [J]. Chemical Geology, 2015, 419: 10-28. doi: 10.1016/j.chemgeo.2015.09.026
[2] White W M, Hofmann A W. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution [J]. Nature, 1982, 296(5860): 821-825. doi: 10.1038/296821a0
[3] Zindler A, Hart S. Chemical geodynamics [J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571. doi: 10.1146/annurev.ea.14.050186.002425
[4] 卜文瑞, 石学法, 彭建堂, 等. 大洋岛屿玄武岩低温蚀变作用及其对大洋过渡金属循环的贡献[J]. 海洋学报, 2007, 29(5):55-68 BU Wenrui, SHI Xuefa, PENG Jiantang, et al. Low-temperature alteration of oceanic island basalts and their contribution to transition metal cycle of the ocean [J]. Acta Oceanologica Sinica, 2007, 29(5): 55-68.
[5] 卜文瑞, 李力, 朱爱美, 等. 海底蚀变玄武岩中次生组分去除实验研究[J]. 地球科学进展, 2012, 27(10):1167-1172 BU Wenrui, LI Li, ZHU Aimei, et al. Leaching experiments of secondary components in altered submarine basalts [J]. Advances in Earth Science, 2012, 27(10): 1167-1172.
[6] Guy C, Daux V, Schott J. Behaviour of rare earth elements during seawater/basalt interactions in the Mururoa Massif [J]. Chemical Geology, 1999, 158(1-2): 21-35. doi: 10.1016/S0009-2541(99)00019-4
[7] Alt J C, Teagle D A H. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801 [J]. Chemical Geology, 2003, 201(3-4): 191-211. doi: 10.1016/S0009-2541(03)00201-8
[8] 陈建林, 马维林, 高水土, 等. 中太平洋结壳区海山燧石岩成因研究[J]. 海洋学报, 2003, 25(3):53-58 CHEN Jianlin, MA Weilin, GAO Shuitu, et al. Genetic study on flint from the crust area of the central Pacific Ocean mountains [J]. Acta Oceanologica Sinica, 2003, 25(3): 53-58.
[9] 陈建林, 马维林, 武光海, 等. 中太平洋海山富钴结壳与基岩关系的研究[J]. 海洋学报(中文版), 2004, 26(4):71-79 CHEN Jianlin, MA Weilin, WU Guanghai, et al. Research on the relationships between cobalt-rich crusts and substrate rocks in the Mid-Pacific Mountains [J]. Acta Oceanologica Sinica, 2004, 26(4): 71-79.
[10] 初凤友, 陈建林, 马维林, 等. 中太平洋海山玄武岩的岩石学特征与年代[J]. 海洋地质与第四纪地质, 2005, 25(4):55-59 doi: 10.16562/j.cnki.0256-1492.2005.04.010 CHU Fengyou, CHEN Jianlin, MA Weilin, et al. Petrologic characteristics and ages of basalt in Middle Pacific Mountains [J]. Marine Geology & Quaternary Geology, 2005, 25(4): 55-59. doi: 10.16562/j.cnki.0256-1492.2005.04.010
[11] Melson W G, Thompson G. Glassy abyssal basalts, Atlantic sea floor near St. Paul's Rocks: petrography and composition of secondary clay minerals [J]. Geological Society of America Bulletin, 1973, 84(2): 703-716. doi: 10.1130/0016-7606(1973)84<703:GABASF>2.0.CO;2
[12] Thompson G. A geochemical study of the low-temperature interaction of seawater and oceanic igneous rocks [J]. Transactions-American Geophysical Union, 1973, 54: 1015-1019.
[13] 鄢全树, 张平阳, 石学法, 等. 海底熔岩风化作用及其地质意义[J]. 海洋科学进展, 2017, 35(3):369-381 YAN Quanshu, ZHANG Pingyang, SHI Xuefa, et al. Weathering of seafloor lavas and its geological significance [J]. Advances in Marine Science, 2017, 35(3): 369-381.
[14] Koppers A A P, Staudigel H, Pringle M S, et al. Short‐lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10): 1089.
[15] Corliss J B. The origin of metal‐bearing submarine hydrothermal solutions [J]. Journal of Geophysical Research, 1971, 76(33): 8128-8138. doi: 10.1029/JC076i033p08128
[16] Hart S R. K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts [J]. Earth and Planetary Science Letters, 1969, 6(4): 295-303. doi: 10.1016/0012-821X(69)90171-X
[17] Thompson G. Metamorphic and hydrothermal processes: basalt-seawater interactions[M]//Floyd P A. Oceanic Basalts. Dordrecht: Springer, 1991: 148-173.
