Spatial distribution of organic matter in surface sediments from the Nansha sea area of the South China Sea and its implications for marine productivity and monsoon
-
摘要: 对现在过程的研究可为了解过去沉积环境演变信息提供重要线索。对南海南沙广阔海域23个现代表层沉积物样品总有机碳(TOC)、总氮(TN)含量及同位素组成(δ13CTOC和δ15N)进行测试分析,以期通过沉积有机质的现代组成分布特征为反演其历史时空分布变化规律及其驱动机制提供参考。南沙海区表层沉积物TOC/TN(5.5~7.9,平均为6.5±0.6)和δ13CTOC(–21.9‰~–18.7‰,平均为–21.0‰±0.7‰)揭示了沉积有机质主要来自海源贡献;δ13CTOC 与TOC和TOC/TN的相关性分析表明了TOC未受明显的早期成岩作用影响,因此表层沉积物TOC可用于反映现代上层海水生产力状况。南沙海区表层沉积物TOC(0.32%~0.97%,平均为0.67%±0.17%)呈现明显的西-东向分布差异,高值主要位于西部前缘地带,低值主要分布在东部海域。表层沉积物TOC的地理分布特征表明了西南夏季风对南沙海域表层海水生产力的主要调控作用—由夏季风产生的越南上升流和湄公河陆源输入带来的高通量营养盐促进了西部前缘海域浮游植物的勃发,而随着站位距离的增加其施肥效应越来越弱。表层沉积物TOC和TN的强相关性(R2=0.95)以及δ15N的空间分布特征暗示了南沙海域沉积物δ15N未受陆源河流影响,记录了上层海水δ15N信号,从而指示了相关的氮循环过程。Abstract: The knowledge of modern hydrologic process provides important clues for marine palaeoenvironmental and palaeoclimatic evolution. Twenty-three surface sediment samples collected throughout the Nansha sea area of the South China Sea (SCS) were analyzed for sedimentary bulk parameters, including total organic carbon (TOC), total nitrogen (TN) and their isotopes (δ13CTOC and δ15N), in order to understand the controlling factors on the spatiotemporal variations of sedimentary organic matter (OM). Results show that the TOC/TN (5.5~7.9 in range and 6.5±0.6 on average) and δ13CTOC (–21.9‰ ~ –18.7‰ in range and –21.0‰±0.7‰ on average) reflect the dominance of marine OM input to surface sediments in the Nansha sea area. Correlation analyses of δ13CTOC vs TOC and vs TOC/TN indicate that sedimentary TOC was not significantly affected by early diagenesis, thereby TOC can be used as an effective tracer for surface productivity. The values of TOC (0.32%~0.97% in range and 0.67%±0.17% on average) show a descending trend from the western to eastern parts of the Nansha sea area, indicating clearly the importance of southwesterly summer monsoon in delivering rich nutrients from the productive Vietnam upwelling and Mekong delta. Moreover, strong correlation between TOC and TN (R2=0.95) and clear spatial distribution of δ15N manifested the ability of bulk δ15N to reflect upper water δ15N signal due to the minimal influence of riverine terrigenous inorganic N, thereby indicating the relevant nitrogen cycle process.
-
-
图 2 南海南沙海区夏季表层海水温度(a)、盐度(b)
a.低温区为夏季越南上升流区,b.低盐区为夏季湄公河(左)和婆罗洲-巴拉望入海河流(右)影响区。温盐数据来自World Ocean Atlas[27]。
Figure 2. Surface seawater temperature (a) and salinity (b) in the Nansha sea area of the South China Sea in summer
a:The low temperature area is the upwelling area of Vietnam in summer, b: the low salt area is the influence area of Mekong River (left) and Borneo Palawan seaward River (right) in summer. Temperature and salt data are from World Ocean Atlas[27] .
