南黄海中西部全新世地层沉积特征

仇建东, 张勇, 吴凤萍, 王松涛, 程世秀, 张龙, 王伟

仇建东,张勇,吴凤萍,等. 南黄海中西部全新世地层沉积特征[J]. 海洋地质与第四纪地质,2023,43(2): 77-91. DOI: 10.16562/j.cnki.0256-1492.2022070601
引用本文: 仇建东,张勇,吴凤萍,等. 南黄海中西部全新世地层沉积特征[J]. 海洋地质与第四纪地质,2023,43(2): 77-91. DOI: 10.16562/j.cnki.0256-1492.2022070601
QIU Jiandong,ZHANG Yong,WU Fengping,et al. Sedimentary characteristics of Holocene sediments in the Middle-Western South Yellow Sea[J]. Marine Geology & Quaternary Geology,2023,43(2):77-91. DOI: 10.16562/j.cnki.0256-1492.2022070601
Citation: QIU Jiandong,ZHANG Yong,WU Fengping,et al. Sedimentary characteristics of Holocene sediments in the Middle-Western South Yellow Sea[J]. Marine Geology & Quaternary Geology,2023,43(2):77-91. DOI: 10.16562/j.cnki.0256-1492.2022070601

南黄海中西部全新世地层沉积特征

基金项目: 中国地质调查局项目(DD20230071, DD20221724, GZH200900501, 200211000001, 1212010611401, GZH201200506,DD20160145, DD20190276, GZH201400205, GZH200800501);山东地矿局海岸带地质环境保护重点实验室开放基金(SYS202104);山东地矿三院科技创新基金(SYKJ-202207)
详细信息
    作者简介:

    仇建东(1983—),男,博士,主要从事海洋地质与第四纪地质研究工作,E-mail:jiandongqiu@163.com

    通讯作者:

    王松涛(1971—),男,主要从事水工环地质和海洋地质研究工作,E-mail:sdwfwst@163.com

  • 中图分类号: P736

Sedimentary characteristics of Holocene sediments in the Middle-Western South Yellow Sea

  • 摘要: 南黄海是典型的物源供给丰富的宽广陆架海,全新世沉积记录十分丰富,具有分辨率高、空间分布不连续和沉积记录片段性等特征。根据近年来在南黄海采集的大量高分辨率浅地层剖面资料,结合多个钻孔的岩性特征和AMS14C测年数据,较为系统精细地揭示了南黄海全新世沉积的时空分布特征。根据沉积体空间分布范围、成因机制和物质来源,南黄海全新世沉积可划分为4个独立的沉积体,呈现出不同的声学反射特征,主要为加积进积反射、平行或透明弱反射、中高角度进积反射和中高角度倾斜-斜交反射。根据估算,河流物质输入约占到南黄海全新世沉积总量的78%,其他物质来源主要为海侵过程中较强的海洋动力侵蚀、改造和再分配的底床物质。本文的研究可为厘清南黄海全新世沉积体精细演化过程的动力学机制研究提供更多可靠的证据。
    Abstract: The South Yellow Sea is a typical wide continental shelf sea with abundant terrestrial sediment supply. A variety of sedimentary records have been formed since the Holocene period, and they have characteristics in terms of high resolution, discontinuous spatial distribution, and depositional hiatus. Based on abundant high-resolution shallow seismic profiles acquired in the South Yellow Sea in recent years and combined with lithologic characteristics and AMS14C dating data of several cores, the spatial and temporal distribution of Holocene sediments in the South Yellow Sea were revealed systematically and meticulously. According to their spatial distribution, genetic mechanism and provenance, the Holocene sediments in the South Yellow Sea were divided into four independent sedimentary bodies, which show different acoustic reflection characteristics, including mainly accretion and aggradation reflection, parallel or transparent weak reflection, medium or high angle accretion reflection, and medium-high angle tilt-oblique reflection. By estimation, the river sediment input accounted for 78% of the Holocene sediments in the South Yellow Sea, and the other sources were mainly the bottom bed materials from strong marine dynamic erosion, transformation, and redistribution during transgression. The study is expected to provide more-reliable evidence for the research of dynamic mechanism of sedimentary evolution process of Holocene deposits in the South Yellow Sea.
  • 厚层辫状河道储集层内部发育多种类型隔夹层,各隔夹层形态和规模相差大,而隔夹层展布的定量研究对厚层砂岩中骨架河道刻画和河道期次划分意义重大。近年来,国内外学者多侧重于露头和现代沉积的河流相储层构型研究,对地下储层构型的研究多集中于曲流河储层,有关辫状河道储层的定量表征研究较少[1-5]

    西湖凹陷A构造其花港组主力目的层H3砂层组发育厚层辫状河道砂岩,渗透率多为(0.1~10)×10−3 μm2,储层质量较差,为低渗—特低渗储层。多口井取心资料证实,物性整体随着埋深的加大而变差,横向及纵向非均质性强,因此,寻找优质储层发育区是产能释放、储量升级的攻关方向。

