中印度洋Edmond热液区黄铁矿中银的赋存状态和富集机制研究:来自矿物学的证据

陈柯安, 张慧超, 方浩原, 陶春辉, 梁锦, 杨伟芳, 廖时理

陈柯安,张慧超,方浩原,等. 中印度洋Edmond热液区黄铁矿中银的赋存状态和富集机制研究:来自矿物学的证据[J]. 海洋地质与第四纪地质,2023,43(3): 84-92. DOI: 10.16562/j.cnki.0256-1492.2022101101
引用本文: 陈柯安,张慧超,方浩原,等. 中印度洋Edmond热液区黄铁矿中银的赋存状态和富集机制研究:来自矿物学的证据[J]. 海洋地质与第四纪地质,2023,43(3): 84-92. DOI: 10.16562/j.cnki.0256-1492.2022101101
CHEN Kean,ZHANG Huichao,FANG Haoyuan,et al. Mode of silver occurrence in pyrite from the Edmond hydrothermal field, Central Indian Ridge: mineralogical evidence[J]. Marine Geology & Quaternary Geology,2023,43(3):84-92. DOI: 10.16562/j.cnki.0256-1492.2022101101
Citation: CHEN Kean,ZHANG Huichao,FANG Haoyuan,et al. Mode of silver occurrence in pyrite from the Edmond hydrothermal field, Central Indian Ridge: mineralogical evidence[J]. Marine Geology & Quaternary Geology,2023,43(3):84-92. DOI: 10.16562/j.cnki.0256-1492.2022101101

中印度洋Edmond热液区黄铁矿中银的赋存状态和富集机制研究:来自矿物学的证据

基金项目: 国家自然科学基金“新疆灰绿山-满硐山矿集区金成矿机制研究:来自相平衡计算和硫化物微区分析的限定”(41802113),“深海热液系统孔域原位多参数探测-观测装置”(42127807);中央高校基本科研业务费“西南印度洋中脊超基性岩赋存硫化物成矿作用研究”(2019B08214);自然资源部第二海洋研究所及中央级公益性研院所基本科研业务费专项资金(SZ2201);中国大洋协会项目“多金属硫化物合同区资源勘探与评价”(DY135S1-01)
详细信息
    作者简介:

    陈柯安(1998—),男,硕士研究生,主要研究海底热液硫化物中金的成矿作用,E-mail:1187937175@qq.com

    通讯作者:

    张慧超(1990—),男,博士,硕士生导师,主要研究热液金矿成矿作用,E-mail: zhanghch2012@126.com

  • 中图分类号: P736.3

Mode of silver occurrence in pyrite from the Edmond hydrothermal field, Central Indian Ridge: mineralogical evidence

  • 摘要: 随着对海底热液多金属硫化物矿床的研究越来越深入,贵金属金(Au)和银(Ag)的赋存形式和沉淀机制被科学家广泛关注。相比于Au,前人对大洋中脊热液区中Ag的产出状态和富集机制研究相对较少。中印度洋Edmond热液区Ag平均含量为47×10−6,明显高于洋中脊环境产出的多金属硫化物中的平均Ag含量(2.78×10−6)。通过光学显微镜和扫描电镜对Edmond热液区硫化物样品进行了详细的观察,确定了该热液区矿物组合、分期以及自然银的赋存形式,并初步探讨了自然银的沉淀机制。Edmond热液区硫化物主要为闪锌矿,其次是黄铁矿、黄铜矿和白铁矿,此外还观察到针钠铁矾、重晶石、硬石膏以及自然银等矿物。根据矿物结构和共生组合,Edmond热液区硫化物成矿过程大致可以分为3个阶段:阶段I的主要矿物组合为一期黄铁矿(Py1)、重晶石、硬石膏等;阶段II主要矿物为白铁矿;阶段III则有二期黄铁矿(Py2)、黄铜矿、粗粒闪锌矿、等轴古巴矿等矿物结晶。自然银主要以细小颗粒的形式存在于Py1的边缘或者内部包体之中。Ag在Edmond热液区的主要迁移形式为AgCl2,高温热液与海水混合作用导致的温度和Cl浓度降低以及pH值的升高是导致自然银沉淀的主要影响因素。
    Abstract: With the increase in study on submarine polymetallic sulfides, the mechanisms of occurrence and precipitation of gold and silver have become a hotspot of research. Compared with gold, the precipitation mechanism of silver from the hydrothermal field at mid-ocean ridge is poorly studied. The sulfide samples from Edmond hydrothermal field were studied in optical microscopy and scanning electron microscopy. The mineral assemblage, stages of mineralization and the occurrence of native silver were determined, and precipitation mechanism of native silver were also discussed. Results show that the average silver content in the samples was 47×10−6, which is significantly higher than that (2.78×10−6) in sulfide ores from hydrothermal fields of the mid-ocean ridge. Sphalerite was the most abundant sulfide, followed by pyrite, marcasite and chalcopyrite; other minerals including ferrinatrite, barite, anhydrite, and native silver were also observed. In mineral texture and assemblages, the sulfide mineralization process could be divided into three stages. The mineral assemblages in first stage contained pyrite (Py1), barite, and anhydrite; the second stage contained marcasite, and the third stage included pyrite (Py2), chalcopyrite, coarse sphalerite, and isocubanite. Native silver existed mainly in the form of fine particles at the edge or inner inclusions of Py1. The main existing form of silver in the Edmond hydrothermal field was AgCl2-. The decrease in Cl- concentration, the increase in pH value, and the decrease in temperature caused by the mixing of high temperature hydrothermal and seawater were the main factors on the native silver precipitation.
  • 椒江凹陷是东海陆架盆地重要的勘探战场,已钻探井在古新统月桂峰组钻遇5.7 m薄油层和湖相烃源岩,证实凹陷具备基本的油气地质条件[1]。长期以来,对月桂峰组烃源岩的品质和规模认识不足制约了该凹陷的勘探进程。受油气勘探程度的制约,前人研究多集中在椒江凹陷构造演化与沉积体系及物源等基础地质方面[2-4],少量有关月桂峰组湖相烃源岩的研究也仅针对其地球化学特征及生烃潜力研究[5-7],或将丽水-椒江作为整体进行构造、烃源及成藏研究[8-10],针对椒江凹陷主力源岩月桂峰组湖相泥岩的系统性研究相对薄弱,本文利用地震、地化、地质等资料,对椒江凹陷主力源岩月桂峰组湖相泥岩开展系统性研究,明确月桂峰组湖相烃源岩发育受古生产、保存条件、沉降速率等因素控制,建立烃源岩发育地质模式,对该区带下步勘探具有指导意义。

