7.8 kaBP以来海南岛东南陆架陆源碎屑来源及其环境响应

张永威, 田旭, 徐方建, 陈波, 叶友权, 范德江

张永威,田旭,徐方建,等. 7.8 kaBP以来海南岛东南陆架陆源碎屑来源及其环境响应[J]. 海洋地质与第四纪地质,2023,43(1): 27-36. DOI: 10.16562/j.cnki.0256-1492.2022073101
引用本文: 张永威,田旭,徐方建,等. 7.8 kaBP以来海南岛东南陆架陆源碎屑来源及其环境响应[J]. 海洋地质与第四纪地质,2023,43(1): 27-36. DOI: 10.16562/j.cnki.0256-1492.2022073101
ZHANG Yongwei,TIAN Xu,XU Fangjian,et al. Provenance and environmental response of terrigenous debris in the southeastern continental shelf of Hainan Island since 7.8 kaBP[J]. Marine Geology & Quaternary Geology,2023,43(1):27-36. DOI: 10.16562/j.cnki.0256-1492.2022073101
Citation: ZHANG Yongwei,TIAN Xu,XU Fangjian,et al. Provenance and environmental response of terrigenous debris in the southeastern continental shelf of Hainan Island since 7.8 kaBP[J]. Marine Geology & Quaternary Geology,2023,43(1):27-36. DOI: 10.16562/j.cnki.0256-1492.2022073101

7.8 kaBP以来海南岛东南陆架陆源碎屑来源及其环境响应

基金项目: 山东省自然科学基金“海南岛东部窄陆架区全新世沉积环境演变及其对气候变化的响应”(ZR2020MD061);海南省自然科学基金“晚第四纪以来琼州海峡西口沉积演化过程与海砂成矿模式研究”(422QN420);中央引导地方科技发展资金项目“水生生物技术公共科研平台建设”(ZY2021HN04)
详细信息
    作者简介:

    张永威(1997—),男,硕士研究生,主要从事海洋沉积与矿物学研究,E-mail:soaman@163.com

    通讯作者:

    徐方建(1982—),男,教授,主要从事海洋沉积与矿物学研究,E-mail:xufangjiangg@163.com

  • 中图分类号: P736.21

Provenance and environmental response of terrigenous debris in the southeastern continental shelf of Hainan Island since 7.8 kaBP

  • 摘要: 对取自海南岛东南部的X2站柱状样品进行了粒度、全岩稀土元素和重矿物分析,探讨了7.8 kaBP以来海南岛东南陆架陆源碎屑来源及其环境响应。粒度端元模拟识别出了两个端元,EM1端元对应的是海洋流系搬运的近源与远源细粒物质的混合沉积,EM2对应的主要是近源海南岛河流输入的粗粒物质,两个端元代表着两个不同的输运机制。物源分析结果表明,7.8 kaBP以来X2站陆源碎屑来源较为稳定,主要来源于海南岛。4 kaBP以来,X2站粒度、稀土元素和重矿物特征参数发生了显著改变,与El Nino-Southern Oscillation (ENSO)事件开始增强有很好的对应关系,推测频繁的ENSO事件导致降雨量增加是研究区风化程度增强的主要原因。与全岩稀土元素特征指标相比,X2站重矿物组合受源区风化剥蚀的影响更为显著,后期在环境演化研究中,应适当关注重矿物这一指标。
    Abstract: Grain-size, bulk Rare Earth Element (REE), and heavy mineral analysis of Core X2 at southeastern Hainan Island were carried out. The provenances of terrigenous clasts and their environmental responses of this study area since 7.8 kaBP were discussed. Two endmembers were identified by grain-size endmember simulation. The EM1 endmember corresponded to the fine-grained material transported by the ocean current system, while the EM2 endmember corresponded to the coarse-grained material input from nearby rivers in Hainan Island; therefore, the two endmembers represented two different transport mechanisms. Results show that since 7.8 kaBP, the provenance of terrigenous detrital of Core X2 was relatively stable, mainly from Hainan Island. After 4 kaBP, the grain size, REE, and heavy mineral characteristic parameters of Core X2 had changed significantly, which has a good correspondence to the intensification of El Nino and Southern Oscillation (ENSO). It is speculated that the increase of rainfall caused by frequent ENSO events is the main reason for the enhancement of weathering degree in the study area. Compared with the characteristics of REE, the heavy mineral assemblages of Core X2 were more significantly affected by weathering and denudation in the source area. Therefore, study on heavy mineral index is suggested in the future study of environmental evolution.
  • 位于西北干旱区的新疆,现代气候受西风系统和东亚冬季风系统的共同调控[1-2]。随着全球变暖(尤其是最近几十年来),在新疆以夏季降水为主的区域,降水量普遍增加,甚至出现强夏季暴雨[3],这对当地的生态环境和居民生活产生了重大影响。因此,了解新疆长时间尺度降水变化,对理解现代西风影响降水的特征和预测未来降水的趋势具有重要的参考意义。

    目前对新疆及其周边过去千年气候变化的研究主要基于树轮[4-5]、冰芯[6]、湖泊沉积物[7-8]和风沙沉积[9]。然而,不同指标得出的结论对气候变化与控制机制间关系的解释存在差异。Chen[10]等通过评估过去千年区域有效湿度变化发现,有效湿度与温度在百年时间尺度上存在负相关关系,即湿(干)气候与冷(暖)特征。这种“冷湿/暖干”模式得到了塔里木盆地[11]和玛纳斯湖[12]的数据支持。但咸海沉积记录[13]表明,在小冰期进入中亚的水汽少于中世纪暖期,即呈现“冷干/暖湿”模式,并得到了来自西伯利亚南部基于阿米巴虫重建的地下水位深度记录的支持[14]