    前人定性评价认为强水动力、稳定、低摆动条件下的骨架河道砂体为优质储层发育区,但骨架河道的期次、连通性及其展布范围尚需进一步研究。因此,本文引入灰色理论进行半定量研究,通过隔夹层的识别,半定量划分河道砂体期次,再利用与工区构造、沉积背景相似地区的经验公式,计算单河道宽厚比和砂地比,明确河道连通性及展布范围,为下一步勘探开发指明方向[6-9]

    西湖凹陷位于东海陆架盆地东北部,是隶属于东海陆架盆地的次级构造单元,呈NNE向展布,东临钓鱼岛隆褶带,西临海礁隆起,北部为虎皮礁隆起。自西向东可划分出西斜坡、中央反转构造带以及东部断阶带[10-13]图1)。西湖凹陷新生代经历基隆运动、瓯江运动、玉泉运动、龙井运动和冲绳海槽运动,将新生代自下而上分为断陷期、拗陷期和区域沉降期3大构造演化阶段,发育始新统平湖组、渐新统花港组、中新统龙井组、玉泉组、柳浪组、上新统三潭组与更新统东海群等地层,其中本次研究的主要目的层位为渐新统花港组[13-17]表1)。花港组自下而上发育H12—H1砂层组,A构造气层分布在花港组H3—H9,H3为主力目的层。西湖凹陷花港组为东缘受强挤压的大型坳陷盆地充填沉积,并经历两期从坳陷冲积平原–大型轴向河流体系–湖泊三角洲体系–浅水湖泊充填演化过程。花港组下段为强坳陷次幕充填沉积,具“北高南低、北窄南宽、三源三汇多通道”的古构造地貌格局;花港组上段为裂后挤压I幕弱坳陷次幕充填沉积,该阶段继承了花下段沉积时的古构造地貌格局,但其沉积沉降中心逐渐移向坳陷中部,H5—H3砂组为低容纳空间背景下的多源汇聚大型轴向河道体系沉积;H2—H1砂组充填时为高容纳空间背景下的湖泊体系、湖泊三角洲体系沉积。

    图  1  西湖凹陷构造带位置及钻探井位
    Figure  1.  Regional tectonic pattern of the Xihu Sag

    隔夹层是沉积过程中河流水动力条件变化或沉积后成岩作用导致沉积物岩性差异而形成的,隔夹层与不同级次的构型界面相对应。一类是基准面下降晚期或上升早期,可容纳空间增量小于沉积物供给量,多见于岩性突变面,如各级冲刷面等;界面之上多发育大套泥岩隔层,测井曲线多位于基线附近,呈线形或微齿线形。另一类是基准面持续上升期,此时沉积物供给量小于可容纳空间增量,物源供给不足,沉积物以粉砂岩、泥岩等细粒为主,易形成落淤层夹层、钙质夹层等,测井曲线呈现小幅回返,自然伽马异常幅度小于1/3,电阻、声波曲线异常幅度1/3~2/3[18-19]

    西湖凹陷A构造已钻井揭示该区花港组砂层厚度大,录井资料显示H3砂层厚度可达100余米,岩性为多种粒径砂岩,稳定泥岩不发育,仅利用单一测井曲线难以准确识别隔夹层类型,严重制约了单砂体和单河道的划分,故而本文引入灰色理论,选取对泥岩敏感的GR、RT与DEN曲线值,计算各曲线的权重指数,从而拟合出表征隔夹层类型的综合评价指标IRE,同时可以看出IRE值与泥质含量有较好的对应关系(图2);通过对比取心段IRE值与隔夹层对应关系,确定工区隔夹层定量划分标准,进而得出全井段的隔夹层分布特征[20-21]

    图  2  IRE与泥质含量关系
    Figure  2.  Diagram of IRE vs mud content

    以A1井为例,通过计算可知,选取的三条曲线GR、RT、DEN权重指数分别为0.46、0.36和0.18,将原曲线值与权重指数分别相乘再求和,即可得到该井区指示隔夹层类型的综合评价指标IRE值。结合录井资料可知,H3顶部厚层泥岩隔层测井曲线回返幅度小,位于泥岩基线附近,且IRE值明显偏高,为51~110;中间砂砾岩发育段揭示落淤层夹层测井曲线回返显著,IRE值偏低,为24~45。对照IRE值,H3砂层组100 余米的厚砂岩可识别出3大套共10期河道砂体。其中渗透率在1×10−3 μm2以上的优质储层主要发育在H3b正旋回的中下部,其IRE值低,多为25~30,指示隔夹层均为落淤层,处在滞留沉积发育的上覆砂体之中,是在多次洪泛事件不断向下游移动过程中垂向加积而成的正向地貌,主要是一套以粗粒沉积为主的沉积物,岩相组合为强水动力条件下的大量含砾砂岩–中粗砂岩–中砂岩,其渗透率往往较高,可以达到1×10−3 μm2以上,判断为I类储层。H3c IRE值略高,集中在36~45,泥岩夹层逐渐增加,水动力条件减弱,岩相组合表现为少量砂质砾岩–少量块状层理中粗砂岩–大量块状及平行层理细砂岩,渗透率大于1×10−3 μm2的储层也相对减少,判断为II1类储层。而H3a IRE更高,隔夹层多泥岩层,多为洪水退却期水流波动在心滩顶部沉积物质;或者为局部动荡洪水期淹没心滩,形成类似于天然堤的沉积。由于水动力环境较弱,其沉积物粒度较细,代表弱水动力的细粒砂岩增多,物性更差,渗透率往往较低,多小于1×10−3 μm2,为II2类储层(图3表2

