Provenance and environmental response of terrigenous debris in the southeastern continental shelf of Hainan Island since 7.8 kaBP
-
摘要: 对取自海南岛东南部的X2站柱状样品进行了粒度、全岩稀土元素和重矿物分析,探讨了7.8 kaBP以来海南岛东南陆架陆源碎屑来源及其环境响应。粒度端元模拟识别出了两个端元,EM1端元对应的是海洋流系搬运的近源与远源细粒物质的混合沉积,EM2对应的主要是近源海南岛河流输入的粗粒物质,两个端元代表着两个不同的输运机制。物源分析结果表明,7.8 kaBP以来X2站陆源碎屑来源较为稳定,主要来源于海南岛。4 kaBP以来,X2站粒度、稀土元素和重矿物特征参数发生了显著改变,与El Nino-Southern Oscillation (ENSO)事件开始增强有很好的对应关系,推测频繁的ENSO事件导致降雨量增加是研究区风化程度增强的主要原因。与全岩稀土元素特征指标相比,X2站重矿物组合受源区风化剥蚀的影响更为显著,后期在环境演化研究中,应适当关注重矿物这一指标。Abstract: Grain-size, bulk Rare Earth Element (REE), and heavy mineral analysis of Core X2 at southeastern Hainan Island were carried out. The provenances of terrigenous clasts and their environmental responses of this study area since 7.8 kaBP were discussed. Two endmembers were identified by grain-size endmember simulation. The EM1 endmember corresponded to the fine-grained material transported by the ocean current system, while the EM2 endmember corresponded to the coarse-grained material input from nearby rivers in Hainan Island; therefore, the two endmembers represented two different transport mechanisms. Results show that since 7.8 kaBP, the provenance of terrigenous detrital of Core X2 was relatively stable, mainly from Hainan Island. After 4 kaBP, the grain size, REE, and heavy mineral characteristic parameters of Core X2 had changed significantly, which has a good correspondence to the intensification of El Nino and Southern Oscillation (ENSO). It is speculated that the increase of rainfall caused by frequent ENSO events is the main reason for the enhancement of weathering degree in the study area. Compared with the characteristics of REE, the heavy mineral assemblages of Core X2 were more significantly affected by weathering and denudation in the source area. Therefore, study on heavy mineral index is suggested in the future study of environmental evolution.
-
Keywords:
- continental shelf /
- rare earth element /
- heavy mineral /
- provenance /
- Hainan Island
-
南海北部陆架接受了来自周围陆地的巨量物质输入,其沉积物有效地记录了物质运移、海陆变迁、气候变化等地质和环境信息[1-2]。前人通过环境磁学[3]、矿物学[4]、地球化学[5]、沉积学[6]等多种方法对海南岛东南陆架沉积物来源进行了研究,认为海南岛、珠江和台湾岛为主要的物质供给区,由于输沙量较小,海南岛是否能为周边海域提供充足的物质供给存在一定争议[2,4]。
稀土元素(REE)具有极为相似的化学性质,在风化、剥蚀、搬运、沉积和早期成岩作用过程中不易迁移,而且其组成受粒度影响较弱,很大程度上能够用来反映物源区物质的地球化学特征,因此被广泛用于示踪沉积物来源[7-8]。重矿物在河流流域、河口或近海很快发生沉降分异[9],也常被用于沉积环境分析[10–13]和古气候事件的识别[14-15]。泥质沉积与砂质沉积可能不是来自同一物源,在进行沉积物物质来源分析时,有必要对不同粒级的沉积物分别讨论[16]。本文对取自于海南岛东南陆架泥质区的X2站柱状沉积物开展了粒度、全岩稀土元素和重矿物分析,探讨了7.8 kaBP以来海南岛东南陆架陆源碎屑物质来源及其环境响应。
1. 区域地质背景