表 1 南海南沙海区表层沉积物沉积参数
Table 1 Sedimentary parameters of surface sediments in the Nansha sea area of the South China Sea
站位 位置 水深/m δ15N/‰ TN /% δ13CTOC/‰ TOC/% TOC/TN NS2020-01B 9.50°N、112.90°E 1703 4.8 0.06 –20.1 0.44 7.4 NS2020-02B 10.72°N、112.71°E 3835 6.1 0.13 –21.8 0.71 5.7 NS2020-04B 10.16°N、112.85°E 2038 6.2 0.12 –21.0 0.73 6.1 NS2020-06B 9.87°N、112.61°E 1996 5.9 0.13 –21.3 0.84 6.5 NS2020-07B 9.34°N、113.30°E 2771 6.6 0.12 –20.8 0.74 6.1 NS2020-09B 9.03°N、113.32°E 1525 6.0 0.09 –21.1 0.59 6.3 NS2020-12B 8.43°N、113.68°E 1483 5.9 0.11 –21.5 0.75 6.7 NS2020-14B 8.36°N、112.32°E 1683 5.8 0.15 –21.3 0.91 6.2 NS2020-15B 8.39°N、110.42°E 636 5.3 0.10 –21.5 0.69 6.6 NS2020-19B 8.78°N、110.81°E 1058 5.6 0.13 –21.0 0.81 6.3 NS2020-21B 9.31°N、111.76°E 1211 6.1 0.14 –20.8 0.84 6.1 NS2020-23B 9.32°N、111.76°E 870 5.9 0.12 –21.3 0.76 6.5 NS2020-24B 9.31°N、111.74°E 535 5.3 0.08 –21.3 0.55 6.8 NS2020-25B 10.04°N、111.91°E 3167 6.2 0.16 –21.7 0.97 6.2 NS2020-26B 9.66°N、112.14°E 2559 6.1 0.15 –21.2 0.91 6.2 NS2020-31B 9.91°N、115.54°E 30 3.1 0.06 –18.7 0.47 7.9 NS2020-33B 9.65°N、115.39°E 1214 6.5 0.06 –21.9 0.32 5.5 NS2020-35B 9.76°N、114.80°E 2932 6.7 0.10 –20.7 0.61 6.0 NS2020-37B 10.05°N、115.33°E 1669 6.3 0.07 –20.9 0.47 6.9 NS2020-38B 10.08°N、115.62°E 1320 6.4 0.06 –20.6 0.47 7.2 NS2020-40B 10.86°N、113.76°E 4215 5.6 0.13 –21.5 0.72 5.6 NS2020-41B 10.37°N、113.92°E 1623 5.8 0.09 –20.9 0.58 6.5 NS2020-44B 10.05°N、114.10°E 1670 6.1 0.07 –20.5 0.51 7.1 -
[1] 汪品先, 翦知湣, 刘志伟. 南沙海区盛冰期的气候问题[J]. 第四纪研究, 1996, 16(3):193-201 doi: 10.3321/j.issn:1001-7410.1996.03.001 WANG Pinxian, JIAN Zhimin, LIU Zhiwei. The last glacial maximum climate problem in the sea area of the nansha islands, South China Sea [J]. Quaternary Sciences, 1996, 16(3): 193-201. doi: 10.3321/j.issn:1001-7410.1996.03.001
[2] 李文宝, 王汝建, 万随. 沉积过程中有机碳及Globigerinoides ruber 氧、碳同位素变化特征: 以南海南部为例[J]. 沉积学报, 2017, 35(4):730-739 LI Wenbao, WANG Rujian, WAN Sui. Changes of TOC and δ18Ο, δ13C from Globigerinoides ruber during the deposition process in the Southern South China Sea [J]. Acta Sedimentologica Sinica, 2017, 35(4): 730-739.
[3] 蔡观强, 彭学超, 张玉兰. 南海沉积物物质来源研究的意义及其进展[J]. 海洋科学进展, 2011, 29(1):113-121 doi: 10.3969/j.issn.1671-6647.2011.01.014 CAI Guanqiang, PENG Xuechao, ZHANG Yulan. The significances of and advances in the study of sediment sources in the South China Sea [J]. Advances in Marine Science, 2011, 29(1): 113-121. doi: 10.3969/j.issn.1671-6647.2011.01.014
[4] 翦知湣, 王律江, KIENAST M. 南海晚第四纪表层古生产力与东亚季风变迁[J]. 第四纪研究, 1999, 19(1):32-40 doi: 10.3321/j.issn:1001-7410.1999.01.004 JIAN Zhimin, WANG Lüjiang, KIENAST M. Late Quaternary surface paleoproductivity and variations of the east Asian monsoon in the South China Sea [J]. Quaternary Sciences, 1999, 19(1): 32-40. doi: 10.3321/j.issn:1001-7410.1999.01.004
[5] 陈木宏, 颜文, 涂霞, 等. 南海西南部海区近200ka来的动力环境与东亚古季风[J]. 热带海洋学报, 2002, 21(3): 38-46 CHEN Muhong, YAN Wen, TU Xia, et al. Dynamical environment in southwestern South China Sea and its relation to east Asian paleomonsoon since 200ka B. P. [J]. Journal of Tropical Oceanography, 2002, 21(3): 38-46.