    椒江凹陷地处东海陆架盆地西南部,西邻浙闽隆起,东接雁荡凸起,南部与丽水凹陷相接,北部是钱塘凹陷,整个椒江凹陷面积为3500 km2,最大残余地层厚度7500 m,是典型的中、新生代脊状断陷盆地,总体具东断西超、东陡西缓的特征,凹陷内部自西向东可划分为椒江B洼、金华低凸起和椒江A洼等3个NE-SW向的次级构造单元(图1)。

    图  1  椒江凹陷构造位置及构造区划图
    Figure  1.  Tectonic background of the Jiaojiang Sag

    椒江凹陷具有复合断陷的构造特征,总体可划分为4个构造演化阶段:晚白垩世至古新世的断陷阶段(Tg—T80)、早中始新世的拗陷阶段(T80—T40)、晚始新世至渐新世抬升剥蚀阶段(T40—T20)和中新世以后的区域沉降阶段(T20至今)[11],与南部的丽水凹陷具有一定的可对比性。椒江凹陷烃源岩发育和断裂演化发育决定了主力勘探层系为古新统月桂峰组、灵峰组、明月峰组,与实钻结果油气显示和油层均位于古新统是一致的[12-13]图2)。区域上,断陷早期的月桂峰组发育陆相淡水湖泊-三角洲沉积,岩性以大套暗色泥岩、灰色粉砂岩夹细砂岩为主,最大厚度近3000 m,是该凹陷的主力烃源层段。断陷晚期的灵峰组和明月峰组总体发育滨浅海-三角洲沉积,灵峰组上段和明月峰组下段发育受西部浙闽隆起大物源控制的三角洲厚层细砂岩,是凹陷重要的储层发育层段;灵峰组中段和明月峰组中段发育受区域海侵控制的巨厚滨浅海泥岩,是凹陷的区域盖层。

    图  2  椒江凹陷地层综合柱状图
    Figure  2.  Chrono-stratigraphic chart of the Jiaojiang Sag

    椒江凹陷现有探井5口,仅缓坡近洼区J-4井钻遇月桂峰组,其余4口井钻在隆起或低凸起上,没有钻遇月桂峰组。J-4井为1996年钻探的老井,多年多轮次的老井复查,分析化验资料丰富、齐全,本文烃源岩有机质丰度、氯仿沥青“A”实验数据来源于1996年海洋石油勘探开发研究中心、2003年中国石油天然气股份有限公司中国石油勘探开发研究院实验中心;有机质成熟度实验数据来源于1996年海洋石油勘探开发研究中心;生物标志化合物实验数据来源于2012年长江大学实验室;无机元素实验数据来源于2011年天津地质矿产研究所;干酪根镜检数据来源于2021年中国地质大学(北京)能源实验中心;有机质孢藻屑及藻类组分含量实验数据来源于2006年同济大学海洋与地球科学学院。

    断陷早期月桂峰组发育完整的三段式旋回,符合陆相断陷湖盆的一般演化规律。湖盆初始期(月桂峰组下段沉积期),断陷活动较弱,湖盆面积小而水浅,西部缓坡发育三角洲,向东逐渐过渡到滨浅湖沉积,东部陡坡发育陡坡扇与中深湖相沉积,中深湖相沉积范围较小(图3a);湖盆扩张期(月桂峰组中段沉积期),断陷活动增强,可容纳空间进一步增加,湖盆面积大而水深,发育面积广阔的中深湖相沉积,缓坡三角洲沉积与陡坡扇三角洲沉积范围最小,为椒江凹陷优质烃源岩最发育期(图3b);湖盆萎缩期(月桂峰组上段沉积期),断陷活动减弱,西部缓坡三角洲向洼推进,湖盆面积最小,中深湖相沉积范围最小(图3c)。