南海北部发育复杂的海洋流系,主要包括广东沿岸流、表层洋流、北部湾环流以及深水洋流等[17]。研究区受东亚季风影响,风向和流向具有季节性变化特点,即夏季在盛行的西南向季风影响下发育东北向表层洋流,冬季则相反(图1)[18]。海南岛附近具有热带季风型海洋性气候特色,终年高温,年平均气温为22~26 °C,雨量充沛[19]。海南岛岩石类型以花岗岩、玄武岩和砂页岩为主,这些岩石和第四纪沉积物可为周边近海沉积提供物质来源[20]。海南岛地势中部高、四周低,岛内约有150条河流呈辐射状独立直流入海[21]。
2. 材料与方法
2.1 样品来源
研究采用的X2站柱状样于2012年9月利用重力取样器采自于海南岛东南侧陆架(18°25.753′N、110°17.079′E,水深约77 m,图1),岩芯长度240 cm。在实验室对样品进行详细描述和分样。
2.2 分析方法
X2站4个层位的混合底栖有孔虫AMS14C年代测试在美国Beta实验室完成。原始测年数据利用CALIB 7.0.2软件和Marine 13程序进行日历年龄校正。现代年龄数据用−23±52 a的碳储库年龄进行校正,7.5~5.6 kaBP的数据用151±85 a的碳储库年龄进行校正[2]。
粒度样品共120个,测试前使用30% 的H2O2和1 mol/L的 HCl水浴60 °C加热1 h去除有机质和钙质生物,在中国科学院海洋研究所进行粒度测试。测试仪器为法国产Cilas 940L激光粒度仪,测试范围为0.5~2000 μm,重复测试的相对误差小于2%[2]。在MATLAB软件中嵌入Paterson 和 Heslop提供的AnalySize程序[23],采用非参数化方法对粒度数据进行端元模拟。
用于分析的60个稀土样品按等间距取样。样品使用30% 的H2O2和1 mol/L 的HCl水浴60 °C加热1 h以去除有机质和钙质生物,低温烘干,在玛瑙研钵中磨碎至200目以下。经马弗炉高温灼烧,用HF+HNO3+HClO4完全消解后,在中国科学院海洋研究所使用等离子质谱分析方法(ICP-MS)进行测试。为了保证测试精度和准确度,进行重复样和标样分析,所选标准样品为GBW07315、GBW07316、BCR-2和BHVO-2,分析元素的相对误差<5%。
重矿物样品共20个,取样间隔约为12 cm。筛选出63~250 μm粒级沉积物后,利用三溴甲烷(密度2.89 g/cm)进行轻重矿物分离。将分离出来的重矿物在双目实体显微镜下进行观察鉴定,每个样品各鉴定500个以上矿物颗粒,计算出单个矿物数量占重矿物总数量的百分比。
3. 结果
3.1 粒度特征及端元模拟算法分析结果
岩芯240~120 cm主要为黏土质粉砂,120~0 cm主要为粉砂质砂。根据AMS14C测年结果,X2站柱状沉积物底部240 cm处的年龄约为7.8 kaBP,沉积速率较为稳定,约为30 cm/ka[2]。
粒度数据模拟结果如图2所示。相对高的复相关系数(R2)和低的角度偏差值(θ)意味着较好的统计拟合结果。当端元个数增加时,R2也逐渐变大(图2a)。R2在端元数为2时大于0.9(图2a),当端元数增加时,R2并未发生明显变化,表明端元数至少为2个。为避免过度拟合,端元间相关性应尽量低[23],而2端元以上各端元间相关性明显增加(图2a)。为了使角度偏差尽量小,应选取角度偏差值在5以下[23],故最终端元数为2时能够达到较好的拟合效果(图3)。EM1的众数值是13 μm,EM2的众数值是85 μm。
3.2 稀土元素含量特征
根据稀土元素物理和化学性质的差别,一般可以分为轻稀土元素(LREE:La,Ce,Pr,Nd,Sm,Eu)和重稀土元素(HREE:Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)两组,其含量分别用∑LREE和∑HREE表示,稀土元素含量总和用∑REE表示,稀土元素含量及各特征参数变化情况见图4。可以看出,X2站柱状样垂向上∑LREE、∑HREE与∑REE具有较为一致的变化趋势,∑REE变化范围为92.0~193.4 μg/g,∑LREE为82.2~178.1 μg/g,∑HREE为9.7~20.4 μg/g。岩芯上段(120 ~0 cm)较下段(240~120 cm)∑LREE、∑HREE与∑REE等参数变小,各参数波动幅度变大。前人研究显示[2],X2站沉积物经UCC标准化后不同层位的配分模式基本一致,与上地壳[24]和世界页岩[25]非常一致,均表现为轻稀土富集、重稀土元素含量低和轻重稀土分异较强,具有强烈的陆源特征。X2站沉积物Eu中度亏损,δEu为0.5~0.7,平均为0.6。
3.3 重矿物特征
X2站柱状样中共检测出17种重矿物,其中黄铁矿(18.3%)、磁铁矿(16.5%)、钛铁矿(15.2%)、锆石(12.9%)等的百分含量都超过10%,绿帘石(6.9%)、赤褐铁矿(6.2%)、锐钛矿(4.8%)、白钛石(4.1%)、角闪石(4.3%)、辉石(3.1%)、磷灰石(2.5%)、金红石(1.6%)、电气石(1.3%)的百分含量都在1%~10%之间,榍石(0.9%)、石榴子石(0.6%)、透闪石(0.6%)、独居石(0.3%)的含量均低于1%。本文根据重矿物的稳定性和成因,结合前人的分类标准[26-28],将重矿物分为稳定矿物(锆石、金红石、锐钛矿、白钛石、电气石、石榴子石、赤褐铁矿、钛铁矿、磁铁矿、独居石、榍石),不稳定矿物(磷灰石、绿帘石、辉石、角闪石、透闪石)和自生矿物(黄铁矿)。重矿物变化大致以120 cm为界可以分为两段(图5),240~120 cm重矿物变化特点不明显,120~0 cm不稳定矿物和自生矿物开始减少,大部分稳定矿物含量开始增加,锐钛矿、石榴子石和赤褐铁矿减少,磁铁矿和独居石开始出现。
4. 讨论
4.1 粒度端元组分的指示意义