[6] 梅西, 张训华, 郑洪波, 等. 南海南部120ka以来元素地球化学记录的东亚夏季风变迁[J]. 矿物岩石地球化学通报, 2010, 29(2):134-141 doi: 10.3969/j.issn.1007-2802.2010.02.004 MEI Xi, ZHANG Xunhua, ZHENG Hongbo, et al. Element geochemistry record in Southern South China Sea sediments during the past 120 ka and its implications for East Asian summer monsoon variation [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(2): 134-141. doi: 10.3969/j.issn.1007-2802.2010.02.004
[7] Li L, Li Q Y, He J, et al. Biomarker-derived phytoplankton community for summer monsoon reconstruction in the western South China Sea over the past 450 ka [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 122: 118-130. doi: 10.1016/j.dsr2.2015.11.006
[8] He J, Zhao M X, Wang P X, et al. Changes in phytoplankton productivity and community structure in the northern South China Sea during the past 260 ka [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392: 312-323. doi: 10.1016/j.palaeo.2013.09.010
[9] Zhang H R, Liu C L, Jin X B, et al. Dynamics of primary productivity in the northern South China Sea over the past 24, 000 years [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(12): 4878-4891. doi: 10.1002/2016GC006602
[10] 迟光希. 南海南部晚中新世以来沉积物源区及古环境分析[D]. 中国地质大学(北京)硕士学位论文, 2020 CHI Guangxi. Sedimentary source area and paleoenvironment analysis since Late Miocene in the southern South China Sea[D]. Master Dissertation of China University of Geosciences (Beijing), 2020.
[11] Jia G D, Peng P, Fang D Y. Burial of different types of organic carbon in core 17962 from South China Sea since the last glacial Period [J]. Quaternary Research, 2002, 58(1): 93-100. doi: 10.1006/qres.2002.2346
[12] Dong L, Li Z Y, Jia G D. Archaeal ammonia oxidation plays a part in Late Quaternary nitrogen cycling in the South China Sea [J]. Earth and Planetary Science Letters, 2019, 509: 38-46. doi: 10.1016/j.jpgl.2018.12.023
[13] 王汝建, 李建. 南海ODP 1143站第四纪高分辨率的蛋白石记录及其古生产力意义[J]. 科学通报, 2003, 48(4):363-367 doi: 10.3321/j.issn:0023-074X.2003.01.019 WANG Rujian, LI Jian. Quaternary high-resolution opal record and its paleoproductivity implication at ODP Site 1143, southern South China Sea [J]. Chinese Science Bulletin, 2003, 48(4): 363-367. doi: 10.3321/j.issn:0023-074X.2003.01.019
[14] Jian Z M, Huang B Q, Kuhnt W, et al. Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea [J]. Quaternary Research, 2001, 55(3): 363-370. doi: 10.1006/qres.2001.2231
[15] Li G, Rashid H, Zhong L F, et al. Changes in deep water oxygenation of the South China Sea since the last glacial Period [J]. Geophysical Research Letters, 2018, 45(17): 9058-9066. doi: 10.1029/2018GL078568
[16] 黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 2005, 12(2):163-170 doi: 10.3321/j.issn:1005-2321.2005.02.018 HUANG Yongjian, WANG Chengshan, WANG Yunliang. Progress in the study of proxies of paleocean productivity [J]. Earth Science Frontiers, 2005, 12(2): 163-170. doi: 10.3321/j.issn:1005-2321.2005.02.018
[17] 陈建芳, 李宏亮, 金海燕, 等. 南海若干古生产力替代指标探讨[J]. 海洋学研究, 2010, 28(1):1-10 doi: 10.3969/j.issn.1001-909X.2010.01.001 CHEN Jianfang, LI Hongliang, JIN Haiyan, et al. A preliminary discussion and evaluation of paleo-production proxies in the South China Sea [J]. Journal of Marine Sciences, 2010, 28(1): 1-10. doi: 10.3969/j.issn.1001-909X.2010.01.001
[18] 张洪瑞, 刘传联, 梁丹. 热带海洋生产力: 现代过程与地质记录[J]. 地球科学进展, 2016, 31(3):277-285 doi: 10.11867/j.issn.1001-8166.2016.03.0277. ZHANG Hongrui, LIU Chuanlian, LIANG Dan. Tropical marine productivity: the modern progress and paleoproductivity records [J]. Advances in Earth Science, 2016, 31(3): 277-285. doi: 10.11867/j.issn.1001-8166.2016.03.0277.