    可见,关于新疆及其周边湿度特征仍存在明显的争论,这可能归咎于区域湿度受到气温和降水的双重调控[15]和缺乏对区域降水的定量重建。因此,本文利用已报道的玉什库勒泥炭孢粉资料[16]对过去2 000年降水变化进行定量重建,期望该工作可以加深对阿尔泰山过去2 000年降水量特征及其驱动因素的理解。

    玉什库勒泥炭(46°45′~46°57′N、90°46′~90°61′E,2374 m a.s.l)位于新疆北部青河县东北44 km,发育于冰川作用形成的U形谷底部,是小青格里河的发源地(图1)。该泥炭的地下水位深约0.5 m,以降水和积雪融水为主要补给[17]。现代植物种类主要有帕米尔苔草、阿尔泰苔草、灰藓等[18]。玉什库勒泥炭表层10 cm有机质含量高达90%以上,整体呈酸性[18]。研究区现代气候为温带大陆性气候。根据青河气象站记录,年均气温为−0.2 ℃,最冷和最热的月份分别是1月(−23.5 ℃)和7月(18.5 ℃);年均降水量为177.7 mm,暖季(4—9月)降水量占年均降水量的61%,冷季(10月至次年3月)降水量占39%[15]

    图  1  玉什库勒泥炭地理位置及其文中提及的研究点
    a: 玉什库勒泥炭, b: 乌伦古湖[19], c: 喀纳斯湖[20], d: 娜仁夏泥炭[21]
    Figure  1.  Geographic location of Yushenkule Peat and the sites mentioned in this study
    a: Yushenkule Peat, b: Wulungu Lake[19],c: Kanas Lake[20], d: Narenxia Peat[21].

    在玉什库勒泥炭(46°49′N、90°52′E,2636 m a.s.l)获得长度为88 cm的岩芯,按照1 cm间隔分样,共获得88个样品。以10 cm间隔挑选植物残体作为测年材料,送至亚利桑那大学AMS 14C实验室进行年代的测试,相关结果见表1[15]。在R软件中调用Bacon程序建立深度-年龄模型[22]图2)。

    表  1  玉什库勒泥炭AMS14C测年结果[15]
    Table  1.  AMS14C dating results of the Yushenkule Peat[15]
    实验室代码 深度/cm 测年材料 14C年龄/aBP
    AA104612 20 植物残体 477±39
    AA104613 30 植物残体 811±39
    AA104614 40 植物残体 1108±39
    AA104615 50 植物残体 1176±40
    AA104616 60 植物残体 1546±41
    AA104617 70 植物残体 1558±58
    AA104618 80 植物残体 1951±40
    下载: 导出CSV 
    | 显示表格
    图  2  玉什库勒的深度-年代模型[15]
    Figure  2.  Depth-age model for the Yushenkule Peat[15]

    实验室孢粉提取采用常规的HCl-NaOH-HF处理法[23],在OlympusBX-53光学显微镜下开展孢粉的鉴定和统计工作,每个样品统计至少600粒陆生孢粉[16],记录所出现的石松孢子数。在计算花粉百分含量时,以陆生花粉分类群的总和作为分母,蕨类孢子的百分比则根据陆生孢粉与蕨类孢子的总和计算。得出孢粉百分比后,用Tilia1.7.16软件绘制孢粉图,并对其进行有序聚类分析(CONISS),为花粉分区提供参考[16]。需要注意的是,因本剖面莎草科(Cyperceae)是湿地局地生长的植被,在定量重建时去除莎草科重新计算了孢粉百分比。

    基于花粉的气候定量重建的可靠性取决于现代花粉校准集的质量[24-27]。为确保重建结果的可信度,需要考虑三点:(1)现代花粉数据集包含足够和均匀分布的采样点;(2)从总体中选择现代花粉数据的适当“范围策略”;(3)现代花粉数据集生物气候变化具有良好的代表性。为保证重建的可信度,本研究从东亚孢粉数据集和中国现代孢粉数据集中选择用于古气候重建的现代孢粉数据集[28-29],采用基于半径距离的筛选策略充分选择现代孢粉数据点[27]

    本文收集了研究区800 km范围内的现代表土花粉作为气候-花粉校准集,该校准集由627个样本和115个花粉物种组成,涵盖了现代生物气候空间范围,这些空间范围涵盖了玉什库勒过去2 000年生物气候时空范围。通过设置气候变量的上限和下限,确保堆叠花粉数据集中生物气候变量的良好代表性[19]。本文筛选现代花粉点的气候变量的上限和下限设定为:年均降水量(Pann):36~596 mm;年均温(Tann):−9.96~9.92 ℃;最冷月平均气温(Tmin):−15.96~4.28 ℃;最热月平均气温(Tmax):−3.96~17.1 ℃。通过ArcGIS10.2软件,从WorldClim数据集(第二版)(http://www.worldclim.org)获取现代花粉点的气候信息。

    排序技术通过计算气候因子对花粉种群变化的解释量来评估用于重建的气候变量的适用性[19]。首先,对校准集中的花粉组合做去趋势对应分析(Detrended Correspondence Analysis, DCA)。当DCA第一梯度轴的长度>4时,基于正态分布的典型对应分析(Canonical Correspondence Analysis, CCA)更适合评估气候因子与花粉组合的关系;当DCA第一梯度轴的长度<3时,基于线性分布模型的冗余分析(Redundancy Analysis, RDA)则更为适合;当DCA第一梯度轴的长度为3~4时,两者皆可[19]。对于每个气候变量,用约束特征值与第一个无约束特征值的比值(λ1/λ2)来评估气候变量是否适合重建。一般来说,比值越高,气候变量越适合重建[30]