    图  3  A1井隔夹层识别与划分
    Figure  3.  Identification and division of barrier and interlayer in Well A1
    表  2  IRE与储层类型定量关系
    Table  2.  Quantitative relationship between IRE and reservoir type
    隔夹层类型IRE岩相组合水动力强弱渗透率/10−3 μm2储层类型
    落淤层24~37块状含砾砂岩–中粗砂岩–块状中砂岩高能水道0.3~79
    (均值 21)
    I类
    落淤层35~45少量砂质砾岩–少量块状中粗砂岩–大量块状细砂+平行细砂低能水道0.5~8
    (均值1.2)
    II1类
    泥岩层51~110平行中细砂岩–粉细砂低能水道0~1
    (均值0.4)
    II2类
    下载: 导出CSV 
    | 显示表格

    利用灰色理论对A构造其他各井进行划分与识别,并在储层隔夹层类型、厚度和频率认识的基础上,对隔夹层在剖面上的分布展开进一步的研究。在H3沉积早期,3口井隔夹层均发育较少;进入H3沉积中期,A5井和A4井隔夹层开始增多,其中A5井发育薄厚不等的隔夹层,A4井则发育厚层隔夹层;H3沉积晚期,各井的隔夹层开始丰富发育起来。但是各井间差异也尤为凸显,其中A5井的隔夹层发育频繁,纵向上反复切割砂体,且发育厚度较薄,使得储层的非均质性进一步加剧;A4井则发育大套厚层的隔层,储层基本不发育(表3图4)。

    表  3  A构造H3 IRE值与隔夹层类型划分
    Table  3.  The IRE value of A Structure and the corresponding interlayer type
    砂层期次12345678910
    A1井IRE36~4241~4554~7030~3926~3424~2927~3031~4234~4351~72
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层落淤层泥岩层落淤层落淤层泥岩层
    A2井IRE37~4630~3344~7024~2927~3041~6031~4234~5341~5243~104
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层泥岩层落淤层泥岩层泥岩层泥岩层
    A4井IRE43~4947~5342~8242~4731~4245~7741~7653~67
    隔夹层类型泥岩层泥岩层泥岩层落淤层落淤层泥岩层泥岩层泥岩层
    A5井IRE43~5036~5537~4538~4739~4343~5042~7152~6047~5643~92
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层落淤层泥岩层落淤层泥岩层泥岩层
    下载: 导出CSV 
    | 显示表格
    图  4  A构造H3储层物性分布连井剖面
    Figure  4.  The crosswell profile of H3 reservoir physical distribution in the A Structure

    在单河道砂体识别划分的基础上,从井资料上读出各单河道的厚度,如果能得到工区河道宽厚比,就能进一步计算出单河道的展布范围。通过调研,本文建立了一套通过计算单河道满岸深度,定量刻画单河道展布规模的经验公式[22-24]

    首先通过岩心资料,统计出工区H3交错层系组的平均厚度h1为0.6 m,从而利用公式(1)、(2)计算出沙丘高度h2为1.76 m,再利用公式(3)得出单河道满岸深度h3为18.7 m,通过单河道满岸深度h3与单河道宽度wb的关系式(4),得到单河道宽度wb为726.8 m,最后得到工区宽厚比A为38.87,而该宽厚比与井上读出的各单河道砂体厚度的乘积即为各期河道横向展布范围。通过计算可知,A1井区单河道展布范围为1.1~2.3 km,符合辫状河三角洲河道宽度一般为1~3 km的经验数值。

    $$ \beta = h_{1} /1.8 $$ (1)
    $$ h_{ 2} = 5.3\beta + 0.001\beta $$ (2)
    $$ h_{3}= 11.6h_{2}^{0.84 } \quad(0.1\;{\rm m} {\text{<}} h_{3} {\text{<}} 100\;{\rm m}) $$ (3)
    $$ w_{\rm b}=11.413\times h_{3}^{1.4182 } $$ (4)
    $$ A=w_{\rm b}/h_{3 } $$ (5)

    根据野外露头研究,辫状河三角洲单河道砂体常叠置出现,并能进一步划分为叠拼式、侧拼式和孤立式3大类。各单砂体垂向厚度和砂地比与砂体横向连通性呈现正相关关系,垂向上的砂岩含量大致等于平面上单河道的密度,等于横向上砂体连通的概率,能够反映平面上单河道砂体连通的概率;单砂体垂向厚度越大,砂地比越高,单河道密度越高,横向连通概率越大[25-26]

    单河道砂体厚度大于10 m,砂地比大于80%时,GR曲线多表现为箱型,齿化程度低,单砂体连通性好,以叠拼式为主。单河道砂体厚度为5~10 m,砂地比多为50%~80%,GR曲线以钟型–齿化箱型为主,砂体连通性变差,多呈侧拼式出现。单河道砂体厚度小于5 m,砂地比小于50%时,砂体连通性更差,多为孤立砂体出现。通过统计西湖凹陷A构造砂体厚度和砂地比可知,A构造花港组H3砂层组单砂体厚度均大于10 m,最大可达25 m,多集中在15 m,砂地比均大于85%,所以认为该区砂体以叠拼式为主。