[19] Fang G H, Fang W D, Yue F, et al. A survey of studies on the South China Sea Upper ocean circulation [J]. Acta Oceanographica Taiwanica, 1998, 37(1): 1-16.
[20] 陈法锦, 陈建芳, 金海燕, 等. 南海表层沉积物与沉降颗粒物中有机碳的δ13C对比研究及其古环境再造意义[J]. 沉积学报, 2012, 30(2):340-345 CHEN Fajin, CHEN Jianfang, JIN Haiyan, et al. Correlation of δ13Corg in surface sediments with sinking particulate matter in South China Sea and implication for reconstructing paleo-environment [J]. Acta Sedimentologica Sinica, 2012, 30(2): 340-345.
[21] 俞宙菲, 李保华, 李宏亮, 等. 现代浮游有孔虫对南海西南部上升流的响应[J]. 第四纪研究, 2020, 40(3):801-810 doi: 10.11928/j.issn.1001-7410.2020.03.17 YU Zhoufei, LI Baohua, LI Hongliang, et al. Response of modern planktonic foraminifera to the upwelling activity in the southwestern South China Sea [J]. Quaternary Sciences, 2020, 40(3): 801-810. doi: 10.11928/j.issn.1001-7410.2020.03.17
[22] Cheng X R, Huang B Q, Jian Z M, et al. Foraminiferal isotopic evidence for monsoonal activity in the South China Sea: A present-LGM comparison [J]. Marine Micropaleontology, 2005, 54(1-2): 125-139. doi: 10.1016/j.marmicro.2004.09.007
[23] 宋金明, 王启栋. 近40年来对南海化学海洋学研究的新认知[J]. 热带海洋学报, 2021, 40(3):15-24 doi: 10.11978/YG2020010 SONG Jinming, WANG Qidong. New understanding about Chemical Oceanography in the South China Sea since 1980 [J]. Journal of Tropical Oceanography, 2021, 40(3): 15-24. doi: 10.11978/YG2020010
[24] 乔培军, 邵磊, 杨守业. 南海西南部晚更新世以来元素地球化学特征的古环境意义[J]. 海洋地质与第四纪地质, 2006, 26(4):59-65 doi: 10.16562/j.cnki.0256-1492.2006.04.009 QIAO Peijun, SHAO Lei, YANG Shouye. The paleoenvironmental significance of the character of the element geochemistry in the southwestern South China Sea since Late Pleistocene [J]. Marine Geology & Quaternary Geology, 2006, 26(4): 59-65. doi: 10.16562/j.cnki.0256-1492.2006.04.009
[25] 刘军谋. 南海南沙群岛区域的地质勘探概况[J]. 海洋地质信息通报, 1994(3):19-21 LIU Junmou. General situation of geological exploration in the the Nansha Islands area of the South China Sea [J]. Marine Geological Information Bulletin, 1994(3): 19-21.
[26] 周胜男, 施祺, 周桂盈, 等. 南沙群岛珊瑚礁砾洲地貌特征[J]. 海洋科学, 2019, 43(6):48-59 doi: 10.11759/hykx20180822001 ZHOU Shengnan, SHI Qi, ZHOU Guiying, et al. Geomorphic features of coral shingle cays in the Nansha Islands [J]. Marine Sciences, 2019, 43(6): 48-59. doi: 10.11759/hykx20180822001
[27] Zweng M M, Reagan J R, Antonov J I, et al. World ocean atlas 2013. Volume 2: Salinity[R]. U. S. Department of Commerce, NOAA, 2013.