    匹配度检验法被用来评估重建模型的可信度,是通过计算每个化石孢粉组合与现代孢粉组合之间的平方弦距离来评估二者之间的匹配度[31]。当平方弦<5%时,说明两者之间有“良好的类比型”;当平方弦距离>5%且小于10%时,表明该化石孢粉样品在现代校准集中“有类比型”,反之则认为是“无类比型”[32]。用预测值与实测值的决定系数R2和预测的均方根误(Root Mean Squared Error of Prediction, RMSEP)[31]评价模型性能。其中,R2值越大,RMSEP越小,模型的性能越好。

    Zhang等[16]对玉什库勒泥炭孢粉数据进行了详细描述。在所分析的88个样品中,共鉴定出55种不同陆生化石孢粉,包括15种木本孢粉(主要为松属(Pinus)、落叶松属(Larix)和桦木属(Betula))和40种草本孢粉(主要为莎草科(Cyperaceae)、禾本科(Poaceae)、蒿属(Artemisia)、藜科(Chenopodiaceae)和石竹科(Caryophyllaceae))。根据孢粉组合变化和CONISS分析结果,玉什库勒泥炭孢粉记录可以分为5个孢粉带(图3)。

    图  3  玉什库勒泥炭孢粉图[16]
    Figure  3.  Pollen distribution in the Yushenkule Peat[16]

    孢粉带A(83~62 cm;12—520 AD)以草本植物为主,包括莎草科(64.81%~84.99%)、蒿属(6.67%~15.44%)、禾本科(1.85%~9.81%)和藜科(0.72%~6.16%),木本植物孢粉含量较少(1.06%)。

    孢粉带B(61~43 cm;520—900 AD)相对于孢粉带A,莎草科孢粉含量降低(51.46%)、禾本科(25.16%)和石竹科(2.01%)孢粉含量增加。

    孢粉带C(42~29 cm;900—1230 AD)的特征是松属(0.28%)、落叶松属(0.26%)和云杉属(Picea, 0.23%)孢粉含量增加,但仍以莎草科植物为主。

    孢粉带D(28~15 cm;12301580 AD)与上一个孢粉带相比,莎草科(61.59%)孢粉含量降低,蒿属(20.32%)、禾本科(7.65%)、藜科(4.97%)、松属(0.57%)、落叶松属(0.45%)以及云杉属(0.37%)孢粉含量增加。

    孢粉带E(14~1 cm;1580—2020 AD)的特征是木本孢粉达到最大值(1.93%),蒿属(30.79%)、藜科(6.03%)、禾本科(11.04%)、石竹科(1.38%)孢粉含量持续增加,而莎草科孢粉含量(46.04%)持续减少。

    根据排序分析,DCA的第一轴长度为3 SD(标准差单位)。选择CCA对现代表土花粉组合与现代气象因子进行分析。使用方差膨胀因子(Variance Inflation Factors, VIF)检验环境变量之间的共线性,结果如表2所示:校准集中的TannTmaxTmin显著相关;在分别排除TmaxTmin后,TmaxTmin气候参数的VIF值均大于30;在排除Tann后,校准集中的PannTmaxTmin的VIF值均小于30,这表明共线性的影响已经大大降低。因此,Tann被排除在重建之外。CCA轴1(6.55%)和轴2(1.59%)解释了8.14%的3个气候变量花粉组合之间的变异。花粉分类群与气候变量主要分布在轴1上,Pann与轴1之间的夹角较小(λ1/λ2值较大),表明Pann是重建的最佳变量(图4a)。

    表  2  典型对应分析(CCA)与现代孢粉数据的统计和4个气候变量的统计汇总
    Table  2.  Statistics of canonical correspondence analysis (CCA) and modern pollen data, and four climatic variables for the Yushenkule Peat sequence
    气候变量VIF(含Tann)VIF(不含Tmax)VIF(不含Tmin)VIF(不含Tann)
    Pann1.831.661.661.82
    Tmin71037.7101.5519.14
    Tmax88268.9103.7922.29
    Tann312085.7107.3798.34
    下载: 导出CSV 
    | 显示表格
    图  4  典型对应分析(CCA)轴显示孢粉分类群和3个气候变量(a)与YSKL序列气候重建的统计显著性检验(b)
    Figure  4.  Axes of canonical correspondence analysis (CCA) showing the relationships between pollen taxa and four climatic variables (a) for the Yushenkule Peat and statistical significance test of climatic reconstructions of Yushenkule Peat sequence using the MAT method (b)

    显著性检验(96.5%)结果表明,重建的Pann超过了预期的95%显著性水平(图4b)。该模型具有较高的R2(0.52)和相对较低的RMSEP(90.29)(图5)。另外,用平方弦距离法对校准集做相似性检验(图6b),结果显示98.8%的化石孢粉组合的平方弦距离<5%,具有较好的现代相似性,1.2%的化石孢粉组合的现代相似性较差,其平方弦距离为5%~10%,较差的相似性发生在约150 AD;其中蓝色和红色竖线分别表示5%分位数和10%分位数。综上所述,该模型适用于降水量的定量重建。

    图  5  玉什库勒泥炭Pann的观测值(a)与预测值的散点图(b)
    Figure  5.  Scatter plots of observed Pann(a) vs. predicted Pann(b)for the Yushenkule Peat.
    图  6  基于孢粉的降水量重建结果(a)与从每个化石组合到最近的现代类似物的平方弦距离(b)
    Figure  6.  Quantitative reconstruction of precipitation (a) and squared chord distances from each fossil assemblages to the nearest modern analogues (b) based on palynological data