    在单井类比的基础上,我们基于“旋回对比、分级控制、厚度约束”的原则,对井间也进行了类比。以同一油气藏系统的A1井和A5井为例,A1井和A5井岩性组合自下而上共识别出10期砂体,这10期砂体表现出细—粗—细的特征,粗粒相带主要集中于4—6期砂体发育,反映河道早期稳定,晚期摆动的特征;测井相多表现为箱型,A5井齿化程度强,局部可见漏斗型;从地震相来看,两口井早期同相轴变化弱,中晚期同相轴向A5井逐渐发散。结合岩心相、测井相和地震相认为,A1井与A5井间距3.17 km,属同一复河道带之内,但处于不同的部位,A1井更靠近河道的中心部位,A5井处于河道侧缘。而两口井砂地比约84%,自下而上单砂体厚度逐渐减薄,延伸宽度逐渐减小,所以推测砂体为拼叠型展布,且平面上同一套砂体连通性逐渐变差(图5)。

    图  5  A5井与A1井砂体精细对比
    Figure  5.  Detailed comparison of sand bodies between well A5 and A1

    从A1、A2、A4井来看,依然可以划分出10期砂体,与A1井相比,A2井GR值更低,晚期粗粒更为发育,地震相变化规律相似,优质储层占比略高,由于不属同一油气藏系统,认为A2井处于另一条分流河道的中心部位;A1井与A4井相比,A4井晚期河道不发育且自然伽马齿化程度增高,且不属于同一油气藏系统,因此认为A4井处于另一条分流河道的侧缘(图6)。

    图  6  A2井—A1井—A4井砂体精细对比
    Figure  6.  Fine comparison of sand bodies among wells A2-A1-A4

    优质储层的形成和发育受到两个方面因素的制约,其中沉积作用起决定性作用,构造和成岩作用是对沉积物改造的作用,一定程度上受沉积作用制约。综合构造、沉积与成岩作用等多方面的研究,认为在沉积卸载区内,高砂地比发育区,稳定、低摆动、强水动力条件、低泥质含量条件下的粗粒相带,后期易于受溶蚀改造的分流河道砂岩控制优质储层的发育。结合常规地震复合微相、瞬时地层切片、沉积微相及强溶蚀区分布,对优质储层发育的优势相带展开预测。

    A构造H3古地貌呈现北高南低的趋势,使得南块成为有利的汇水聚砂地区(图7a)。地震相显示,在A构造南块同相轴数量增加,前积特征显著(图7b、c),发育多期顶平底凸下切河道,多期河道呈纵向叠置横向交切发育(图7d)。因此,认为南块所处的沉积卸载区控制古水流向南在地势低洼区内汇聚,使得多期厚层辫状化分流河道的主体砂岩储层在该块发育,这一背景同样有利于高砂地比区在南块发育。

    图  7  A构造H3古地貌及地震复合微相河道识别
    Figure  7.  The paleogeomorphology of H3 in the A Structure and channel microfacies identification from seismic profile

    在H3沉积时期,西湖凹陷A构造主要受西部侧向和轴向物源影响,其中A1井与A5井处于同一条分流河道带之内,但分处不同部位,A1井区位于分流河道带多期叠置的中心部位,而A5井区则位于分流河道带侧缘部位,且分流河道由北向南有变好的趋势;A4井位于另一条分流河道之内,且受到轴向物源和侧向挤压应力影响,优质储层不发育(图8a)。

    图  8  H3沉积微相及粗粒相带分布图
    Figure  8.  Sedimentary microfacies and the distribution of coarse-grain facies in H3

    结合优质储层主控因素,粗粒相带是控制优质储层发育的关键,经过梳理发现砂地比与粗粒相带发育呈正相关。因此借助反演数据体,对平面砂地比进行预测,结合前期分流河道带的展布规模与范围刻画,形成H3粗粒相带的预测分布图,A构造南块处于粗粒相带的发育区(图8b)。

    A构造花港组H3储集空间类型为原生孔+次生溶蚀孔+少量微裂缝,溶蚀作用对砂体物性的改善是另一优质储层控制因素(图9)。中成岩A期主要受有机酸溶蚀,其主要来源为下伏平湖组烃源岩,因此,有效的供酸断裂体系及长时间的酸性环境,是形成强溶蚀区的关键。

    图  9  A构造花港组溶蚀面孔率与物性关系
    Figure  9.  Relationship between the porosity ratio in dissolution surface and the physical property in Huagang Formation of the A Structure

    在明确溶蚀作用控制优质储层发育的基础上,对强溶蚀区进行了平面预测。强溶蚀区主要分布在通源主控断裂F1两侧,由于南块通源断裂更为发育,南块的强溶蚀区范围也更大(表4图10a)。在沉积微相、粗粒相带、强溶蚀区预测的基础上,将三图进行叠合,认为A构造南块为优质储层发育的有利区(图10b)。