[28] Stax R, Stein R. Long-term changes in the accumulation of organic carbon in Neogene sediments, Ontong Java Plateau[M]//Berger W H, Kroenke L W, Mayer L A, et al. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1993.
[29] Bordovskiy O K. Accumulation of organic matter in bottom sediments [J]. Marine Geology, 1965, 3(1-2): 33-82. doi: 10.1016/0025-3227(65)90004-6
[30] Emerson S, Hedges J I. Processes controlling the organic carbon content of open ocean sediments [J]. Paleoceanography, 1988, 3(5): 621-634. doi: 10.1029/PA003i005p00621
[31] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes [J]. Organic Geochemistry, 1997, 27(5-6): 213-250. doi: 10.1016/S0146-6380(97)00049-1
[32] 韦海伦, 蔡进功, 王国力, 等. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10):1024-1033 doi: 10.11867/j.issn.1001-8166.2018.10.1024. WEI Hailun, CAI Jingong, WANG Guoli, et al. The diversity of organic matter in marine sediments and the suspiciousness of source parameters: A review [J]. Advances in Earth Science, 2018, 33(10): 1024-1033. doi: 10.11867/j.issn.1001-8166.2018.10.1024.
[33] Cai D L, Shi X F, Zhou W J, et al. Sources and transportation of suspended matter and sediment in the southern Yellow Sea: Evidence from stable carbon isotopes [J]. Chinese Science Bulletin, 2003, 48(S1): 21-29. doi: 10.1007/BF02900936
[34] 雷菲. 百余年来珠江口外浅海区的有机碳埋藏历史[D]. 中国科学院大学硕士学位论文, 2011 LEI Fei. The organic carbon burial history in costal waters outside the pearl estuary for the last 100 years[D]. Master Dissertation of Graduate School of the Chinese Academy of Sciences, 2011.
[35] 高学鲁, 陈绍勇, 马福俊, 等. 南沙群岛西部海域两柱状沉积物中碳和氮的分布和来源特征及埋藏通量估算[J]. 热带海洋学报, 2008, 27(3):38-44 doi: 10.3969/j.issn.1009-5470.2008.03.007 GAO Xuelu, CHEN Shaoyong, MA Fujun, et al. Distribution and source characteristics of carbon and nitrogen and their burial fluxes in two core sediments from western Nansha Islands sea area [J]. Journal of Tropical Oceanography, 2008, 27(3): 38-44. doi: 10.3969/j.issn.1009-5470.2008.03.007
[36] 王博士, 赵泉鸿, 翦知湣. 南海南部中上新世以来沉积有机碳与古生产力变化[J]. 海洋地质与第四纪地质, 2005, 25(2):73-79 WANG Boshi, ZHAO Quanhong, JIAN Zhimin. Changes of organic carbon and paleoproductivity in the Southern South China Sea since Middle Pliocene [J]. Marine Geology & Quaternary Geology, 2005, 25(2): 73-79.
[37] 杨丹, 姚龙奎, 王方国, 等. 南海现代沉积物中正构烷烃碳分子组合特征及其指示意义[J]. 海洋学研究, 2006, 24(4):29-39 doi: 10.3969/j.issn.1001-909X.2006.04.004 YANG Dan, YAO Longkui, WANG Fangguo, et al. The molecular assemblace features of n-alkanes in modern sediments from the South China Sea and their significance [J]. Journal of Marine Sciences, 2006, 24(4): 29-39. doi: 10.3969/j.issn.1001-909X.2006.04.004
[38] 段毅, 罗斌杰, 徐雁前, 等. 南沙海洋沉积物中生物标志化合物的组成及地化意义[J]. 海洋与湖沼, 1996, 27(3):258-263 doi: 10.3321/j.issn:0029-814X.1996.03.005 DUAN Yi, LUO Binjie, XU Yanqian, et al. Composition and geochemical significance of biomarkers in marine sediments from Nansha Islands Waters, the South China Sea [J]. Oceanologia et Limnologia Sinica, 1996, 27(3): 258-263. doi: 10.3321/j.issn:0029-814X.1996.03.005
[39] 吴鹏. 东、黄海典型海域初级生产力和氮、磷营养要素的近代沉积记录[D]. 中国海洋大学硕士学位论文, 2007 WU Peng. Recent sedimentary records of primary production and nutrients in the typical areas of the East China Sea and the Yellow Sea[D]. Master Dissertation of Ocean University of China, 2007.