沿海和近岸沉积物的来源通常比较复杂,既有河流的输入,又有海洋流系(沿岸流和表层洋流等)的输送[29]。河流的直接输入提供的主要是粗粒物质,而海洋流系可以将近源河流输入中较细的物质进行搬运,同时也可以带来远源的细粒物质[30-31],因此海洋流系搬运的主要是细粒物质。海南岛河流众多,洪水期含砂量增大[32],河流物质入海后除了在河口沉积外,也会在沿岸流的作用下沿岸沉积,同时表层洋流也可以带来外海物质,因此海南岛东部陆架沉积物质既有海南岛河流的输入,又有海洋流系的输送[4,33-34]。据此推断,EM1对应的是海洋流系搬运的近源与远源细粒物质的混合沉积,EM2对应的主要是近源海南岛河流来源的粗粒物质,因此两个端元代表着两个不同的输运机制。由于该区域海洋动力比较稳定[35],而河流动力受降雨量影响有很大变化,因此河流动力强时,带来粗粒物质增多,致使研究区粒度变粗,反之则变细。
4.2 物质来源分析
X2站沉积物∑REE平均值149.9 μg/g,与中国黄土(∑REE=171.0 μg/g)[36]和上地壳(∑REE=146.4 μg/g)[24]相近,可以推断X2站沉积物均来自于上地壳这一大的地质背景,具有明显的陆源属性。前人研究显示,红河的沉积物主要沉积在三角洲海岸,同时由于海南岛的阻挡,难以到达海南岛东部[37],吕宋岛的物质难以跨越深水盆地[38],长江物质难以越过台湾海峡[39],所以研究区的潜在物源为珠江、海南岛和台湾岛。虽然稀土的含量受到了粒度变化的影响,但代表稀土内部分馏情况的(La/Nd)UCC、(La/Tb)UCC、(La/Sm)UCC以及δEu等指标等受粒度的影响较小,所以基本反映的是源区的状况。因此进一步采用(La/Sm)UCC-δEu (图6a)与(La/Nd)UCC-(La/Tb)UCC(图6b)交汇图进行物源判别。X2站大部分层位处于海南岛范围,只有极个别层位位于珠江和台湾岛范围内。因此,可以认为自中全新世以来X2站沉积物主要来自于海南岛。
前人研究发现,珠江入海物质主要沉积于珠江口至海南岛东北侧之间[18],在珠江口至雷州半岛之间形成了一条平行海岸线的全新世泥质条带[40]。因此,可能只有少量珠江细粒物质经长距离搬运而到达海南岛东部陆架。虽然海南岛河流输沙量较小,但受季节性降雨和地形的影响,海南岛东部河流可携带泥沙直流入海[41],从而为距离较近的X2站提供较多的物质供给。台湾岛入海的巨量物质不仅是南海北部的主要物源,而且有向西南方向运移的趋势[18]。因此,X2站全岩沉积物主要来自于海南岛,少量的珠江和台湾岛物质也有可能被输送到研究区。
4.3 重矿物变化对环境的指示意义
海南岛东南部母岩以花岗岩为主,强烈的风化作用产生钛铁矿-锆石型重矿物组合,但是局部地区岩性组成仍存在差异,从而导致河流沉积物受局部物源的影响,具有不同的重矿物组合特征[44-47]。因为重矿物常常存在于较粗的组分中,具有近源沉积的特点,而且X2站含有较高的钛铁矿和锆石的情况与海南岛相似,所以推断X2站的重矿物来自于海南岛,这与前人的研究一致,即海南岛东部陆架重矿物由海南岛小型河流携带入海[34,44,46]。由于重矿物受气候影响较大[48-49],稳定性强的矿物较难远距离搬运且可在较高的化学风化作用下富集[10],所以可以利用重矿物来分析研究区环境的变化。
X2站沉积物在120 cm(4 kaBP)处粒度、稀土元素和重矿物特征参数都发生了显著改变,表明4 kaBP以来环境发生了重大变化。EM2的增大说明源区水动力增强,研究区降雨量增加。黄铁矿是自生矿物[50],可在还原环境、水动力弱的条件下快速形成,富集条件也十分严格[51]。4 kaBP以来黄铁矿含量迅速减少,也说明了研究区水动力变强和水体氧化。较强的水动力可将不稳定矿物带走,使得稳定矿物富集。然而X2站一些稳定性较强的矿物含量也变小,可能是由于强烈的风化作用导致的。同时,ZRT(ZRT=锆石%+电气石%+金红石%)的增大,ATi(ATi=100×磷灰石/(磷灰石+电气石))、GZi(GZi=100×石榴子/(石榴子石+锆石))和风化系数(风化系数=不稳定矿物/稳定矿物)的减小,也揭示了4 kaBP以来源区风化程度的增强。其次,由于降雨量的增加,海南岛河流集水面积增加,从而受局部物源的影响重矿物含量发生变化,如磁铁矿和独居石开始出现(图5)。
4.2 kaBP左右发生的冷事件标志着全新世大暖期的结束[52],此后中国气候发生了显著改变,东亚季风开始减弱,中低纬度地区ENSO事件频繁[53-55](图7),因此推断研究区环境的改变是此次气候转变的响应。4 kaBP以来,季风开始减弱(图7),减弱的季风并不太可能使得研究区降雨量增加或风化加强;同时,全新世大暖期结束后,温度降低,并一直处于减弱的状态(图7),因此温度也不是导致源区风化加强的原因。ENSO频繁会导致低纬度地区降雨量的增加,EM2的增大与ENSO事件频繁几乎同步开始,也进一步说明降雨量的增加可能是导致研究区水动力增强的主要原因;同时,由于降雨量的增加会加速对地表的冲刷,导致物理风化加剧,大量的雨水也会使得地表长时间湿润,导致化学风化的加剧[56],因此源区风化的加剧可能是由于降雨量增加导致的。这与前人的研究一致,即4 kaBP以来研究区降水、风化程度增加与降温趋势呈相反的变化[57]。因此推断频繁的ENSO事件是研究区风化增强的主要原因。值得注意的是,对于X2站,重矿物组合比稀土元素对环境变化更为敏感(图7),因此重矿物在环境演化的研究中具有一定的优势,在以后的环境演化中应适当关注这一指标。
5. 结论
(1)端元模拟识别出两个端元,分别代表着不同的输运机制,EM1对应的是海洋流系搬运的细粒物质,EM2对应的主要是近源海南岛河流输入的粗粒物质。EM2可表征河流动力变化,受降雨量变化的影响。
(2)物源分析表明,7.8 kaBP以来海南岛东南陆架陆源碎屑比较稳定,主要来源于海南岛,珠江和台湾岛的贡献相对较少。
(3)研究区环境的改变可能是对中国4 kaBP以来气候转变的一个响应。频繁的ENSO事件导致降雨量的增加可能是研究区环境转变的主要原因。
致谢:感谢在X2站岩芯取样中全体船员和科考队员的大力支持。
-
-