    表  4  强溶蚀区划分依据
    Table  4.  Identification criterion for the division of diagenetic facies in strong dissolution area
    成岩储集相A相B相C相D相
    岩石类型中、粗砂岩
    含砾砂岩
    中–细砂岩
    含砾砂岩
    细砂岩粉–细砂岩、泥砾砂岩、钙质砂岩
    沉积微相辫状河道主体河道侧缘
    泥质杂基/%0~42~51~71~13
    孔隙度/%6~115~103.5~102.2~9
    渗透率/10−3 μm2>10.5~10.2~0.5<0.2
    视压实率/%85~9980~9440~9540~93
    视胶结率/%<61~8.51~171~68
    视溶蚀率/%4~202.3~100.5~90~8
    DTS/(μs/ft)95~10590~115
    GR/API≤55>55
    RT/(Ω·m)≥45<45
    ZDEN/(g/cm)≤2.52>2.52
    储集性能较好致密
    下载: 导出CSV 
    | 显示表格
    图  10  A构造H3强溶蚀区分布及有利区带叠合图
    Figure  10.  Distribution of strong dissolution area in A Structure H3 and the superimposition map with promising reservoir

    (1)H3厚层砂岩储集层内发育2种类型隔夹层:落淤层夹层和泥岩层隔层。其中物性最好的中部低IRE值段,隔夹层均为落淤层,为I类储层;而上部IRE高,隔夹层多泥岩层,物性差,为II2类储层。

    (2)工区内单河道宽厚比为38.87,结合单砂体厚度,折算出各期河道展布范围为1.1~2.3 km。A构造H3砂地比多在70%以上,所以认为该区砂体多呈现叠拼型,垂向上连通性有所变化。

    (3)基于前期建立的河道发育模式,在地震复合微相指导下,对H3早期河道进行识别和追踪,认为复合河道带向南交汇增多,水动力更强,更利于优质储层发育。最后结合沉积微相、粗粒相带及成岩相分布特征,认为A构造南部有利储层更为发育。

  • 图  1   研究区范围、水深地形和潮流流系图

    Figure  1.   The study area, bathymetric topography, and tidal current systems

    图  2   研究区浅地层剖面测线、钻孔位置和典型剖面位置

    Figure  2.   Shallow stratigraphic profiles, boreholes, and typical profile locations in the study area

    图  3   山东半岛东南部“Ω”形沉积EW向典型剖面

    Figure  3.   A typical east-west Ω-shaped profile in the southeast of Shandong Peninsula

    图  7   山东半岛东南部钻孔岩芯综合地层对比图[24-25]

    Figure  7.   Stratigraphic correlations amongst borehole cores in the southeast of Shandong Peninsula [24-25]

    图  8   南黄海中部泥质沉积NS向典型剖面

    Figure  8.   A typical north-south profile of mud deposit in the middle of south Yellow Sea

    图  11   南黄海中部钻孔岩芯综合地层对比图[8, 17, 19, 23]

    Figure  11.   Stratigraphic correlations amongst borehole cores in the central of South Yellow Sea [8, 17, 19, 23]

    图  12   老黄河水下三角洲楔形沉积NS向典型剖面[12]

    Figure  12.   A typical north-south clinoform-shaped profile of subaqueous delta in the Old Yellow River [12]

    图  13   苏北潮流沙脊EW向典型剖面

    Figure  13.   A typical east-west profile of tidal sand ridge in the northern Jiangsu Province

    图  15   老黄河三角洲和苏北潮流沙脊钻孔岩芯综合地层对比图[12, 21, 28]

    Figure  15.   Stratigraphic correlations amongst borehole cores in the Old Yellow River and tidal sand ridge along Jiangsu coast [12, 21, 28]

    图  6   山东半岛南侧近岸楔形沉积NS向典型剖面

    Figure  6.   A typical north-south clinoform-shaped profile of mud deposit in the south of Shandong Peninsula

    图  4   山东半岛南部“Ω”形沉积NS向典型剖面

    Figure  4.   A typical north-south Ω-shaped profile in the southeast of Shandong Peninsula

    图  5   山东半岛南部靖海湾近岸海域泥质沉积EW向典型剖面

    Figure  5.   A typical east-west profile of mud deposit in the south of Shandong Peninsula

    图  9   南黄海中部泥质沉积EW向典型剖面

    Figure  9.   A typical east-west profile of mud deposit in the middle of south Yellow Sea

    图  10   南黄海中部泥质沉积NS向典型剖面

    Figure  10.   A typical north-south profile of mud deposit in the middle of south Yellow Sea

    图  16   南黄海中西部全新世沉积物厚度

    Figure  16.   Holocene sediment thickness in the middle-western South Yellow Sea

    图  14   苏北近岸潮流沙脊EW向典型剖面

    Figure  14.   A typical east-west profile of tidal sand ridge in northern Jiangsu Province

    图  17   QDZ03孔全新世岩心沉积物样品、黄河沉积物、崂山花岗岩及田横岛黄斑岩REE球粒陨石标准化配分模式(a)及其REE与LREE/HREE二元图(b)[25]

    Figure  17.   Standardized REE chondrite partitioning model of Holocene core sediments from Well QDZ03, Yellow River sediments, Laoshan granite, and Tianhengdao lamprophyre (a) and the binary diagrams of REE and LREE/HREE (b) [25]