    基于玉什库勒泥炭定量重建结果如图6a所示,降水量在132~300 mm之间波动,其均值为205 mm。玉什库勒降水量的变化趋势特征划分为两个阶段:第I阶段(0—1010 AD)平均降水量高,上下波动幅度大,呈不显著下降;第II阶段(1010—2020 AD)降水量显著下降。这两个阶段可细分5个亚阶段:第1阶段(0—500 AD)的变化特征是平均高降水量和高振幅波动且基本保持不变;第2阶段(500—1010 AD)的降水量最高(平均值228 mm),且波动频率小于上一阶段(0—500 AD),在约750 AD降水量出现最大值(约300 mm)。第3阶段(1010—1300 AD)降水量下降,平均值为189 mm;第4阶段(1300—1600 AD)降水量高于前一个阶段,平均值为197 mm;第5阶段(1600—2020 AD)是过去两千年降水量最少的阶段(约165 mm),近200年降水量有所回升。

    基于玉什库勒孢粉定量重建的降水量表明,0—1010 AD降水量较高,年均降水量为约225 mm;1010—2000 AD降水量降低,平均值为约183 mm,记录了降水量逐步下降的过程(图7a)。Zhang[16]等对玉什库勒泥炭孢粉主成分分析(PCA)(图7b)和Yang[15]等对泥炭沉积中δ13C(图7c)的研究均表现出同样的变化趋势。需要注意的是,1900 AD之后δ13C表现出变湿的趋势,可能是由于大量的苔草植物代替了泥炭藓植物所导致的[15]。基于孢粉定量重建的乌伦古湖[19]图7d)、喀纳斯湖[20]图7e)和娜仁夏泥炭地[21]图7f)降水也呈现变干的趋势。值得注意的是,因各序列年代分辨率不同而引起降水多寡的时间略有不同。过去2 000年区域降水量逐渐下降的过程也得到了模拟结果的支持[33]

    图  7  阿尔泰山南部降水序列对比
    a:玉什库勒年均降水量(本研究), b. 玉什库勒δ13C含量[15], c. 玉什库勒PCA轴2[16], d. 乌伦古湖降水量[19],e. 喀纳斯湖降水量[20],f. 娜仁夏降水量[21], g. 北大西洋涛动[35], h. 总太阳辐射[37], i. 阿尔泰山温度[4]
    Figure  7.  Comparison of the precipitation sequence in the southern Altai Mountains
    a: Precipitation in the Yushenkule Peat (this study),b: δ13C-indcated moisture in the Yushenkule Peat[15], c:PCA axis 2 in the Yushengkule Peat[16],d: Precipitation in the Wulungu Lake[19], e: Precipitation in the Kanas Lake[20], f: Precipitation in the Narenxia Peat[21], g: NAO[36], h. Total solar irradiance[37], i: Temperature data in the Altai Mountains[4].

    结合阿尔泰山树轮所记录的气温序列[4]可以发现,罗马暖期(RWP, 0—500 AD)降水量和温度均处于较高状态,该时期的气候特征为“暖湿”。进入黑暗时代冷期(DACP, 500—800 AD),气候转为“冷湿”。中世纪暖期(MWP, 800—1400 AD)降水量降低,气候是“暖干”的。小冰期(LIA, 1400—1850 AD)降水量较低,温度降低,气候特征可以描述为“冷干”。现代暖期(CWP, 1850年至今)温度和降水量均持续上升,气候由“冷干”转向“暖湿”。可见,过去2 000年水热模式呈现了暖湿-冷湿-暖干-冷干-暖湿的演变过程,呈现既不符合“暖干-冷湿”模式,又不符合“暖湿-冷干”的模式。

    基于玉什库勒泥炭孢粉定量重建的降水量,不仅与区域记录的降水量重建(图7)显示出一致性,还与来自欧洲的树轮和海洋沉积记录显示出同步变化[34-35]。这种一致性促使我们研究水汽通过西风环流从欧洲穿过欧亚大陆达到新疆的路径以及其与北大西洋涛动(NAO)的关系。但当前关于NAO和区域降水量的关系有两种观点,第一种观点认为NAO正相(即亚速尔高压和冰岛低压之间的气压差增加)有利于新疆降水增加[8],另一种认为负相NAO(即亚速尔高压和冰岛低压之间的气压差降低)有利于新疆降水增加[36]

    通过与来自特隆赫姆斯峡湾记录的初级生产力所记录的高质量NAO指数[35]对比可以看出,在0—1010 AD期间,区域降水特征与NAO指数在百年尺度上具有正向关系(图7g),这表明NAO正相驱动了区域降水量的增加。从机理角度来说,当NAO正相时,亚速尔群岛高压和冰岛低压之间的海平面压强增加,使更多的水汽通过西风环流输送到阿尔泰山。加上较高的总太阳辐射[37]驱动西风环流强度和北大西洋蒸发水汽的增加,为中纬度地区提供更多的水汽,导致阿尔泰山降水量增加。

    1010 AD之后,降水量变化与NAO的关系变得不明晰,甚至在多世纪尺度上显示出负相关关系(图7g),这可能与总太阳辐射减弱及其关联的区域水汽循环变化有关(图7h)。详细来说,过去千年总太阳辐射有所减弱,引起中纬度西风带强度下降,且引起西风带南移[38],导致更少的水汽被输送至阿尔泰山。尽管该时段厄尔尼诺-南方涛动(ENSO)强度增加,增强的ENSO导致中亚低压槽的发生,导致来自阿拉伯海的水汽供应增加,使得阿尔泰山降水量增加[21, 39]。但ENSO输送的水汽通量有限,并未很好的弥补西风带南移所造成的区域降水量下降。可见,过去两千年阿尔泰山降水量受到NAO、总太阳辐射和ENSO等因素共同作用的影响。

    (1)阿尔泰山过去2000年降水量最大值为300 mm,最小值为132 mm,其均值为205 mm。过去2000年可分为湿润的0—1010 AD(降水量约224 mm)和偏干的1010—2000 AD(降水量约182 mm)。最大降水量出现在600—800 AD,年均量为288 mm。最小降水量出现在1500—2000 AD,年均量为162 mm。

    (2)过去2000年水热模式呈现了暖湿-冷湿-暖干-冷干-暖湿的演变过程,该变化过程与NAO、太阳辐射变化引起的西风带的南移密切相关。

  • 图  1   南海北部流系(a)及X2站位图(b)

    表层洋流、华南近岸流和深水洋流根据文献[18, 22]改绘。

    Figure  1.   The ocean currents in the northern South China Sea (a) and location of Core X2 (b)

    Coastal current, surface current and deep water current were modified from [18, 22].