    图  3  椒江凹陷月桂峰组沉积相
    Figure  3.  Sedimentary facies of the Yueguifeng Formation in the Jiaojiang Sag

    J-4井钻遇了月桂峰组残余地层(月桂峰组中下段),井区缺失月桂峰组上段地层。月桂峰组下段主要为三角洲前缘薄层浅灰色细砂岩与滨浅湖相厚层深灰色、灰色泥岩交互沉积,地层总厚度为166.4 m,泥岩总厚度为125.3 m,泥地比为75.3%,其中深灰色泥岩厚度116.3 m;月桂峰组中段主要为中深湖相厚层深灰色质纯泥岩,地层总厚度为107.8 m,泥岩总厚度为103.5 m,泥地比为96%,其中深灰色泥岩厚度101.2 m(图4)。

    图  4  J-4井月桂峰组综合柱状图及岩性发育特征
    Figure  4.  The composite log and lithological development characteristics of Well J-4 in the Yueguifeng Formation

    有机质丰度是衡量烃源岩品质优劣的直接指标。结合各段有机质丰度特征,对各段烃源岩有机质丰度进行了精细评价。椒江凹陷月桂峰组烃源岩有机质丰度特征显示,月桂峰组中段泥岩有机碳(TOC)含量为2.1%~4.6%,平均为3.1%;生烃潜力(S1+S2)为5.0~18.3 mg/g,平均为11.1 mg/g;氯仿沥青“A”含量为0.0587%~0.1138%,平均为0.0876%;总烃(HC)含量为(322~593)×10−6,平均为432×10−6图5a表1)。月桂峰组下段泥岩TOC含量为1.9%~3.2%,平均为2.5%;S1+S2含量为0.9~12.5 mg/g,平均为7.6 mg/g;氯仿沥青“A”含量为0.0341%~0.1327%,平均为0.0640%;总烃含量为(174~598)×10−6,平均为322×10−6图5a表1)。因此,依据陆相烃源岩的评价标准(SY/T5735-1995),月桂峰组烃源岩总体为好—很好烃源岩,纵向上,月桂峰组中段各项指标明显优于月桂峰组下段,是烃源岩发育最好的层段。

    图  5  椒江凹陷月桂峰组烃源岩有机质丰度(a)及类型判别图(b)
    Figure  5.  The organic matter abundance (a) and kerogen type (b) of Yueguifeng source rock in the Jiaojiang Sag
    表  1  椒江凹陷月桂峰组烃源岩有机质丰度
    Table  1.  The abundance of organic matter of Yueguifeng source rock in the Jiaojiang Sag.
    井号 层位 TOC/% S1+S2/(mg/g) HI/(mg/g) 氯仿沥青“A”/% HC/10-6
    J-4 月中段 3.1(9)
    2.1~4.6
    11.0(8)
    5.0~18.3
    330(8)
    184~398
    0.0876(8)
    0.05870.1138
    432(8)
    322~593
    J-4 月下段 2.5(11)
    1.9~3.2
    7.6(11)
    0.9~12.5
    316(11)
    159~391
    0.0640(10)
    0.03410.1327
    322(10)
    174~598
    备注:平均值(频数)/(最小值~最大值)。
    下载: 导出CSV 
    | 显示表格

    烃源岩有机质类型是衡量有机质生烃演化性质的重要标志。烃源岩 HI-Tmax的关系图揭示,研究区月桂峰组以Ⅱ1-Ⅱ2型有机质为主,少部分Ⅲ型(图5b),生烃潜力良好;月桂峰组中段和月桂峰组下段烃源岩干酪根类型无明显差异。月桂峰组烃源岩干酪根氧碳比(O/C)为 0.04~0.27,氢碳比(H/C)为 0.52~1.47,总体上以Ⅱ型有机质为主。

    有机质成熟度是反映有机质向烃类转化程度的重要指标。椒江凹陷已钻井揭示月桂峰组烃源岩有机质Ro为0.43%~0.58%,平均0.50%,(图6a),处于未成熟—低成熟,尚未开始大量生烃。究其原因,样品点主要来源于西部缓坡近洼区J-4井,井区月桂峰组埋藏深度22602540 m,埋藏相对较浅,成熟度总体偏低,东侧椒江A洼洼中月桂峰组烃源岩埋深大,普遍在3000 m以深,最大可达7000 m,按照地温梯度3.0℃/100m、Ⅱ型干酪根估算,已达成熟—高成熟阶段[14]图6b)。

    图  6  J-4井区月桂峰组烃源岩成熟度(a)及椒江凹陷月桂峰组顶面成熟度(b)
    Figure  6.  The Ro values of the Yueguifeng source rock in Well J-4 area (a) and maturity of top Yueguifeng Formation in the Jiaojiang Sag (b)

    烃源岩正构烷烃的峰型分布可以反映有机质的来源,对于未成熟样品而言,长链正构烷烃(>nC23)指示陆源植物来源,短链正构烷烃(<nC20)指示藻类输入。椒江凹陷月桂峰组烃源岩正构烷烃多呈双峰型分布,长链成分和短链成分正构烷烃的丰度接近(∑C21–/∑C22+=0.57~1.65,平均1.07),指示椒江凹陷月桂峰组烃源岩具有陆源高等植物和水生生物双重母质来源(图7)。