    图  18   NT-DZ02孔全新世沉积物锆石年龄分布图

    Figure  18.   Zircon age distribution of Holocene sediments in core NT-DZ02

    表  1   本文利用和搜集到的钻孔

    Table  1   Information of the cores collected and used in this study

    序号钻孔编号位置钻孔获取时间全新世厚度/m文献来源
    1QC234.3°N、122.267°E1984年9.17[16]
    2B1035.995°N、123.9933°E1998年2.9[17]
    3EY02-234.5°N、123.5°E2001年2.5[18]
    4NT135.443°N、123.405°E2002年7.7[19]
    5NT233.459°N、122.258°E2002年5.5[20]
    6YS0135.520°N、122.488°E2006年11[8]
    7SYS-070134.663°N、121.45°E2007年9.69[21]
    8SYS-070234.302°N、122.096°E2007年18.64[21]
    9DLC70-336.636°N、123.543°E2009年0[22]
    10NHH0135.216°N、123.218°E2009年5.1[23]
    11QDZ0136.100°N、121.496°E2011年0[24]
    12QDZ0336.268°N、120.950°E2011年8.63[25]
    13CSDP-0134.3°N、122.367°E2013年3.4[26]
    14WHZK0136.7°N、122°E2014年14.91[27]
    15NT-DZ0232.067°N、122.117°E2016年19.12[28]
    下载: 导出CSV

    表  2   南黄海全新世沉积体参数特征

    Table  2   Specifications of Holocene sedimentary bodies in the South Yellow Sea

    序号沉积体名称最大厚度/m面积/10 3 km2全新世沉积体积/km3全新世沉积体积量/1011 t
    1山东半岛东南部沉积体45.018.6291.33.5
    2南黄海中部沉积体17.725.7129.61.6
    3老黄河口沉积体19.912.1123.51.5
    4苏北潮流沙脊沉积体25.129.0301.33.6
    5其他1085.3240.92.9
    合计170.71 086.613.1
    下载: 导出CSV
  • [1] 高抒. 中国东部陆架全新世沉积体系: 过程-产物关系研究进展评述[J]. 沉积学报, 2013, 31(5):845-855

    GAO Shu. Holocene sedimentary systems over the Bohai, Yellow and East China sea region: Recent progress in the study of process-product relationships [J]. Acta Sedimentologica Sinica, 2013, 31(5): 845-855.

    [2]

    Li X S, Zhao Y X, Feng Z B, et al. Quaternary seismic facies of the South Yellow Sea shelf: depositional processes influenced by sea-level change and tectonic controls [J]. Geological Journal, 2016, 51(S1): 77-95.

    [3] 张勇, 姚永坚, 李学杰, 等. 中生代以来东亚洋陆汇聚带多圈层动力下的中国海及邻区构造演化及资源环境效应[J]. 中国地质, 2020, 47(5):1271-1309

    ZHANG Yong, YAO Yongjian, LI Xuejie, et al. Tectonic evolution and resource-environmental effect of China seas and adjacent areas under the multisphere geodynamic system of the East Asia ocean-continent convergent belt since Mesozoic [J]. Geology in China, 2020, 47(5): 1271-1309.

    [4] 秦绪文, 石显耀, 张勇, 等. 中国海域1: 100万区域地质调查主要成果与认识[J]. 中国地质, 2020, 47(5):1355-1369

    QIN Xuwen, SHI Xianyao, ZHANG Yong, et al. Main achievements and understanding of 1: 1 million regional geological survey of China Seas [J]. Geology in China, 2020, 47(5): 1355-1369.

    [5] 姚永坚, 夏斌, 冯志强, 等. 南黄海古生代以来构造演化[J]. 石油实验地质, 2005, 27(2):124-128 doi: 10.3969/j.issn.1001-6112.2005.02.005

    YAO Yongjian, XIA Bin, FENG Zhiqiang, et al. Tectonic evolution of the south Yellow Sea since the Paleozoic [J]. Petroleum Geology & Experiment, 2005, 27(2): 124-128. doi: 10.3969/j.issn.1001-6112.2005.02.005

    [6] 尚鲁宁, 张勇, 姚永坚, 等. 中国东部大陆边缘晚新生代构造演化及板块相互作用过程重建[J]. 中国地质, 2020, 47(5):1323-1336

    SHANG Luning, ZHANG Yong, YAO Yongjian, et al. Late Cenozoic evolution of East China continental margin and restoration of plate interaction processes [J]. Geology in China, 2020, 47(5): 1323-1336.