[1] Wang S H, Zhang N, Chen H, et al. The surface sediment types and their rare earth element characteristics from the continental shelf of the northern South China Sea [J]. Continental Shelf Research, 2014, 88: 185-202. doi: 10.1016/j.csr.2014.08.005
[2] Xu F J, Hu B Q, Dou Y G, et al. Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene [J]. Continental Shelf Research, 2017, 144: 21-30. doi: 10.1016/j.csr.2017.06.013
[3] 田成静, 欧阳婷萍, 朱照宇, 等. 海南岛周边海域表层沉积物磁化率空间分布特征及其物源指示意义[J]. 热带地理, 2013, 33(6):666-673 doi: 10.13284/j.cnki.rddl.002477 TIAN Chengjing, OUYANG Tingping, ZHU Zhaoyu, et al. Spatial distribution of magnetic susceptibility and its provenance implication of surface sediments in the sea areas around the Hainan Island [J]. Tropical Geography, 2013, 33(6): 666-673. doi: 10.13284/j.cnki.rddl.002477
[4] Hu B Q, Li J, Cui R Y, et al. Clay mineralogy of the riverine sediments of Hainan Island, South China Sea: Implications for weathering and provenance [J]. Journal of Asian Earth Sciences, 2014, 96: 84-92. doi: 10.1016/j.jseaes.2014.08.036
[5] Xu F J, Tian X, Yin X B, et al. Trace metals in the surface sediments of the eastern continental shelf of Hainan Island: Sources and contamination [J]. Marine Pollution Bulletin, 2015, 99(1-2): 276-283. doi: 10.1016/j.marpolbul.2015.07.055
[6] 高为利, 张富元, 章伟艳, 等. 海南岛周边海域表层沉积物粒度分布特征[J]. 海洋通报, 2009, 28(2):71-80 doi: 10.3969/j.issn.1001-6392.2009.02.011 GAO Weili, ZHANG Fuyuan, ZHANG Weiyan, et al. Characteristics of grain size distributions of surface sediments in the Hainan Island offshore area [J]. Marine Science Bulletin, 2009, 28(2): 71-80. doi: 10.3969/j.issn.1001-6392.2009.02.011
[7] Sahoo P K, Souza-Filho P W M, Guimarães J T F, et al. Use of multi-proxy approaches to determine the origin and depositional processes in modern lacustrine sediments: Carajás Plateau, Southeastern Amazon, Brazil [J]. Applied Geochemistry, 2015, 52: 130-146. doi: 10.1016/j.apgeochem.2014.11.010
[8] Prajith A, Rao V P, Kessarkar P M. Controls on the distribution and fractionation of Yttrium and rare earth elements in core sediments from the Mandovi estuary, Western India [J]. Continental Shelf Research, 2015, 92: 59-71. doi: 10.1016/j.csr.2014.11.003
[9] 赵德博, 万世明. 南海沉积物中黏土矿物及其在古气候中的应用研究进展[J]. 海洋地质与第四纪地质, 2014, 34(4):163-171 ZHAO Debo, WAN Shiming. Research progress of clay minerals in sediments of the South China Sea and its application to paleoclimatic reconstruction [J]. Marine Geology & Quaternary Geology, 2014, 34(4): 163-171.