    图  7  椒江凹陷月桂峰组烃源岩饱和烃总离子流和色质谱图
    Figure  7.  Total ion flux and chromatographic mass spectrum of saturated hydrocarbons of the Yueguifeng source rock in the Jiaojiang Sag

    类异戊二烯烃(主要是姥植比)的分布和丰度可以反映烃源岩沉积过程中古水体的氧化还原条件,部分反映沉积有机质的来源[15-16]。通常,当Pr/Ph<0.8 时可判断为强还原环境,当0.8<Pr/Ph<3.0时可判断为还原环境,当Pr/Ph>3.0 时可判断为氧化环境。椒江凹陷月桂峰组烃源岩Pr/Ph为1.0~2.0,平均1.6,形成于还原环境,对初始有机质的富集与保存非常有利。

    甾烷的类型和分布模式同样可以指示湖泊的初级生产力,通常认为C27规则甾烷、4-甲基甾烷主要来源于浮游藻类,C29规则甾烷反映陆源高等植物贡献[17]。椒江凹陷月桂峰组中段、月桂峰组下段样品均以高含量 C29规则甾烷、高含量C304-甲基甾烷为特征,甾烷碳数分布模式及相对组成基本相同,呈反“L”型,同样说明椒江凹陷月桂峰组烃源岩具有陆源高等植物和水生生物双重母质来源[7]

    沉积岩中某些微量元素的含量高低,特别是某些相关元素的比值,不受成岩等次生、后生变化的影响,能够成为沉积环境的良好判别标志[18-19]

    古盐度:沉积岩中的Sr、B、Sr/Ba可以作为古盐度的判别指标。通常Sr/Ba<0.6指示淡水,Sr/Ba>1.0指示咸水,Sr/Ba介于0.6~1.0指示半咸水,高的B/Ga比值(>5.0)指示咸水的沉积环境。椒江凹陷月桂峰组泥岩Sr<300×10−6,B<40×10−6,Sr/Ba<0.6,B/Ga<2.6(图8),综合判断月桂峰组沉积时期古湖泊总体为淡水环境。

    图  8  椒江凹陷J-4井月桂峰组烃源岩元素分析
    Figure  8.  The elemental analysis of Well J-4 of the Yueguifeng source rock in the Jiaojiang Sag

    古气候:沉积岩中的 Sr/Cu、SiO2/Al2O3反映古气候比较敏感,被广泛应用于古气候的研究当中[20]。通常Sr/Cu<7.0指示温湿气候,Sr/Cu>10指示干热气候。SiO2/Al2O3>4 时,指示气候干燥; 反之,在潮湿气候下,化学风化较为强烈,SiO2遭受搬运迁移,而 Al2O3大量富集,相应的 SiO2/Al2O3的值就会变小,一般认为SiO2/Al2O3<4 时指示潮湿气候。椒江凹陷月桂峰组泥岩Sr/Cu<10, SiO2/Al2O3<4(图8),表明当时整体处于温暖湿润的气候条件,利于湖泊高生产力的形成。

    古氧相:沉积岩中V/Cr常被用来判别氧化还原条件,V/Cr<2一般指示氧化环境,V/Cr>4.25指示还原环境,2.00<V/Cr<4.25指示弱氧化-弱还原环境。椒江凹陷月桂峰组泥岩V/Cr比值为2.0~3.0,Pr/Ph值为1.0~2.0(图8),反映月桂峰组沉积时期处于弱氧化-弱还原条件。

    总之,研究区泥岩微量元素指标揭示月桂峰组沉积期为温暖湿润的古气候,以淡水湖泊沉积环境为主,古氧化还原条件为还原条件(图8)。温暖湿润的古气候有利于藻类等低等水生生物的繁盛,同时藻类大量死亡后又形成还原环境,有利于有机质的保存。

    椒江凹陷主要发育中小型规模生烃洼陷,烃源岩的品质高低直接决定了其能否形成“小而肥”的富烃洼陷。研究认为,椒江凹陷湖相优质烃源岩的形成主要受高古湖泊生产力、良好保存条件以及较高沉降速率等3种因素共同控制。

    高生产力是陆相湖盆发育优质烃源岩的首要条件。J-4井月桂峰组藻类化石中以淡水的盘星藻占绝对优势,孢粉相对较少,且主要为飘落至湖中具有气囊的松花粉,干酪根显微组分主要为藻质体(图9-10),因此推测月桂峰组有机质来源为水生藻类和陆源高等植物双母质来源,且水生藻类母质来源占比较大。根据古生物鉴定结果中藻类含量与反映有机质丰度指标的TOC、HI含量可知,其具有明显的正相关性,即TOC含量随着藻类含量的增加而增加,大部分样点的HI含量随藻类含量增加而增加,但存在两个HI含量在200 mg/g·TOC以下而藻类含量为60%~70%的异常点,因实验样品均来自岩屑,可能存在其他层位样品掉块,待进一步实验分析验证(图11)。西部缓坡带受浙闽隆起物源控制发育三角洲-滨浅湖相沉积,主要为陆源高等植物母质输入,烃源岩品质相对较差;中-东部洼槽带受缓坡三角洲影响较小,湖泊水生藻类母质输入为主,烃源岩品质最优。