[18] 刘晖, 卢正权, 梅燕雄, 等. 海洋磷块岩形成环境与资源分布[J]. 海洋地质与第四纪地质, 2014, 34(3):49-56 LIU Hui, LU Zhengquan, MEI Yanxiong, et al. Depositional environment and world distribution of marine phosphorites [J]. Marine Geology & Quaternary Geology, 2014, 34(3): 49-56.
[19] 王吉中. 磷酸盐化对中太平洋海山富钴结壳物质组分的影响[D]. 中国地质大学(北京)博士学位论文, 2005 WANG Jizhong. Effects of phosphatization on composition of Co-rich crusts on central pacific seamounts[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2005.
[20] 李江山, 石学法, 刘季花, 等. 西太平洋富钴结壳中磷酸盐化的制约因素探讨[J]. 矿物学报, 2011, 31(S1):693-694 doi: 10.16461/j.cnki.1000-4734.2011.s1.465 LI Jiangshan, SHI Xuefa, LIU Jihua, et al. Restriction factors of phosphorylation in cobalt-rich crusts in the Western Pacific Ocean [J]. Acta Mineralogica Sinica, 2011, 31(S1): 693-694. doi: 10.16461/j.cnki.1000-4734.2011.s1.465
[21] 崔迎春, 石学法, 刘季花, 等. 磷酸盐化作用对富钴结壳元素相关性的影响[J]. 地质科技情报, 2008, 27(3):61-67 CUI Yingchun, SHI Xuefa, LIU Jihua, et al. Effects of phosphatization on the elemental association of cobalt-rich crusts [J]. Bulletin of Geological Science and Technology, 2008, 27(3): 61-67.
[22] 刘家岐, 兰晓东. 中太平洋莱恩海山富钴结壳元素地球化学特征及成因[J]. 海洋地质与第四纪地质, 2022, 42(2):81-91 LIU Jiaqi, LAN Xiaodong. Element geochemistry and genesis of cobalt-rich crust on the Line Seamount of the Central Pacific [J]. Marine Geology & Quaternary Geology, 2022, 42(2): 81-91.
[23] 任向文, 刘季花, 石学法, 等. 西太平洋Lamont海山中新世以来富钴结壳成矿环境的演化[J]. 海洋科学进展, 2006, 24(1):17-29 REN Xiangwen, LIU Jihua, SHI Xuefa, et al. Evolution of ore-forming condition of Co-rich crusts from Lamont Guyot in the western Pacific since the Miocene [J]. Advances in Marine Science, 2006, 24(1): 17-29.
[24] Hein J R, Koschinsk A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Cronan D S. Handbook of Marine Mineral Deposits. Boca Raton: CRC Press, 2017: 239-279.
[25] Ji L H, Liu G S, Huang Y P, et al. The distribution of iodine and effects of phosphatization on it in the ferromanganese crusts from the Mid-Pacific Ocean [J]. Acta Oceanologica Sinica, 2015, 34(8): 13-19. doi: 10.1007/s13131-015-0704-x
[26] Nishi K, Usui A, Nakasato Y, et al. Formation age of the dual structure and environmental change recorded in hydrogenetic ferromanganese crusts from Northwest and Central Pacific seamounts [J]. Ore Geology Reviews, 2017, 87: 62-70. doi: 10.1016/j.oregeorev.2016.09.004
[27] Jeong K S, Jung H S, Kang J K, et al. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: electron photomicrography and microprobe chemistry [J]. Marine Geology, 2000, 162(2-4): 541-559. doi: 10.1016/S0025-3227(99)00091-2
[28] 潘家华, 刘淑琴, Decarlo E. 大洋磷酸盐化作用对富钴结壳元素富集的影响[J]. 地球学报, 2002, 23(5):403-407 PAN Jiahua, LIU Shuqin, Decarlo E. The effects of marine phospharization on element concentration of Cobalt-rich crusts [J]. Acta Geoscientia Sinica, 2002, 23(5): 403-407.
[29] 武光海, 周怀阳, 凌洪飞, 等. 富钴结壳中的磷酸盐岩及其古环境指示意义[J]. 矿物学报, 2005, 25(1):39-44 doi: 10.16461/j.cnki.1000-4734.2005.01.007 WU Guanghai, ZHOU Huaiyang, LING Hongfei, et al. Phosphorites in Co-rich crusts and their palaeooceanographic singificance [J]. Acta Mineralogica Sinica, 2005, 25(1): 39-44. doi: 10.16461/j.cnki.1000-4734.2005.01.007
[30] 王洋, 方念乔. 多金属结壳生长间断期与磷酸盐化事件的关系[J]. 海洋学报, 2021, 43(1):102-109 doi: 10.12284/hyxb2021017 WANG Yang, FANG Nianqiao. The relationship between the growth discontinuity of polymetallic crusts and phosphatization events [J]. Acta Oceanologica Sinica, 2021, 43(1): 102-109. doi: 10.12284/hyxb2021017
[31] 朱佛宏. 太平洋海山玄武岩的磷酸盐化[J]. 海洋地质动态, 1988(7):9-10 ZHU Fohong. Phosphatization of Pacific seamount basalts [J]. Marine Geology Frontiers, 1988(7): 9-10.