[10] 李正刚, 初凤友, 张富元, 等. 南海西北部内陆架表层沉积物的重矿物分布及其控制因素[J]. 海洋地质与第四纪地质, 2011, 31(4):89-96 LI Zhenggang, CHU Fengyou, ZHANG Fuyuan, et al. Distribution pattern of heavy minerals in the surface sediments on inner shelf, northwest South China Sea and its controlling factors [J]. Marine Geology & Quaternary Geology, 2011, 31(4): 89-96.
[11] Qin Y C, Xue C T, Jiang X J. Tidal current-dominated depositional environments in the central-northern Yellow Sea as revealed by heavy-mineral and grain-size dispersals [J]. Marine Geology, 2018, 398: 59-72. doi: 10.1016/j.margeo.2018.01.004
[12] Cheng L Q, Song Y G, Chang H, et al. Heavy mineral assemblages and sedimentation rates of eastern central Asian loess: Paleoenvironmental implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 551: 109747. doi: 10.1016/j.palaeo.2020.109747
[13] 王中波, 杨守业, 张志珣, 等. 东海西北部陆架表层沉积物重矿物组合及其沉积环境指示[J]. 海洋学报, 2012, 34(6):114-125 WANG Zhongbo, YANG Shouye, ZHANG Zhixun, et al. The heavy mineral assemblages of the surface sediments on the northeast shelf of the East China Sea and their environmental implication [J]. Acta Oceanologica Sinica, 2012, 34(6): 114-125.
[14] Li M K, Ouyang T P, Zhu Z Y, et al. Rare earth element fractionations of the northwestern South China Sea sediments, and their implications for East Asian Monsoon reconstruction during the last 36 kyr [J]. Quaternary International, 2019, 525: 16-24. doi: 10.1016/j.quaint.2019.09.007
[15] Walsh E, Caracciolo L, Ravidà D, et al. Holocene fluvial depositional regimes of the Huab River, Skeleton Coast, Namibia [J]. Earth Surface Processes and Landforms, 2022, 47(7): 1820-1844. doi: 10.1002/esp.5349
[16] 张凯棣, 李安春, 董江, 等. 东海表层沉积物碎屑矿物组合分布特征及其物源环境指示[J]. 沉积学报, 2016, 34(5):902-911 doi: 10.14027/j.cnki.cjxb.2016.05.009 ZHANG Kaidi, LI Anchun, DONG Jiang, et al. Detrital mineral distributions in surface sediments of the East China Sea: Implications for sediment provenance and sedimentary environment [J]. Acta Sedimentologica Sinica, 2016, 34(5): 902-911. doi: 10.14027/j.cnki.cjxb.2016.05.009
[17] Chen Q, Liu Z F, Kissel C. Clay mineralogical and geochemical proxies of the East Asian summer monsoon evolution in the South China Sea during Late Quaternary [J]. Scientific Reports, 2017, 7(1): 42083. doi: 10.1038/srep42083
[18] Liu Z F, Colin C, Li X J, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport [J]. Marine Geology, 2010, 277(1-4): 48-60. doi: 10.1016/j.margeo.2010.08.010
[19] Xu F J, Hu B Q, Zhao J T, et al. Topographic and climatic control on chemical weathering of mountainous riverine sediments of Hainan Island, South China Sea [J]. Frontiers in Earth Science, 2022, 9: 7702369.