    图  9  椒江凹陷J-4井月桂峰组烃源岩孢藻屑组成
    Figure  9.  Composition of spores and algae fragments in the Yueguifeng source rock in the Jiaojiang Sag
    图  10  椒江凹陷J-4井月桂峰组烃源岩干酪根镜检
    Figure  10.  Microscope images of kerogen from Yueguifeng source rock of Well J-4 in the Jiaojiang Sag
    图  11  椒江凹陷月桂峰组烃源岩藻类含量与有机质富集关系
    Figure  11.  Relationship between algae content and organic matter abundance of the Yueguifeng source rock in the Jiaojiang Sag

    根据前文所述,有机地球化学Ph/Pr值和无机地球化学元素V/Cr值均能反映水体的氧化还原环境。低Ph/Pr值、高V/Cr值反映了还原水体环境。根据Ph/Pr值分别与TOC、HI含量相关性可知,Ph/Pr值与TOC、HI含量呈现明显的负相关,即TOC、HI含量伴Ph/Pr值减小而增加(图12)。V/Cr值与TOC、HI含量呈现弱的正相关性,存在个别异常点,可能是无机元素分析与有机质丰度分析的取样年份不同所致,HI与V/Cr值样品均为深度段内岩屑,深度并没有完全一一对应,有待后续一次取全取准分析样品验证。总之,椒江凹陷月桂峰组烃源岩随沉积水体还原性增强,有机质丰度基本表现为逐渐增加、类型逐渐变好。

    图  12  椒江凹陷月桂峰组烃源岩氧化还原环境与有机质富集关系
    Figure  12.  Relationship between redox condition and organic matter abundance of the Yueguifeng source rock in the Jiaojiang Sag

    高沉降速率是形成深水湖盆的必要条件,深水环境易于形成上下分层水体,下部水体更易形成还原环境,对有机质的聚集、保存具有明显的促进作用[21-25]。姜雪等[24]研究认为在淡水-微咸水环境下,优质烃源岩的发育通常需要满足沉降速率>100 m/Ma、断层活动速率>100 m/Ma、沉积/沉降速率介于0.7~1之间的要求。椒江凹陷主力洼陷椒江A洼月桂峰期沉降速率>500 m/Ma、控洼断层活动速率>400 m/Ma,能提供充足的沉积物可容纳空间,中东部洼陷区在月桂峰组沉积期长期处于欠补偿状态,利于深水湖盆和强还原环境的形成,从而对优质烃源岩的发育和保存起到良好促进作用。

    月桂峰组沉积时期气候温暖湿润,水生生物输入丰富,为偏还原的淡水湖泊环境,并且在湖盆中心水生生物输入以及保存条件都达到了最好的条件,因此,在中深湖沉积相发育了月桂峰组湖相最优质的烃源岩,并以湖盆为中心,向凹陷边缘水生生物输入逐渐减少,水体还原性逐渐减弱,因而发育的烃源岩要差于湖盆中心。也就是说湖盆中心发育最优烃源岩,烃源岩有机质丰度高,以Ⅱ-Ⅰ型为主,同时埋深大,有机质成熟度为中—高;三角洲前缘-滨浅湖沉积相发育中等—好的烃源岩,烃源岩有机质丰度较高,以Ⅱ2-Ⅲ型为主,埋深适中,有机质成熟度中等;三角洲平原发育品质最差的烃源岩,烃源岩有机质丰度最低,以Ⅲ型为主,埋深浅,有机质成熟度低,图13中以月桂峰组中段为例自西向东划分三角洲、滨浅湖、中深湖相界面。月桂峰组中段湖盆范围最广,同时中深湖平面上分布最广,纵向上沉积最厚,烃源岩指标最好,发育椒江凹陷最优质的烃源岩。

    图  13  椒江凹陷月桂峰组烃源岩发育模式
    剖面位置见图1中a-a’。
    Figure  13.  The schematic model of the formation of the Yueguifeng source rock in the Jiaojiang Sag
    The section position is shown in Fig. 1.

    (1)断陷早期月桂峰组湖相暗色泥岩是椒江凹陷主力烃源岩,有机质丰度高,有机质类型好,以Ⅱ1-Ⅱ2型为主,总体上处于低成熟—成熟阶段;其中湖扩期月桂峰组中段中深湖相暗色泥岩平面上分布广,纵向上厚度大,品质最佳,是椒江凹陷主力烃源岩层段。

    (2)建立月桂峰组条带状烃源岩发育模式,即洼槽带水生生物贡献为主,有机质生产力高,还原性水体环境,有机质保存条件亦最好,同时具有较高的沉积速率,发育中深湖相优质烃源岩;缓坡带主要为陆源高等植物母质输入,有机质生产力中等,偏氧化性水体环境,发育滨浅湖相中等—好烃源岩。

    (3)月桂峰组优质烃源岩发育模式有助于下步精细化落实烃源岩分布面积(或范围),圈定优质烃源岩体积,重新估算洼陷资源潜力,同时为明确洼陷下步勘探方向提供烃源方面的支持。