    [7]

    Yang Z S, Liu J. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology, 2007, 240(1-4): 169-176. doi: 10.1016/j.margeo.2007.02.008

    [8]

    Wang L Y, Li G X, Xu J S, et al. Strata sequence and paleochannel response to tectonic, sea-level, and Asian monsoon variability since the Last Pleistocene in the South Yellow Sea [J]. Quaternary Research, 2019, 92(2): 450-468. doi: 10.1017/qua.2019.29

    [9] 韩宗珠, 王一冰, 孙苑高, 等. 黄海表层沉积物的矿物组成特征及其物源分析[J]. 海洋地质前沿, 2022, 38(4):10-19 doi: 10.16028/j.1009-2722.2021.112

    Han Zongzhu, Wang Yibing, Sun Yuangao, et al. Composition of minerals in surface sediments of the Yellow Sea and their provenance [J]. Marine Geology Frontiers, 2022, 38(4): 10-19. doi: 10.16028/j.1009-2722.2021.112

    [10] 梅西, 李学杰, 密蓓蓓, 等. 中国海域表层沉积物分布规律及沉积分异模式[J]. 中国地质, 2020, 47(5):1447-1462

    MEI Xi, LI Xuejie, MI Beibei, et al. Distribution regularity and sedimentary differentiation patterns of China seas surface sediments [J]. Geology in China, 2020, 47(5): 1447-1462.

    [11]

    Chough S K, Lee H J, Chun S S, et al. Depositional processes of late Quaternary sediments in the Yellow Sea: a review [J]. Geosciences Journal, 2004, 8(2): 211-264. doi: 10.1007/BF02910197

    [12]

    Liu J, Kong X H, Saito Y, et al. Subaqueous deltaic formation of the Old Yellow River (AD 1128-1855) on the western South Yellow Sea [J]. Marine Geology, 2013, 344: 19-33. doi: 10.1016/j.margeo.2013.07.003

    [13] 王明健, 张勇, 潘军, 等. 东部海域地学大断面地质结构特征及其对综合地层分区的约束[J]. 中国地质, 2020, 47(5):1474-1485

    WANG Mingjian, ZHANG Yong, PAN Jun, et al. Geological structure of the large section in eastern China’s sea areas and its constraint on comprehensive stratigraphic division [J]. Geology in China, 2020, 47(5): 1474-1485.

    [14] 王颖, 朱大奎, 周旅复, 等. 南黄海辐射沙脊群沉积特点及其演变[J]. 中国科学(D辑), 1998, 28(5):385-393 doi: 10.3321/j.issn:1006-9267.1998.05.001

    WANG Ying, ZHU Dakui, ZHOU Lüfu et al. Sedimentary characteristics and evolution of radiative sand ridges in the South Yellow Sea [J]. Science in China (Series D), 1998, 28(5): 385-393. doi: 10.3321/j.issn:1006-9267.1998.05.001

    [15] 王中波, 张江勇, 梅西, 等. 中国陆架海MIS5(74~128 ka)以来地层及其沉积环境[J]. 中国地质, 2020, 47(5):1370-1394

    WANG Zhongbo, ZHANG Jiangyong, MEI Xi, et al. The stratigraphy and depositional environments of China’s sea shelves since MIS5(74-128)ka [J]. Geology in China, 2020, 47(5): 1370-1394.

    [16] 杨子赓. Olduvai亚时以来南黄海沉积层序及古地理变迁[J]. 地质学报, 1993, 67(4):357-366

    YANG Zigeng. The sedimentary sequence and palaeogeographic changes of the South Yellow Sea since the Olduvai subchron [J]. Acta Geologica Sinica, 1993, 67(4): 357-366.

    [17] 陈志华, 石学法, 王湘芹, 等. 南黄海B10岩心的地球化学特征及其对古环境和古气候的反映[J]. 海洋学报, 2003, 25(1):69-77

    CHEN Zhihua, SHI Xuefa, WANG Xiangqin, et al. Geochemical changes in core B10 in the southern Huanghai Sea and implications for variations in paleoenvironment and paleoclimate [J]. Acta Oceanologica Sinica, 2003, 25(1): 69-77.

    [18] 庄丽华, 阎军, 常凤鸣, 等. 南黄海EY02-2孔碳酸盐含量特征与沉积物来源[J]. 海洋科学, 2004, 28(1):8-10 doi: 10.3969/j.issn.1000-3096.2004.01.003

    ZHUANG Lihua, YAN Jun, CHANG Fengming, et al. Carbonate content character and sediment source from the core EY02-2 in the southern Yellow Sea [J]. Marine Sciences, 2004, 28(1): 8-10. doi: 10.3969/j.issn.1000-3096.2004.01.003

    [19] 蓝先洪, 张宪军, 赵广涛, 等. 南黄海NT1孔沉积物稀土元素组成与物源判别[J]. 地球化学, 2009, 38(2):123-132 doi: 10.3321/j.issn:0379-1726.2009.02.003

    LAN Xianhong, ZHANG Xianjun, ZHAO Guangtao, et al. Distributions of rare earth elements in sediments from Core NT1 of the South Yellow Sea and their provenance discrimination [J]. Geochimica, 2009, 38(2): 123-132. doi: 10.3321/j.issn:0379-1726.2009.02.003

    [20] 蓝先洪, 张志珣, 李日辉, 等. 南黄海NT2孔沉积物物源研究[J]. 沉积学报, 2010, 28(6):1182-1189 doi: 10.14027/j.cnki.cjxb.2010.06.006

    LAN Xianhong, ZHANG Zhixun, LI Rihui, et al. Provenance study of sediments in core NT2 of the South Yellow Sea [J]. Acta Sedimentologica Sinica, 2010, 28(6): 1182-1189. doi: 10.14027/j.cnki.cjxb.2010.06.006

    [21]

    Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea [J]. Marine Geology, 2010, 278(1-4): 54-76. doi: 10.1016/j.margeo.2010.09.003

    [22] 梅西, 张训华, 王中波, 等. 南黄海北部DLC70-3孔沉积物磁化率特征及其对古冷水团的指示[J]. 地质科技情报, 2014, 33(5):100-105

    MEI Xi, ZHANG Xunhua, WANG Zhongbo, et al. Magnetic susceptibility characteristic of the sediments of DLC70-3 core in northern South Yellow Sea and its significance to Paleo-cold water mass [J]. Geological Science and Technology Information, 2014, 33(5): 100-105.