    图  2   X2站粒度端元模拟图

    a. 复相关系数,b. 偏差角度,c. 各端元丰度,d. 各端元含量。

    Figure  2.   Results of endmember analysis of Core X2

    a: Coefficients of determinationc b: mean angular deviation, c: grain size frequency distributions, d: variation of endmember contributions.

    图  3   X2站各端元与粒度参数

    粒度和年代数据引自文献[2]。

    Figure  3.   End member and particle size parameters of Core X2

    Grain-size and age data were obtained from [2].

    图  4   X2站稀土元素及其参数垂向变化特征

    Figure  4.   Vertical variation of rare earth elements and its parameters in Core X2

    图  5   X2站重矿物变化特征

    Figure  5.   Variation of heavy minerals in Core X2

    图  6   X2站物源判别

    a: (La/Sm)UCC-δEu; b: (La/Nd)UCC-(La/Tb)UCC。海南岛数据源自文献[2],珠江数据源自文献[42],台湾数据源自文献[43]。

    Figure  6.   Provenance discrimination of Core X2

    a: (La/Sm)UCC-δEu; b: (La/Nd)UCC-(La/Tb)UCC (The REE data for the Hainan Island, Pearl River, and Taiwan were obtained from[2, 42] and [43], respectively.)

    图  7   X2站对环境变化的响应

    ENSO指数引自文献[58],董哥洞δ18O引自文献[59],30°N光照强度引自文献[60]。

    Figure  7.   Response to environmental change at Core X2

    The data for the ENSO Index, Dongge Cave δ18O, and insolation at 30°N were obtained from references[58],[59] and [60], respectively.

  • [1]

    Wang S H, Zhang N, Chen H, et al. The surface sediment types and their rare earth element characteristics from the continental shelf of the northern South China Sea [J]. Continental Shelf Research, 2014, 88: 185-202. doi: 10.1016/j.csr.2014.08.005

    [2]

    Xu F J, Hu B Q, Dou Y G, et al. Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene [J]. Continental Shelf Research, 2017, 144: 21-30. doi: 10.1016/j.csr.2017.06.013

    [3] 田成静, 欧阳婷萍, 朱照宇, 等. 海南岛周边海域表层沉积物磁化率空间分布特征及其物源指示意义[J]. 热带地理, 2013, 33(6):666-673 doi: 10.13284/j.cnki.rddl.002477

    TIAN Chengjing, OUYANG Tingping, ZHU Zhaoyu, et al. Spatial distribution of magnetic susceptibility and its provenance implication of surface sediments in the sea areas around the Hainan Island [J]. Tropical Geography, 2013, 33(6): 666-673. doi: 10.13284/j.cnki.rddl.002477

    [4]

    Hu B Q, Li J, Cui R Y, et al. Clay mineralogy of the riverine sediments of Hainan Island, South China Sea: Implications for weathering and provenance [J]. Journal of Asian Earth Sciences, 2014, 96: 84-92. doi: 10.1016/j.jseaes.2014.08.036

    [5]

    Xu F J, Tian X, Yin X B, et al. Trace metals in the surface sediments of the eastern continental shelf of Hainan Island: Sources and contamination [J]. Marine Pollution Bulletin, 2015, 99(1-2): 276-283. doi: 10.1016/j.marpolbul.2015.07.055

    [6] 高为利, 张富元, 章伟艳, 等. 海南岛周边海域表层沉积物粒度分布特征[J]. 海洋通报, 2009, 28(2):71-80 doi: 10.3969/j.issn.1001-6392.2009.02.011

    GAO Weili, ZHANG Fuyuan, ZHANG Weiyan, et al. Characteristics of grain size distributions of surface sediments in the Hainan Island offshore area [J]. Marine Science Bulletin, 2009, 28(2): 71-80. doi: 10.3969/j.issn.1001-6392.2009.02.011

    [7]

    Sahoo P K, Souza-Filho P W M, Guimarães J T F, et al. Use of multi-proxy approaches to determine the origin and depositional processes in modern lacustrine sediments: Carajás Plateau, Southeastern Amazon, Brazil [J]. Applied Geochemistry, 2015, 52: 130-146. doi: 10.1016/j.apgeochem.2014.11.010

    [8]

    Prajith A, Rao V P, Kessarkar P M. Controls on the distribution and fractionation of Yttrium and rare earth elements in core sediments from the Mandovi estuary, Western India [J]. Continental Shelf Research, 2015, 92: 59-71. doi: 10.1016/j.csr.2014.11.003

    [9] 赵德博, 万世明. 南海沉积物中黏土矿物及其在古气候中的应用研究进展[J]. 海洋地质与第四纪地质, 2014, 34(4):163-171

    ZHAO Debo, WAN Shiming. Research progress of clay minerals in sediments of the South China Sea and its application to paleoclimatic reconstruction [J]. Marine Geology & Quaternary Geology, 2014, 34(4): 163-171.

    [10] 李正刚, 初凤友, 张富元, 等. 南海西北部内陆架表层沉积物的重矿物分布及其控制因素[J]. 海洋地质与第四纪地质, 2011, 31(4):89-96

    LI Zhenggang, CHU Fengyou, ZHANG Fuyuan, et al. Distribution pattern of heavy minerals in the surface sediments on inner shelf, northwest South China Sea and its controlling factors [J]. Marine Geology & Quaternary Geology, 2011, 31(4): 89-96.