[20] 周娇, 杨楚鹏, 孙桂华, 等. 海南岛西南浅海域有用重砂资源潜力分析[J]. 地质科技情报, 2018, 37(2):89-96 doi: 10.19509/j.cnki.dzkq.2018.0212 ZHOU Jiao, YANG Chupeng, SUN Guihua, et al. Potential analysis of valuable heavy minerals in surface sediments in the shallow waters of the southwest of Hainan Island [J]. Geological Science and Technology Information, 2018, 37(2): 89-96. doi: 10.19509/j.cnki.dzkq.2018.0212
[21] 韩念龙, 张伟璇, 张亦清. 基于InVEST模型的海南岛产水量的时空变化研究[J]. 海南大学学报:自然科学版, 2021, 39(3):280-287 HAN Nianlong, ZHANG Weixuan, ZHANG Yiqing. Spatio-temporal analysis of water yield in Hainan Island based on InVEST model [J]. Natural Science Journal of Hainan University, 2021, 39(3): 280-287.
[22] Liu Y L, Gao S, Wang Y P, et al. Distal mud deposits associated with the Pearl River over the northwestern continental shelf of the South China Sea [J]. Marine Geology, 2014, 347: 43-57. doi: 10.1016/j.margeo.2013.10.012
[23] Zhang X D, Wang H M, Xu S M, et al. A basic end-member model algorithm for grain-size data of marine sediments [J]. Estuarine, Coastal and Shelf Science, 2020, 236: 106656. doi: 10.1016/j.ecss.2020.106656
[24] Taylor S R, McLennan S M. The geochemical evolution of the continental crust [J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262
[25] 高爱国, 韩国忠, 刘峰, 等. 楚科奇海及其邻近海域表层沉积物的元素地球化学特征[J]. 海洋学报, 2004, 26(2):132-139 GAO Aiguo, HAN Guozhong, LIU Feng, et al. The elemental geochemistry of the surface sediments in the Chukchi Sea and its adjacent areas [J]. Acta Oceanologica Sinica, 2004, 26(2): 132-139.
[26] 刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985: 208-219 LIU Dungsheng. Loessand Environment[M]. Beijing: Science Press, 1985: 208-219.
[27] 曾方侣, 姜楷, 黄超, 等. 砂岩中重矿物的成因意义[J]. 四川地质学报, 2020, 40(1):26-29,50 doi: 10.3969/j.issn.1006-0995.2020.01.006 ZENG Fanglü, JIANG Kai, HUANG Chao, et al. Genetic significance of heavy minerals in sandstone [J]. Acta Geologica Sichuan, 2020, 40(1): 26-29,50. doi: 10.3969/j.issn.1006-0995.2020.01.006
[28] 王昆山, 石学法, 李珍, 等. 东海DGKS9617岩心重矿物及自生黄铁矿记录[J]. 海洋地质与第四纪地质, 2005, 25(4):41-45 WANG Kunshan, SHI Xuefa, LI Zhen, et al. Records of heavy mineral and authigenous pyrite in core DGKS9617 from the East China Sea [J]. Marine Geology & Quaternary Geology, 2005, 25(4): 41-45.
[29] Song H Y, Liu J Q, Yin P, et al. Characteristics of heavy minerals and quantitative provenance identification of sediments from the muddy area outside the Oujiang Estuary since 5.8 kyr [J]. Journal of Ocean University of China, 2018, 17(6): 1325-1335. doi: 10.1007/s11802-018-3684-6
[30] Liu J Q, Yin P, Zhang Y, et al. Distribution and provenance of detrital minerals in southern coast of Shandong Peninsula [J]. Journal of Ocean University of China, 2017, 16(5): 747-756. doi: 10.1007/s11802-017-3196-9
[31] 仝长亮, 黎刚, 陈飞, 等. 海南岛东北部海域海砂资源特征及成因[J]. 海洋地质前沿, 2018, 34(1):12-19 doi: 10.16028/j.1009-2722.2018.01003 TONG Changliang, LI Gang, CHEN Fei, et al. Geological characteristics and origin of marine sands in the northeast sea off Hainan Island [J]. Marine Geology Frontiers, 2018, 34(1): 12-19. doi: 10.16028/j.1009-2722.2018.01003
[32] 潘燕俊, 崔汝勇, 林明坤, 等. 海南岛周边浅海砂矿资源潜力浅析[J]. 海洋通报, 2017, 36(4):458-467 doi: 10.11840/j.issn.1001-6392.2017.04.013 PAN Yanjun, CUI Ruyong, LIN Mingkun, et al. Preliminary analysis of placer resources potential in Hainan Island offshore area [J]. Marine Science Bulletin, 2017, 36(4): 458-467. doi: 10.11840/j.issn.1001-6392.2017.04.013
[33] 叶翔, 徐勇航, 王爱军, 等. 海南岛东南部陆架晚全新世以来海洋沉积物来源与环境变化特征[J]. 第四纪研究, 2016, 36(1):18-30 doi: 10.11928/j.issn.1001-7410.2016.02 YE Xiang, XU Yonghang, WANG Aijun, et al. Variations in sediment source and marine environment characteristics during the Late Holocene on the continental shelf off southeastern Hainan Island [J]. Quaternary Sciences, 2016, 36(1): 18-30. doi: 10.11928/j.issn.1001-7410.2016.02
[34] 周娇, 蔡观强, 邹俪琦, 等. 海南岛东南部海域有用重砂的资源潜力[J]. 海洋地质前沿, 2021, 37(12):58-65 ZHOU Jiao, CAI Guanqiang, ZOU Liqi, et al. Resource potential of valuable heavy minerals in the southeast water off Hainan Island [J]. Marine Geology Frontiers, 2021, 37(12): 58-65.