[40] 贾国东, 彭平安, 房殿勇, 等. 南海南部约30ka来沉积有机质的生物输入特征[J]. 海洋地质与第四纪地质, 2001, 21(1):7-11 doi: 10.16562/j.cnki.0256-1492.2001.01.002 JIA Guodong, PENG Ping'an, FANG Dianyong, et al. The characteristics of biological input of the sedimentary organic matter in Southern South China Sea for the last 30ka years [J]. Marine Geology & Quaternary Geology, 2001, 21(1): 7-11. doi: 10.16562/j.cnki.0256-1492.2001.01.002
[41] 李文宝, 王汝建, 陈建芳, 等. 南海表层沉积物与水柱中沉降颗粒物对比研究及其古环境再造意义[J]. 海洋地质与第四纪地质, 2008, 28(4):73-83 LI Wenbao, WANG Rujian, CHEN Jianfang, et al. Correlation of surface sediments with sinking particulate matters in the South China Sea and implication for reconstructing paleoenvironment [J]. Marine Geology & Quaternary Geology, 2008, 28(4): 73-83.
[42] 宋星宇, 黄良民, 钱树本, 等. 南沙群岛邻近海区春夏季浮游植物多样性研究[J]. 生物多样性, 2002, 10(3):258-268 doi: 10.3321/j.issn:1005-0094.2002.03.002 SONG Xingyu, HUANG Liangmin, QIAN Shuben, et al. Phytoplankton diversity in waters around Nansha Islands in spring and summer [J]. Biodiversity Science, 2002, 10(3): 258-268. doi: 10.3321/j.issn:1005-0094.2002.03.002
[43] 高姗. 基于遥感的南海初级生产力时空变化特征与环境影响因素研究[D]. 中国气象科学研究院硕士学位论文, 2008 GAO Shan. Spatial and temporal distribution of ocean primary productivity and its relation with oceanic environments in the South China Sea based on remote sensing[D]. Master Dissertation of Chinese Academy of Meteorological Sciences, 2008.
[44] 张兰兰, 陈木宏, 向荣, 等. 南海南部表层沉积物中生物硅的分布及其环境意义[J]. 热带海洋学报, 2007, 26(3):24-29 doi: 10.3969/j.issn.1009-5470.2007.03.004 ZHANG Lanlan, CHEN Muhong, XIANG Rong, et al. Distribution of biogenic silica in surface sediments from southern South China Sea and its environmental significance [J]. Journal of Tropical Oceanography, 2007, 26(3): 24-29. doi: 10.3969/j.issn.1009-5470.2007.03.004
[45] 张兰兰, 陈木宏, 陆钧, 等. 南海南部上层水体中多孔放射虫的组成与分布特征[J]. 热带海洋学报, 2005, 24(3):55-64 doi: 10.3969/j.issn.1009-5470.2005.03.008 ZHANG Lanlan, CHEN Muhong, LU Jun, et al. Living polycystine radiolarian fauna in Upper water column of Southern South China Sea and its distribution [J]. Journal of Tropical Oceanography, 2005, 24(3): 55-64. doi: 10.3969/j.issn.1009-5470.2005.03.008
[46] 杨东方, 陈生涛, 胡均, 等. 光照、水温和营养盐对浮游植物生长重要影响大小的顺序[J]. 海洋环境科学, 2007, 26(3):201-207 doi: 10.3969/j.issn.1007-6336.2007.03.001 YANG Dongfang, CHEN Shengtao, HU Jun, et al. Magnitude order of the effect of light, water temperature and nutrients on phytoplankton growth [J]. Marine Environmental Science, 2007, 26(3): 201-207. doi: 10.3969/j.issn.1007-6336.2007.03.001
[47] 彭欣, 宁修仁, 孙军, 等. 南海北部浮游植物生长对营养盐的响应[J]. 生态学报, 2006, 26(12):3959-3968 doi: 10.3321/j.issn:1000-0933.2006.12.006 PENG Xin, NING Xiuren, SUN Jun, et al. Responses of phytoplankton growth on nutrient enrichments in the northern South China Sea [J]. Acta Ecologica Sinica, 2006, 26(12): 3959-3968. doi: 10.3321/j.issn:1000-0933.2006.12.006