    [11]

    Qin Y C, Xue C T, Jiang X J. Tidal current-dominated depositional environments in the central-northern Yellow Sea as revealed by heavy-mineral and grain-size dispersals [J]. Marine Geology, 2018, 398: 59-72. doi: 10.1016/j.margeo.2018.01.004

    [12]

    Cheng L Q, Song Y G, Chang H, et al. Heavy mineral assemblages and sedimentation rates of eastern central Asian loess: Paleoenvironmental implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 551: 109747. doi: 10.1016/j.palaeo.2020.109747

    [13] 王中波, 杨守业, 张志珣, 等. 东海西北部陆架表层沉积物重矿物组合及其沉积环境指示[J]. 海洋学报, 2012, 34(6):114-125

    WANG Zhongbo, YANG Shouye, ZHANG Zhixun, et al. The heavy mineral assemblages of the surface sediments on the northeast shelf of the East China Sea and their environmental implication [J]. Acta Oceanologica Sinica, 2012, 34(6): 114-125.

    [14]

    Li M K, Ouyang T P, Zhu Z Y, et al. Rare earth element fractionations of the northwestern South China Sea sediments, and their implications for East Asian Monsoon reconstruction during the last 36 kyr [J]. Quaternary International, 2019, 525: 16-24. doi: 10.1016/j.quaint.2019.09.007

    [15]

    Walsh E, Caracciolo L, Ravidà D, et al. Holocene fluvial depositional regimes of the Huab River, Skeleton Coast, Namibia [J]. Earth Surface Processes and Landforms, 2022, 47(7): 1820-1844. doi: 10.1002/esp.5349

    [16] 张凯棣, 李安春, 董江, 等. 东海表层沉积物碎屑矿物组合分布特征及其物源环境指示[J]. 沉积学报, 2016, 34(5):902-911 doi: 10.14027/j.cnki.cjxb.2016.05.009

    ZHANG Kaidi, LI Anchun, DONG Jiang, et al. Detrital mineral distributions in surface sediments of the East China Sea: Implications for sediment provenance and sedimentary environment [J]. Acta Sedimentologica Sinica, 2016, 34(5): 902-911. doi: 10.14027/j.cnki.cjxb.2016.05.009

    [17]

    Chen Q, Liu Z F, Kissel C. Clay mineralogical and geochemical proxies of the East Asian summer monsoon evolution in the South China Sea during Late Quaternary [J]. Scientific Reports, 2017, 7(1): 42083. doi: 10.1038/srep42083

    [18]

    Liu Z F, Colin C, Li X J, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport [J]. Marine Geology, 2010, 277(1-4): 48-60. doi: 10.1016/j.margeo.2010.08.010

    [19]

    Xu F J, Hu B Q, Zhao J T, et al. Topographic and climatic control on chemical weathering of mountainous riverine sediments of Hainan Island, South China Sea [J]. Frontiers in Earth Science, 2022, 9: 7702369.

    [20] 周娇, 杨楚鹏, 孙桂华, 等. 海南岛西南浅海域有用重砂资源潜力分析[J]. 地质科技情报, 2018, 37(2):89-96 doi: 10.19509/j.cnki.dzkq.2018.0212

    ZHOU Jiao, YANG Chupeng, SUN Guihua, et al. Potential analysis of valuable heavy minerals in surface sediments in the shallow waters of the southwest of Hainan Island [J]. Geological Science and Technology Information, 2018, 37(2): 89-96. doi: 10.19509/j.cnki.dzkq.2018.0212

    [21] 韩念龙, 张伟璇, 张亦清. 基于InVEST模型的海南岛产水量的时空变化研究[J]. 海南大学学报:自然科学版, 2021, 39(3):280-287

    HAN Nianlong, ZHANG Weixuan, ZHANG Yiqing. Spatio-temporal analysis of water yield in Hainan Island based on InVEST model [J]. Natural Science Journal of Hainan University, 2021, 39(3): 280-287.

    [22]

    Liu Y L, Gao S, Wang Y P, et al. Distal mud deposits associated with the Pearl River over the northwestern continental shelf of the South China Sea [J]. Marine Geology, 2014, 347: 43-57. doi: 10.1016/j.margeo.2013.10.012

    [23]

    Zhang X D, Wang H M, Xu S M, et al. A basic end-member model algorithm for grain-size data of marine sediments [J]. Estuarine, Coastal and Shelf Science, 2020, 236: 106656. doi: 10.1016/j.ecss.2020.106656

    [24]

    Taylor S R, McLennan S M. The geochemical evolution of the continental crust [J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262

    [25] 高爱国, 韩国忠, 刘峰, 等. 楚科奇海及其邻近海域表层沉积物的元素地球化学特征[J]. 海洋学报, 2004, 26(2):132-139

    GAO Aiguo, HAN Guozhong, LIU Feng, et al. The elemental geochemistry of the surface sediments in the Chukchi Sea and its adjacent areas [J]. Acta Oceanologica Sinica, 2004, 26(2): 132-139.

    [26] 刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985: 208-219

    LIU Dungsheng. Loessand Environment[M]. Beijing: Science Press, 1985: 208-219.

    [27] 曾方侣, 姜楷, 黄超, 等. 砂岩中重矿物的成因意义[J]. 四川地质学报, 2020, 40(1):26-29,50 doi: 10.3969/j.issn.1006-0995.2020.01.006

    ZENG Fanglü, JIANG Kai, HUANG Chao, et al. Genetic significance of heavy minerals in sandstone [J]. Acta Geologica Sichuan, 2020, 40(1): 26-29,50. doi: 10.3969/j.issn.1006-0995.2020.01.006

    [28] 王昆山, 石学法, 李珍, 等. 东海DGKS9617岩心重矿物及自生黄铁矿记录[J]. 海洋地质与第四纪地质, 2005, 25(4):41-45

    WANG Kunshan, SHI Xuefa, LI Zhen, et al. Records of heavy mineral and authigenous pyrite in core DGKS9617 from the East China Sea [J]. Marine Geology & Quaternary Geology, 2005, 25(4): 41-45.