[35] Ge Q, Xu D, Ye L M, et al. Linking Monsoon activity with river-derived sediments deposition in the northern South China Sea [J]. Journal of Ocean University of China, 2019, 18(5): 1098-1104. doi: 10.1007/s11802-019-4155-4
[36] 文启忠, 刁桂仪, 潘景瑜, 等. 黄土高原黄土的平均化学成分与地壳克拉克值的类比[J]. 土壤学报, 1996, 33(3):225-231 doi: 10.3321/j.issn:0564-3929.1996.03.001 WEN Qizhong, DIAO Guiyi, PAN Jingyu, et al. Comparison of average chemical composition of loess in Loess Plateau with clark values of crust [J]. Acta Pedologica Sinica, 1996, 33(3): 225-231. doi: 10.3321/j.issn:0564-3929.1996.03.001
[37] Cui Z N, Schulz-Bull D E, Hou Y M, et al. Geochemical characteristics and provenance of Holocene sediments (Core STAT22) in the Beibu Gulf, South China Sea [J]. Journal of Coastal Research, 2016, 32(5): 1105-1115.
[38] Liu J G, Xiang R, Chen M H, et al. Influence of the Kuroshio current intrusion on depositional environment in the northern South China Sea: Evidence from surface sediment records [J]. Marine Geology, 2011, 285(1-4): 59-68. doi: 10.1016/j.margeo.2011.05.010
[39] Xu K H, Milliman J D, Li A C, et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea [J]. Continental Shelf Research, 2009, 29(18): 2240-2256. doi: 10.1016/j.csr.2009.08.017
[40] Ge Q, Liu J P, Xue Z, et al. Dispersal of the Zhujiang River (Pearl River) derived sediment in the Holocene [J]. Acta Oceanologica Sinica, 2014, 33(8): 1-9. doi: 10.1007/s13131-014-0407-8
[41] 仝长亮, 孙龙飞, 黄仕锐. 海南省海洋地质调查主要进展与成果[J]. 中国地质调查, 2020, 7(1):60-70 doi: 10.19388/j.zgdzdc.2020.01.09 TONG Changliang, SUN Longfei, HUANG Shirui. Main progress and achievements of marine geological survey in Hainan Province [J]. Geological Survey of China, 2020, 7(1): 60-70. doi: 10.19388/j.zgdzdc.2020.01.09
[42] Xu Z F, Han G L. Rare earth elements (REE) of dissolved and suspended loads in the Xijiang River, South China [J]. Applied Geochemistry, 2009, 24(9): 1803-1816. doi: 10.1016/j.apgeochem.2009.06.001
[43] Li C S, Shi X F, Kao S J, et al. Rare earth elements in fine-grained sediments of major rivers from the high-standing island of Taiwan [J]. Journal of Asian Earth Sciences, 2013, 69: 39-47. doi: 10.1016/j.jseaes.2013.03.001
[44] Cao L C, Jiang T, Wang Z F, et al. Provenance of upper miocene sediments in the Yinggehai and Qiongdongnan Basins, northwestern South China Sea: Evidence from REE, heavy minerals and zircon U–Pb ages [J]. Marine Geology, 2015, 361: 136-146. doi: 10.1016/j.margeo.2015.01.007
[45] 仝长亮, 陈飞, 张匡华. 海南岛东北部海域海砂资源分布特征及开发前景分析[J]. 中国矿业, 2019, 28(1):58-65 doi: 10.12075/j.issn.1004-4051.2019.01.002 TONG Changliang, CHEN Fei, ZHANG Kuanghua. Analysis of the distribution and development of marine sand resources in the northeast sea of Hainan Island [J]. China Mining Magazine, 2019, 28(1): 58-65. doi: 10.12075/j.issn.1004-4051.2019.01.002
[46] 曹立成. 莺歌海—琼东南盆地区新近纪物源演化研究: 来自稀土元素、重矿物和锆石U-Pb年龄的证据[D]. 中国地质大学(武汉)硕士学位论文, 2014 CAO Licheng. Provenance evolution since Neogene in the Yinggehai and Qiongdongnan Basins: Evidence from REE, heavy mineral and zircon U-Pb ages[D]. Master Dissertation of China University of Geosciences (Wuhan), 2014.