[32] 朱克超. 麦哲伦海山区MA、MC、MD、ME、MF海山结壳基岩的岩石学[J]. 海洋地质与第四纪地质, 2002, 22(1):49-56 doi: 10.16562/j.cnki.0256-1492.2002.01.008 ZHU Kechao. Petrology of the substrate in seamounts MA, MC, MD, ME and MF from Magellan seamounts [J]. Marine Geology & Quaternary Geology, 2002, 22(1): 49-56. doi: 10.16562/j.cnki.0256-1492.2002.01.008
[33] 潘家华, 刘淑琴, 杨忆, 等. 太平洋水下海山磷酸盐的成因及形成环境[J]. 地球学报, 2004, 25(4):453-458 PAN Jiahua, LIU Shuqin, YANG Yi, et al. The origin and formation environment of phosphates on submarine guyots of the Pacific ocean [J]. Acta Geoscientica Sinica, 2004, 25(4): 453-458.
[34] 汪在聪, 李胜荣, 刘鑫, 等. 中太平洋WX海山富钴结壳磷酸盐矿物学研究及成因类型分析[J]. 岩石矿物学杂志, 2007, 26(5):441-448 WANG Zaicong, LI Shengrong, LIU Xin, et al. A mineralogical study and genetic analysis of phosphate in Co-rich crusts from the Central Pacific WX seamount [J]. Acta Petrologica et Mineralogica, 2007, 26(5): 441-448.
[35] Kellogg J N, Ogujiofor I J. Gravity field analysis of Sio Guyot: An isostatically compensated seamount in the Mid-Pacific Mountains [J]. Geo-Marine Letters, 1985, 5(2): 91-97. doi: 10.1007/BF02233933
[36] Nemoto K, Kroenke L W. Sio Guyot: a complex volcanic edifice in the western Mid-Pacific Mountains [J]. Geo-Marine Letters, 1985, 5(2): 83-89. doi: 10.1007/BF02233932
[37] Kroenke L W, Kellogg J N, Nemoto K. Mid-Pacific Mountains revisited [J]. Geo-Marine Letters, 1985, 5(2): 77-81. doi: 10.1007/BF02233931
[38] Wilson P A, Jenkyns H C, Elderfield H, et al. The paradox of drowned carbonate platforms and the origin of Cretaceous Pacific guyots [J]. Nature, 1998, 392(6679): 889-894. doi: 10.1038/31865
[39] Thiede J, Dean W E, Rea D K, et al. The geologic history of the Mid-Pacific Mountains in the central North Pacific Ocean; a synthesis of deep-sea drilling studies [J]. Initial Reports of the Deep Sea Drilling Project, 1981, 62: 1073-1120.
[40] Hamilton E L. Sunken Islands of the Mid-Pacific Mountains[M]. New York: Geological Society of America, 1956.
[41] Winterer E L, Metzler C V. Origin and subsidence of Guyots in Mid‐Pacific Mountains [J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B12): 9969-9979. doi: 10.1029/JB089iB12p09969
[42] Larson R L, Chase C G. Late Mesozoic evolution of the western Pacific Ocean [J]. Geological Society of America Bulletin, 1972, 83(12): 3627-3644. doi: 10.1130/0016-7606(1972)83[3627:LMEOTW]2.0.CO;2
[43] Ozima M, Honda M, Saito K. 40Ar-39Ar ages of guyots in the western Pacific and discussion of their evolution [J]. Geophysical Journal of the Royal Astronomical Society, 1977, 51(2): 475-485. doi: 10.1111/j.1365-246X.1977.tb06930.x
[44] Pringle M S, Duncan R A. Radiometric ages of basaltic lavas recovered at Sites 865, 866, and 869: Northwest Pacific atolls and guyots[C]//Proceedings of the Ocean Drilling Program. Scientific results. 1995, 142: 277-283.
[45] Winterer E L, Natland J H, Van Waasbergen R J, et al. Cretaceous guyots in the northwest Pacific: An overview of their geology and geophysics[M]//Pringle M S, Sager W W, Sliter W V, et al. The Mesozoic Pacific: Geology, Tectonics, and Volcanism. Washington: American Geophysical Union, 1993, 77: 307-334.
[46] Larson R L, Moberly R, Lancelot Y. Initial Reports of the Deep Sea Drilling Project 32[M]. Washington: U. S. Government Printing Office, 1975.