  • 图  1   中印度洋Edmond热液区地理位置[26]

    Figure  1.   Geographical location of the Edmond hydrothermal field in the Central Indian Ocean[26]

    图  2   中印度洋Edmond热液区代表性硫化物样品

    Figure  2.   Typical sulfide samples from the Edmond hydrothermal field in the Central Indian Ocean

    图  3   Edmond热液区黄铁矿和其他矿物显微照片

    a. 细粒黄铁矿,b-d. 重晶石和硬石膏,e. 自形—半自形黄铁矿,f-i. 两期黄铁矿共生所形成的长条状和椭圆形的包裹体。Py1-一期黄铁矿,Py2-二期黄铁矿,Sp-闪锌矿,Brt-重晶石,Anh-硬石膏。

    Figure  3.   Photomicrograph of minerals in the Edmond hydrothermal field

    a: fine-grained pyrite; b-d: barite and anhydrite; e: euhedral-subhedral pyrite; f-i: elongated and elliptical inclusions formed by the symbiosis of two stages of pyrite. Py1: pyrite Ⅰ; Py2: pyrite Ⅱ; Sp: sphalerite; Brt: barite; Anh: anhydrite.

    图  4   Edmond热液区黄铜矿和闪锌矿显微照片

    a、b. 存在于黄铁矿内部的细粒闪锌矿, c-e. 粗粒闪锌矿包裹黄铁矿, f. 黄铜矿集合体,并且出溶等轴古巴矿, g-i. 存在于闪锌矿内部的黄铜矿。Py1-黄铁矿Ⅰ, Py2-黄铁矿Ⅱ, Sp-闪锌矿, Ccp-黄铜矿, Iso-等轴古巴矿, Frt-针钠铁矾。

    Figure  4.   Photomicrograph of chalcopyrite and sphalerite in the Edmond hydrothermal field

    a-b: fine sphalerite in pyrite; c-e: coarse sphalerite surrounded by pyrite; f: chalcopyrite aggregate and exsolution texture of isocubanite; g-i: chalcopyrite exists in sphalerite. Py1: pyrite Ⅰ; Py2: pyrite Ⅱ; Sp: sphalerite; Ccp: chalcopyrite; Iso: isocubanite; Frt: ferrinatrite.

    图  5   Edmond热液区白铁矿显微照片

    a、b. 白铁矿包裹在一期黄铁矿的外部,存在明显界限;c、d. 二期黄铁矿包裹白铁矿,存在界限明显;e、f. 两期黄铁矿与白铁矿伴生。Py1-一期黄铁矿,Py2-二期黄铁矿,Mrt-白铁矿。

    Figure  5.   Photomicrograph of marcasite in the Edmond hydrothermal field

    a-b: marcasite surrounded by pyrite Ⅰ with a clear boundary; c-d: pyrite Ⅱ surrounded by marcasite with a clear boundary; e-f: two stages of pyrite and marcasite symbiosis. Py1: pyrite Ⅰ; Py2: pyrite Ⅱ; Mrt: marcasite.

    图  6   Edmond热液区自然银显微照片

    a-c、f. 存在于黄铁矿和其他矿物之间的自然银颗粒,d、e、g. 存在于一期黄铁矿缝隙的自然银颗粒,h、i. 存在于黄铁矿内部缝隙中的自然银颗粒。Py1-一期黄铁矿,Py2-二期黄铁矿,Ag-自然银,Frt-针钠铁矾。

    Figure  6.   Photomicrograph of native silver in the Edmond hydrothermal field

    a-c and f: native silver particles in-between pyrite and other minerals; d-e and g: native silver particles present in the crevices of pyrite Ⅰ; h-i: native silver particles present within internal crevices of pyrite. Py1: pyrite Ⅰ; Py2- pyrite Ⅱ; Ag: native silver; Frt: ferrinatrite.

    图  7   Edmond热液区矿物生成顺序及成矿阶段

    Figure  7.   The mineralization sequence of hydrothermal sulfide in the Edmond field

  • [1]

    Lin J, Zhang C. The first collaborative China-international cruises to investigate mid-ocean ridge hydrothermal vents [J]. InterRidge News, 2006, 15: 33-34.

    [2] 陶春辉, 李怀明, 金肖兵, 等. 西南印度洋脊的海底热液活动和硫化物勘探[J]. 科学通报, 2014, 59(19):2266-2276 doi: 10.1007/s11434-014-0182-0

    Tao C H, Li H M, Jin X B, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge [J]. Chinese Science Bulletin, 2014, 59(19): 2266-2276. doi: 10.1007/s11434-014-0182-0

    [3]

    Hannington M D, De Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 111-141.

    [4]

    Herzig P M, Hannington M D. Polymetallic massive sulfides at the modern seafloor a review [J]. Ore Geology Reviews, 1995, 10(2): 95-115. doi: 10.1016/0169-1368(95)00009-7

    [5]

    Connelly D P, Copley J T, Murton B J, et al. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre [J]. Nature Communications, 2012, 3: 620. doi: 10.1038/ncomms1636

    [6]

    Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits [J]. Geology, 2011, 39(12): 1155-1158. doi: 10.1130/G32468.1

    [7]

    Bach W, Banerjee N R, Dick H J B, et al. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°-16°E [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(7): 1-14.