    [29]

    Song H Y, Liu J Q, Yin P, et al. Characteristics of heavy minerals and quantitative provenance identification of sediments from the muddy area outside the Oujiang Estuary since 5.8 kyr [J]. Journal of Ocean University of China, 2018, 17(6): 1325-1335. doi: 10.1007/s11802-018-3684-6

    [30]

    Liu J Q, Yin P, Zhang Y, et al. Distribution and provenance of detrital minerals in southern coast of Shandong Peninsula [J]. Journal of Ocean University of China, 2017, 16(5): 747-756. doi: 10.1007/s11802-017-3196-9

    [31] 仝长亮, 黎刚, 陈飞, 等. 海南岛东北部海域海砂资源特征及成因[J]. 海洋地质前沿, 2018, 34(1):12-19 doi: 10.16028/j.1009-2722.2018.01003

    TONG Changliang, LI Gang, CHEN Fei, et al. Geological characteristics and origin of marine sands in the northeast sea off Hainan Island [J]. Marine Geology Frontiers, 2018, 34(1): 12-19. doi: 10.16028/j.1009-2722.2018.01003

    [32] 潘燕俊, 崔汝勇, 林明坤, 等. 海南岛周边浅海砂矿资源潜力浅析[J]. 海洋通报, 2017, 36(4):458-467 doi: 10.11840/j.issn.1001-6392.2017.04.013

    PAN Yanjun, CUI Ruyong, LIN Mingkun, et al. Preliminary analysis of placer resources potential in Hainan Island offshore area [J]. Marine Science Bulletin, 2017, 36(4): 458-467. doi: 10.11840/j.issn.1001-6392.2017.04.013

    [33] 叶翔, 徐勇航, 王爱军, 等. 海南岛东南部陆架晚全新世以来海洋沉积物来源与环境变化特征[J]. 第四纪研究, 2016, 36(1):18-30 doi: 10.11928/j.issn.1001-7410.2016.02

    YE Xiang, XU Yonghang, WANG Aijun, et al. Variations in sediment source and marine environment characteristics during the Late Holocene on the continental shelf off southeastern Hainan Island [J]. Quaternary Sciences, 2016, 36(1): 18-30. doi: 10.11928/j.issn.1001-7410.2016.02

    [34] 周娇, 蔡观强, 邹俪琦, 等. 海南岛东南部海域有用重砂的资源潜力[J]. 海洋地质前沿, 2021, 37(12):58-65

    ZHOU Jiao, CAI Guanqiang, ZOU Liqi, et al. Resource potential of valuable heavy minerals in the southeast water off Hainan Island [J]. Marine Geology Frontiers, 2021, 37(12): 58-65.

    [35]

    Ge Q, Xu D, Ye L M, et al. Linking Monsoon activity with river-derived sediments deposition in the northern South China Sea [J]. Journal of Ocean University of China, 2019, 18(5): 1098-1104. doi: 10.1007/s11802-019-4155-4

    [36] 文启忠, 刁桂仪, 潘景瑜, 等. 黄土高原黄土的平均化学成分与地壳克拉克值的类比[J]. 土壤学报, 1996, 33(3):225-231 doi: 10.3321/j.issn:0564-3929.1996.03.001

    WEN Qizhong, DIAO Guiyi, PAN Jingyu, et al. Comparison of average chemical composition of loess in Loess Plateau with clark values of crust [J]. Acta Pedologica Sinica, 1996, 33(3): 225-231. doi: 10.3321/j.issn:0564-3929.1996.03.001

    [37]

    Cui Z N, Schulz-Bull D E, Hou Y M, et al. Geochemical characteristics and provenance of Holocene sediments (Core STAT22) in the Beibu Gulf, South China Sea [J]. Journal of Coastal Research, 2016, 32(5): 1105-1115.

    [38]

    Liu J G, Xiang R, Chen M H, et al. Influence of the Kuroshio current intrusion on depositional environment in the northern South China Sea: Evidence from surface sediment records [J]. Marine Geology, 2011, 285(1-4): 59-68. doi: 10.1016/j.margeo.2011.05.010

    [39]

    Xu K H, Milliman J D, Li A C, et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea [J]. Continental Shelf Research, 2009, 29(18): 2240-2256. doi: 10.1016/j.csr.2009.08.017

    [40]

    Ge Q, Liu J P, Xue Z, et al. Dispersal of the Zhujiang River (Pearl River) derived sediment in the Holocene [J]. Acta Oceanologica Sinica, 2014, 33(8): 1-9. doi: 10.1007/s13131-014-0407-8

    [41] 仝长亮, 孙龙飞, 黄仕锐. 海南省海洋地质调查主要进展与成果[J]. 中国地质调查, 2020, 7(1):60-70 doi: 10.19388/j.zgdzdc.2020.01.09

    TONG Changliang, SUN Longfei, HUANG Shirui. Main progress and achievements of marine geological survey in Hainan Province [J]. Geological Survey of China, 2020, 7(1): 60-70. doi: 10.19388/j.zgdzdc.2020.01.09

    [42]

    Xu Z F, Han G L. Rare earth elements (REE) of dissolved and suspended loads in the Xijiang River, South China [J]. Applied Geochemistry, 2009, 24(9): 1803-1816. doi: 10.1016/j.apgeochem.2009.06.001

    [43]

    Li C S, Shi X F, Kao S J, et al. Rare earth elements in fine-grained sediments of major rivers from the high-standing island of Taiwan [J]. Journal of Asian Earth Sciences, 2013, 69: 39-47. doi: 10.1016/j.jseaes.2013.03.001