[47] Larson R L, Lancelot Y, Gardner J V. Magnetic, bathymetric, seismic reflection, and positioning data collected underway on Glomar Challenger, Leg 32[M]//Larson R L, Moberly R. Initial Reports of the Deep Sea Drilling Project 32. Washington: U. S. Government Printing Office, 1975: 393-427.
[48] Baker P E, Castillo P R, Condliffe E. Petrology and geochemistry of igneous rocks from Allison and Resolution guyots, Sites 865 and 866: Northwest Pacific atolls and guyots[C]//Proceedings of the Ocean Drilling Program. Scientific Results. 1995, 142: 245-261.
[49] 何欣, 孙国胜, 初凤友, 等. 中太平洋CA海山玄武岩中斜长石化学成分特征及地质意义[J]. 海洋学研究, 2017, 35(2):23-32 HE Xin, SUN Guosheng, CHU Fengyou, et al. Chemical characteristics and geological implication of plagioclase in CA Seamount basalts from the Middle Pacific [J]. Journal of Marine Sciences, 2017, 35(2): 23-32.
[50] Chen S S, Liu J Q. Geochemical characteristics and geological significance of Cretaceous phonotephrite from the Mid-Pacific Mountains [J]. Science China Earth Sciences, 2018, 61(6): 745-764. doi: 10.1007/s11430-017-9172-4
[51] 中国大洋矿产资源研究开发协会办公室. 中国大洋海底地理实体名录-2016[M]. 北京: 海洋出版社, 2016 China Ocean Mineral Resources Research and Development Association Office. Chinese Gazetteer of Undersea Features on the International Seabed, 2016[M]. Beijing: China Ocean Press, 2016.
[52] Li X H, Sun M, Wei G J, et al. Geochemical and Sm-Nd isotopic study of amphibolites in the Cathaysia Block, southeastern China: evidence for an extremely depleted mantle in the Paleoproterozoic [J]. Precambrian Research, 2000, 102(3-4): 251-262. doi: 10.1016/S0301-9268(00)00067-X
[53] Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry [J]. Talanta, 2000, 51(3): 507-513. doi: 10.1016/S0039-9140(99)00318-5
[54] Gurenko A A, Hoernle K A, Hauff F, et al. Major, trace element and Nd–Sr–Pb–O–He–Ar isotope signatures of shield stage lavas from the central and western Canary Islands: insights into mantle and crustal processes [J]. Chemical Geology, 2006, 233(1-2): 75-112. doi: 10.1016/j.chemgeo.2006.02.016
[55] 苏蓉. 中太平洋CNW海山玄武岩岩石地球化学特征及对富钴结壳生长的影响[D]. 吉林大学硕士学位论文, 2015 SU Rong. Geochemical characteristics of basalt and effect of cobalt-rich crusts growth in the Mid-Pacific CNW Seamount[D]. Master Dissertation of Jilin University, 2015.
[56] 李超. 中太平洋CH海山玄武岩地球化学特征及富钴结壳成因[D]. 吉林大学硕士学位论文, 2013 LI Chao. Geochemical characteristics of basalt and research on Co-rich crust formation in the Mid-Pacific CH Seamount[D]. Master Dissertation of Jilin University, 2013.
[57] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[58] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies [J]. Developments in Geochemistry, 1984, 2: 63-114.
[59] Wei X, Zhang Y, Shi X F, et al. Co-occurrence of HIMU and EM1 components in a single Magellan seamount: implications for the formation of west pacific seamount province [J]. Journal of Petrology, 2022, 63(4): egac022. doi: 10.1093/petrology/egac022
[60] 任向文. 西太平洋富钴结壳成矿系统[D]. 中国科学院研究生院博士学位论文, 2005 REN Xiangwen. The metallogenic system of Co-rich manganese crusts in Western Pacific[D]. Doctor Dissertation of University of Chinese Academy of Sciences, 2005.
[61] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4
[62] 刘佳辉, 曲扬, 李伟强, 等. 西太平洋铁锰结壳中两类不同成因磷酸盐的元素特征、形成机制及指示意义[J]. 海洋地质与第四纪地质, 2022, 42(2):36-45 doi: 10.16562/j.cnki.0256-1492.2021052701 LIU Jiahui, QU Yang, LI Weiqiang, et al. Elemental distribution pattern and forming mechanism of the two types of phosphates in ferromanganese crust in Western Pacific Ocean and their implications [J]. Marine Geology & Quaternary Geology, 2022, 42(2): 36-45. doi: 10.16562/j.cnki.0256-1492.2021052701
[63] Koschinsky A, Hein J R. Marine ferromanganese encrustations: archives of changing oceans [J]. Elements, 2017, 13(3): 177-182. doi: 10.2113/gselements.13.3.177