    [8]

    Dias Á S, Barriga F J A S. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′N; 33°26′W) at MAR [J]. Marine Geology, 2006, 225(1-4): 157-175. doi: 10.1016/j.margeo.2005.07.013

    [9]

    Ye J, Shi X F, Yang Y M, et al. The occurrence of gold in hydrothermal sulfide at Southwest Indian Ridge 49.6°E [J]. Acta Oceanologica Sinica, 2012, 31(6): 72-82. doi: 10.1007/s13131-012-0254-4

    [10]

    Fuchs S, Hannington M D, Petersen S. Divining gold in seafloor polymetallic massive sulfide systems [J]. Mineralium Deposita, 2019, 54(6): 789-820. doi: 10.1007/s00126-019-00895-3

    [11]

    Huston D L, Relvas J M R S, Gemmell J B, et al. The role of granites in volcanic-hosted massive sulphide ore-forming systems: an assessment of magmatic–hydrothermal contributions [J]. Mineralium Deposita, 2011, 46(5): 473-507.

    [12]

    Knight R D, Roberts S, Webber A P. The influence of spreading rate, basement composition, fluid chemistry and chimney morphology on the Formation of gold-rich SMS deposits at slow and ultraslow mid-ocean ridges [J]. Mineralium Deposita, 2018, 53(1): 143-152. doi: 10.1007/s00126-017-0762-4

    [13] 罗洪明, 韩喜球, 王叶剑, 等. 全球现代海底块状硫化物战略性金属富集机理及资源前景初探[J]. 地球科学, 2021, 46(9):3123-3138

    LUO Hongming, HAN Xiqiu, WANG Yejian, et al. Preliminary study on the enrichment mechanism of strategic metals and their resource prospects in global modern seafloor massive sulfide deposits [J]. Earth Science, 2021, 46(9): 3123-3138.

    [14] 杨铭, 王叶剑, 韩喜球, 等. 超镁铁岩型海底热液成矿系统中Au的矿化: 以卡尔斯伯格脊天休热液区为例[J]. 地质论评, 2021, 67(S1):173-174

    YANG Ming, WANG Yejian, HAN Xiqiu, et al. Gold mineralization in the ultramafic-hosted seafloor hydrothermal systems: examples from the Tianxiu Vent Field, Carlsberg Ridge [J]. Geological Review, 2021, 67(S1): 173-174.

    [15]

    Hannington M D, Peter J M, Scott S D. Gold in sea-floor polymetallic sulfide deposits [J]. Economic Geology, 1986, 81(8): 1867-1883. doi: 10.2113/gsecongeo.81.8.1867

    [16]

    Herzig P M, Hannington M D, Fouquet Y, et al. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific [J]. Economic Geology, 1993, 88(8): 2182-2209. doi: 10.2113/gsecongeo.88.8.2182

    [17] 张海桃, 杨耀民, 梁娟娟, 等. 全球现代海底块状硫化物矿床资源量估计[J]. 海洋地质与第四纪地质, 2014, 34(5):107-118

    ZHANG Haitao, YANG Yaomin, LIANG Juanjuan, et al. A global estimate of resource potential for modern seafloor massive sulfide deposits [J]. Marine Geology & Quaternary Geology, 2014, 34(5): 107-118.

    [18]

    Wu Z W, Sun X M, Xu H F, et al. Occurrences and distribution of “invisible” precious metals in sulfide deposits from the Edmond hydrothermal field, Central Indian Ridge [J]. Ore Geology Reviews, 2016, 79: 105-132. doi: 10.1016/j.oregeorev.2016.05.006

    [19]

    Wu Z W, Sun X M, Xu H F, et al. Microstructural characterization and in-situ sulfur isotopic analysis of silver-bearing sphalerite from the Edmond hydrothermal field, Central Indian Ridge [J]. Ore Geology Reviews, 2018, 92: 318-347. doi: 10.1016/j.oregeorev.2017.11.024

    [20]

    Mendel V, Sauter D, Parson L, et al. Segmentation and morphotectonic variations along a super slow-spreading center: the Southwest Indian Ridge (57° E-70° E) [J]. Marine Geophysical Researches, 1997, 19(6): 505-533. doi: 10.1023/A:1004232506333

    [21]

    Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets [J]. Earth and Planetary Science Letters, 2001, 187(3-4): 283-300. doi: 10.1016/S0012-821X(01)00293-X

    [22]

    DeMets C, Gordon R G, Argus D F, et al. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions [J]. Geophysical Research Letters, 1994, 21(20): 2191-2194. doi: 10.1029/94GL02118

    [23] 王叶剑, 韩喜球, 金翔龙, 等. 中印度洋脊Edmond区热液硫化物的形成: 来自铅和硫同位素的约束[J]. 吉林大学学报:地球科学版, 2012, 42(S2):234-242,308

    WANG Yejian, HAN Xiqiu, JIN Xianglong, et al. Formation of hydrothermal sulfides precipitates in the Edmond field, Central Indian Ridge: lead and sulfur isotope constraints [J]. Journal of Jilin University:Earth Science Edition, 2012, 42(S2): 234-242,308.