    [44]

    Cao L C, Jiang T, Wang Z F, et al. Provenance of upper miocene sediments in the Yinggehai and Qiongdongnan Basins, northwestern South China Sea: Evidence from REE, heavy minerals and zircon U–Pb ages [J]. Marine Geology, 2015, 361: 136-146. doi: 10.1016/j.margeo.2015.01.007

    [45] 仝长亮, 陈飞, 张匡华. 海南岛东北部海域海砂资源分布特征及开发前景分析[J]. 中国矿业, 2019, 28(1):58-65 doi: 10.12075/j.issn.1004-4051.2019.01.002

    TONG Changliang, CHEN Fei, ZHANG Kuanghua. Analysis of the distribution and development of marine sand resources in the northeast sea of Hainan Island [J]. China Mining Magazine, 2019, 28(1): 58-65. doi: 10.12075/j.issn.1004-4051.2019.01.002

    [46] 曹立成. 莺歌海—琼东南盆地区新近纪物源演化研究: 来自稀土元素、重矿物和锆石U-Pb年龄的证据[D]. 中国地质大学(武汉)硕士学位论文, 2014

    CAO Licheng. Provenance evolution since Neogene in the Yinggehai and Qiongdongnan Basins: Evidence from REE, heavy mineral and zircon U-Pb ages[D]. Master Dissertation of China University of Geosciences (Wuhan), 2014.

    [47] 张娜. 北部湾海底沉积物的矿物学特征及其对环境的响应[D]. 中国地质大学(北京)博士学位论文, 2015

    ZHANG Na. The mineralogical characteristics of the sediments and its environmental significance in the Beibuwan Gulf[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2015.

    [48]

    Andersen T, Kristoffersen M, Elburg M A. How far can we trust provenance and crustal evolution information from detrital zircons? A South African case study [J]. Gondwana Research, 2016, 34: 129-148. doi: 10.1016/j.gr.2016.03.003

    [49] 程瑜, 李向前, 赵增玉, 等. 苏北盆地TZK9孔磁性地层及重矿物组合特征研究[J]. 地质力学学报, 2016, 22(4):994-1003 doi: 10.3969/j.issn.1006-6616.2016.04.017

    CHENG Yu, LI Xiangqian, ZHAO Zengyu, et al. Magnetostratigraphy and heavy minerals records of TZK9 core in Subei Basin [J]. Journal of Geomechanics, 2016, 22(4): 994-1003. doi: 10.3969/j.issn.1006-6616.2016.04.017

    [50] 田豹. 重矿物物源分析研究进展[J]. 中国锰业, 2017, 35(1):107-109,115 doi: 10.14101/j.cnki.issn.1002-4336.2017.01.032

    TIAN Bao. A research progress in provenance analysis of heavy minerals [J]. China's Manganese Industry, 2017, 35(1): 107-109,115. doi: 10.14101/j.cnki.issn.1002-4336.2017.01.032

    [51] 董江, 李安春, 徐方建, 等. 东海内陆架EC2005孔重矿物组合特征及其物源指示意义[J]. 海洋与湖沼, 2015, 46(6):1292-1303

    DONG Jiang, LI Anchun, XU Fangjian, et al. Heavy mineral assemblages in core EC2005 in the inner shelf of East China Sea and the origin [J]. Oceanologia et Limnologia Sinica, 2015, 46(6): 1292-1303.

    [52]

    Wu W X, Liu T S. Possible role of the “Holocene Event 3” on the collapse of Neolithic Cultures around the Central Plain of China [J]. Quaternary International, 2004, 117(1): 153-166. doi: 10.1016/S1040-6182(03)00125-3

    [53]

    Yang X Q, Wei G J, Yang J, et al. Paleoenvironmental shifts and precipitation variations recorded in tropical Maar Lake sediments during the Holocene in Southern China [J]. The Holocene, 2014, 24(10): 1216-1225. doi: 10.1177/0959683614540962

    [54] 汤文坤. 7ka以来海南双池玛珥湖气候环境演变的高分辨率沉积记录[D]. 北京: 中国地质科学院硕士学位论文, 2017

    TANG Wenkun. High revolution sedimentary record of environmental evolution since 7 cal ka BP in Shuangchi Maar Lake, north Hainan Island[D]. Master Dissertation of Chinese Academy of Geological Sciences, 2017.

    [55]

    Fu Y H, Lin Z D, Wang T. Simulated relationship between wintertime ENSO and east Asian summer rainfall: From CMIP3 to CMIP6 [J]. Advances in Atmospheric Sciences, 2021, 38(2): 221-236. doi: 10.1007/s00376-020-0147-y

    [56]

    Drever J I, Clow D W. Weathering rates in catchments [J]. Reviews in Mineralogy, 1995, 31(1): 463-483.

    [57] 黄向青, 崔振昂, 林海, 等. 北部湾全新世气候与古生态环境演进特征及其驱动因素[J]. 地球学报, 2022, 43(2):129-143 doi: 10.3975/cagsb.2021.042501

    HUANG Xiangqing, CUI Zhen’ang, LIN Hai, et al. The driving factors on climatic and palaeo-ecological evolution of Beibu Gulf since Holocene [J]. Acta Geoscientica Sinica, 2022, 43(2): 129-143. doi: 10.3975/cagsb.2021.042501

    [58]

    Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194

    [59]

    Dykoski C, Edwards R, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86. doi: 10.1016/j.jpgl.2005.01.036

    [60]

    Berger A, Loutre M F. Insolation values for the climate of the last 10 million years [J]. Quaternary Science Reviews, 1991, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q

图(7)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-30
  • 修回日期:  2022-08-22
  • 录用日期:  2022-08-22
  • 网络出版日期:  2022-11-23
  • 刊出日期:  2023-02-27

目录

/

返回文章
返回