[47] 张娜. 北部湾海底沉积物的矿物学特征及其对环境的响应[D]. 中国地质大学(北京)博士学位论文, 2015 ZHANG Na. The mineralogical characteristics of the sediments and its environmental significance in the Beibuwan Gulf[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2015.
[48] Andersen T, Kristoffersen M, Elburg M A. How far can we trust provenance and crustal evolution information from detrital zircons? A South African case study [J]. Gondwana Research, 2016, 34: 129-148. doi: 10.1016/j.gr.2016.03.003
[49] 程瑜, 李向前, 赵增玉, 等. 苏北盆地TZK9孔磁性地层及重矿物组合特征研究[J]. 地质力学学报, 2016, 22(4):994-1003 doi: 10.3969/j.issn.1006-6616.2016.04.017 CHENG Yu, LI Xiangqian, ZHAO Zengyu, et al. Magnetostratigraphy and heavy minerals records of TZK9 core in Subei Basin [J]. Journal of Geomechanics, 2016, 22(4): 994-1003. doi: 10.3969/j.issn.1006-6616.2016.04.017
[50] 田豹. 重矿物物源分析研究进展[J]. 中国锰业, 2017, 35(1):107-109,115 doi: 10.14101/j.cnki.issn.1002-4336.2017.01.032 TIAN Bao. A research progress in provenance analysis of heavy minerals [J]. China's Manganese Industry, 2017, 35(1): 107-109,115. doi: 10.14101/j.cnki.issn.1002-4336.2017.01.032
[51] 董江, 李安春, 徐方建, 等. 东海内陆架EC2005孔重矿物组合特征及其物源指示意义[J]. 海洋与湖沼, 2015, 46(6):1292-1303 DONG Jiang, LI Anchun, XU Fangjian, et al. Heavy mineral assemblages in core EC2005 in the inner shelf of East China Sea and the origin [J]. Oceanologia et Limnologia Sinica, 2015, 46(6): 1292-1303.
[52] Wu W X, Liu T S. Possible role of the “Holocene Event 3” on the collapse of Neolithic Cultures around the Central Plain of China [J]. Quaternary International, 2004, 117(1): 153-166. doi: 10.1016/S1040-6182(03)00125-3
[53] Yang X Q, Wei G J, Yang J, et al. Paleoenvironmental shifts and precipitation variations recorded in tropical Maar Lake sediments during the Holocene in Southern China [J]. The Holocene, 2014, 24(10): 1216-1225. doi: 10.1177/0959683614540962
[54] 汤文坤. 7ka以来海南双池玛珥湖气候环境演变的高分辨率沉积记录[D]. 北京: 中国地质科学院硕士学位论文, 2017 TANG Wenkun. High revolution sedimentary record of environmental evolution since 7 cal ka BP in Shuangchi Maar Lake, north Hainan Island[D]. Master Dissertation of Chinese Academy of Geological Sciences, 2017.
[55] Fu Y H, Lin Z D, Wang T. Simulated relationship between wintertime ENSO and east Asian summer rainfall: From CMIP3 to CMIP6 [J]. Advances in Atmospheric Sciences, 2021, 38(2): 221-236. doi: 10.1007/s00376-020-0147-y
[56] Drever J I, Clow D W. Weathering rates in catchments [J]. Reviews in Mineralogy, 1995, 31(1): 463-483.
[57] 黄向青, 崔振昂, 林海, 等. 北部湾全新世气候与古生态环境演进特征及其驱动因素[J]. 地球学报, 2022, 43(2):129-143 doi: 10.3975/cagsb.2021.042501 HUANG Xiangqing, CUI Zhen’ang, LIN Hai, et al. The driving factors on climatic and palaeo-ecological evolution of Beibu Gulf since Holocene [J]. Acta Geoscientica Sinica, 2022, 43(2): 129-143. doi: 10.3975/cagsb.2021.042501
[58] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194
[59] Dykoski C, Edwards R, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86. doi: 10.1016/j.jpgl.2005.01.036
[60] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years [J]. Quaternary Science Reviews, 1991, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q