    [24]

    Briais A. Structural analysis of the segmentation of the Central Indian Ridge between 20°30′S and 25°30′S (Rodriguez Triple Junction) [J]. Marine Geophysical Researches, 1995, 17(5): 431-467. doi: 10.1007/BF01371787

    [25]

    Gamo T, Chiba H, Yamanaka T, et al. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge [J]. Earth and Planetary Science Letters, 2001, 193(3-4): 371-379. doi: 10.1016/S0012-821X(01)00511-8

    [26]

    Humphris S E, Fornari D J. Hydrothermal vents in an unusual geotectonic setting: the Kairei and Edmond vent fields, Central Indian Ridge[C]//AGU Fall Meeting. AGU, 2001: OS41A-0444.

    [27] 王叶剑, 韩喜球, 金翔龙, 等. 中印度洋脊Edmond热液区黄铁矿的标型特征及其对海底成矿作用环境的指示[J]. 矿物学报, 2011, 31(2):173-179

    WANG Yejian, HAN Xiqiu, JIN Xianglong, et al. Typomorphic characteristics of pyrite and its metallogenic environment of Edmond hydrothermal field, Central Indian Ridge [J]. Acta Mineralogica Sinica, 2011, 31(2): 173-179.

    [28]

    Gallant R M, Von Damm K L. Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°–25°S, Central Indian Ridge [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(6): Q06018. doi: 10.1029/2005gc001067

    [29]

    Kumagai H, Nakamura K, Toki T, et al. Geological background of the Kairei and Edmond hydrothermal fields along the Central Indian Ridge: implications of their vent fluids’ distinct chemistry [J]. Geofluids, 2008, 8(4): 239-251. doi: 10.1111/j.1468-8123.2008.00223.x

    [30]

    Van Dover C L, Humphris S E, Fornari D, et al. Biogeography and ecological setting of Indian Ocean hydrothermal vents [J]. Science, 2001, 294(5543): 818-823. doi: 10.1126/science.1064574

    [31] 李军, 孙治雷, 黄威, 等. 现代海底热液过程及成矿[J]. 地球科学——中国地质大学学报, 2014, 39(3):312-324

    LI Jun, SUN Zhilei, HUANG Wei, et al. Modern seafloor hydrothermal processes and mineralization [J]. Earth Science—Journal of China University of Geosciences, 2014, 39(3): 312-324.

    [32]

    Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: a LA-ICPMS study [J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761-4791. doi: 10.1016/j.gca.2009.05.045

    [33]

    Sugaki A, Shima H, Kitakaze A, et al. Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditions at 350 degrees C and 300 degrees C [J]. Economic Geology, 1975, 70(4): 806-823. doi: 10.2113/gsecongeo.70.4.806

    [34]

    Lusk J, Bray D M. Phase relations and the electrochemical determination of sulfur fugacity for selected reactions in the Cu–Fe–S and Fe–S systems at 1 bar and temperatures between 185 and 460 °C [J]. Chemical Geology, 2002, 192(3-4): 227-248. doi: 10.1016/S0009-2541(02)00194-8

    [35]

    Benning L G, Seward T M. Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150-400°C and 500-1500 bar [J]. Geochimica et Cosmochimica Acta, 1996, 60(11): 1849-1871. doi: 10.1016/0016-7037(96)00061-0

    [36]

    Gibert F, Pascal M L, Pichavant M. Gold solubility and speciation in hydrothermal solutions: experimental study of the stability of hydrosulphide complex of gold (AuHS°) at 350 to 450°C and 500 bars [J]. Geochimica et Cosmochimica Acta, 1998, 62(17): 2931-2947. doi: 10.1016/S0016-7037(98)00209-9

    [37]

    Stefánsson A, Seward T M. Gold(I) complexing in aqueous sulphide solutions to 500°C at 500 bar [J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4121-4143. doi: 10.1016/j.gca.2004.04.006

    [38]

    Moss R, Scott S D. Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the eastern Manus Basin, Papua New Guinea [J]. The Canadian Mineralogist, 2001, 39(4): 957-978. doi: 10.2113/gscanmin.39.4.957

    [39]

    Pal'yanova G. Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: gold fineness, Au/Ag ratios and their possible implications [J]. Chemical Geology, 2008, 255(3-4): 399-413. doi: 10.1016/j.chemgeo.2008.07.010

    [40]

    Gammons C H, Williams-Tones A E. The solubility of Au-Ag alloy + AgCl in HCl/NaCl solutions at 300°C: new data on the stability of Au (Ⅰ) chloride complexes in hydrothermal fluids [J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3453-3468. doi: 10.1016/0016-7037(95)00234-Q

    [41]

    Shikazono N, Shimizu M. The Ag/Au ratio of native gold and electrum and the geochemical environment of gold vein deposits in Japan [J]. Mineralium Deposita, 1987, 22(4): 309-314.

    [42]

    Seward T M, Williams-Jones A E, Migdisov A A. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids [J]. Treatise on Geochemistry, 2014, 13: 29-57.

图(7)
计量
  • 文章访问数:  415
  • HTML全文浏览量:  84
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2023-01-12
  • 网络出版日期:  2023-07-17
  • 刊出日期:  2023-06-27

目录

/

返回文章
返回