[48] 杨东方, 高振会, 孙培艳, 等. 胶州湾水温和营养盐硅限制初级生产力的时空变化[J]. 海洋科学进展, 2006, 24(2):203-212 doi: 10.3969/j.issn.1671-6647.2006.02.009 YANG Dongfang, GAO Zhenhui, SUN Peiyan, et al. Spatial and temporal variations of the primary production limited by nutrient silicon and water temperature in the Jiaozhou bay [J]. Advances in Marine Science, 2006, 24(2): 203-212. doi: 10.3969/j.issn.1671-6647.2006.02.009
[49] 杨东方, 于子江, 张柯, 等. 营养盐硅在全球海域中限制浮游植物的生长[J]. 海洋环境科学, 2008, 27(5):547-553 doi: 10.3969/j.issn.1007-6336.2008.05.035 YANG Dongfang, YU Zijiang, ZHANG Ke, et al. The limitation of nutrient siliconon for phytoplankton growth in the global marine areas [J]. Marine Environmental Science, 2008, 27(5): 547-553. doi: 10.3969/j.issn.1007-6336.2008.05.035
[50] 陆钧, 陈木宏, 陈忠. 南海南部现代水体与表层沉积硅藻的分布特征[J]. 科学通报, 2006, 51(S2):76-80 doi: 10.1007/s11434-006-9076-0 LU Jun, CHEN Muhong, CHEN Zhong. Distribution of diatoms in the water and surface sediments of southern South China Sea [J]. Chinese Science Bulletin, 2006, 51(S2): 76-80. doi: 10.1007/s11434-006-9076-0
[51] 李建如, 王汝建, 李保华. 南海南部12Ma以来的蛋白石堆积速率与古生产力变化[J]. 科学通报, 2002, 47(7):5936-598 LI Jianru, WANG Rujian, LI Baohua. Variations of opal accumulation rates and paleoproductivity over the past 12 Ma at ODP Site 1143, southern South China Sea [J]. Chinese Science Bulletin, 2002, 47(7): 5936-598.
[52] 陆钧, 陈木宏, 王汝建, 等. 南海南部ODP1143站晚中新世沉积硅藻记录[J]. 热带海洋学报, 2003, 22(5):1-7 doi: 10.3969/j.issn.1009-5470.2003.05.001 LU Jun, CHEN Muhong, WANG Rujian, et al. Late miocene diatom records of ODP site 1143 in Southern South China Sea [J]. Journal of Tropical Oceanography, 2003, 22(5): 1-7. doi: 10.3969/j.issn.1009-5470.2003.05.001
[53] Canfield D E, Glazer A N, Falkowski P G. The evolution and future of Earth’s nitrogen cycle [J]. Science, 2010, 330(6001): 192-196. doi: 10.1126/science.1186120
[54] Wang T T, Ravelo A C, Ren H J, et al. Nitrogen isotope variations in the Northern South China Sea since marine isotopic Stage 3: reconstructed from foraminifera-bound and bulk sedimentary nitrogen [J]. Paleoceanography and Paleoclimatology, 2018, 33(6): 594-605. doi: 10.1029/2018PA003344
[55] Kienast M, Higginson M, Mollenhauer G, et al. On the sedimentological origin of down-core variations of bulk sedimentary nitrogen isotope ratios [J]. Paleoceanography, 2005, 20(2): PA2009.
[56] Galbraith E D, Kienast M, The NICOPP Working Group Members. The acceleration of oceanic denitrification during deglacial warming [J]. Nature Geoscience, 2013, 6(7): 579-584. doi: 10.1038/ngeo1832
[57] Gaye B, Nagel B, Dähnke K, et al. Amino acid composition and δ15N of suspended matter in the Arabian Sea: implications for organic matter sources and degradation [J]. Biogeosciences, 2013, 10(11): 7689-7702. doi: 10.5194/bg-10-7689-2013