    [23] 刘亚楠, 李官保. 南黄海NHH01孔周边地震地层学[J]. 海洋地质与第四纪地质, 2016, 36(5):13-19 doi: 10.16562/j.cnki.0256-1492.2016.05.002

    LIU Ya’nan, LI Guanbao. Primary study on seismic stratigraphy of the area surrounding borehole NHH01, south Yellow Sea [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 13-19. doi: 10.16562/j.cnki.0256-1492.2016.05.002

    [24] 仇建东, 刘健, 张勇, 等. 南黄海西北部晚更新世以来的沉积环境演化[J]. 第四纪研究, 2020, 40(3):673-689 doi: 10.11928/j.issn.1001-7410.2020.03.07

    QIU Jiandong, LIU Jian, ZHANG Yong, et al. Sedimentary environment evolution in the northwestern South Yellow Sea since the late Pleistocene [J]. Quaternary Sciences, 2020, 40(3): 673-689. doi: 10.11928/j.issn.1001-7410.2020.03.07

    [25]

    Qiu J D, Liu J, Saito Y, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the southern Shandong Peninsula in the Western South Yellow Sea [J]. Journal of Ocean University of China, 2014, 13(5): 747-760. doi: 10.1007/s11802-014-2227-z

    [26]

    Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last ~3.50 Myr in the western South Yellow Sea: Paleoenvironmental and tectonic implications [J]. Marine Geology, 2018, 399: 47-65. doi: 10.1016/j.margeo.2017.11.005

    [27] 刘金庆, 宋红瑛, 印萍, 等. 威海南部近岸泥质区晚更新世以来的重矿物组合特征及对物源的指示[J]. 海洋学报, 2018, 40(3):129-140

    LIU Jinqing, SONG Hongying, YIN Ping, et al. Characteristics of heavy mineral assemblage and its indication of provenance in the mud area off the southern coast of Weihai since the Late Pleistocene [J]. Haiyang Xuebao, 2018, 40(3): 129-140.

    [28]

    Qiu J D, Yin P, Liu J Q, et al. Historical records of trace metals in core sediments from Jiangsu coastal area, China [J]. Marine Pollution Bulletin, 2019, 149: 110625. doi: 10.1016/j.marpolbul.2019.110625

    [29] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the Yellow Sea[M]. Beijing: China Ocean Press, 1989.

    [30] 李佩华, 吴晓, 毕乃双, 等. 山东半岛东部近岸表层沉积物放射性核素的季节性变化及其环境指示意义[J]. 海洋地质前沿, 2022, 38(2):37-47 doi: 10.16028/j.1009-2722.2020.112

    Li Peihua, Wu Xiao, Bi Naishuang, et al. Seasonal variation of radionuclides in surface sediments off the east coast of Shandong Peninsula and its environmental implications [J]. Marine Geology Frontiers, 2022, 38(2): 37-47. doi: 10.16028/j.1009-2722.2020.112

    [31]

    Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea [J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009

    [32] 王利波. 黄海北部泥质沉积体的沉积特征[D]. 中国海洋大学硕士学位论文, 2009

    WANG Libo. Sedimentary characteristics of the mud depositional body in the north of the Yellow Sea[D]. Master Dissertation of Ocean University of China, 2009.

    [33]

    Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea [J]. Marine Geology, 2007, 236(3-4): 165-187. doi: 10.1016/j.margeo.2006.10.031

    [34] 王忠蕾, 陆凯, 孙军, 等. 南黄海中部泥质区沉积物碎屑锆石 U-Pb年龄物源判别[J]. 海洋地质与第四纪地质, 2022, 42(5):70-82

    Wang Zhonglei, Lu Kai, Sun Jun, et al. Detrital zircon U-Pb age and provenance discrimination in sediments of the central mud area in the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 70-82.

    [35]

    Wang Y H, Li G X, Zhang W G, et al. Sedimentary environment and formation mechanism of the mud deposit in the central South Yellow Sea during the past 40 kyr [J]. Marine Geology, 2014, 347: 123-135. doi: 10.1016/j.margeo.2013.11.008

    [36] 高飞. 冬季风生环流对南黄海中部泥质区形成的贡献及机制[D]. 中国海洋大学博士学位论文, 2013

    GAO Fei. The formation and its mechanism to the muddy area in the central South Yellow Sea due to the effect of winter wind-driven circulation[D]. Doctor Dissertation of Ocean University of China, 2013.

    [37]

    Li C X, Zhang J Q, Fan D D, et al. Holocene regression and the tidal radial sand ridge system formation in the Jiangsu Coastal Zone, East China [J]. Marine Geology, 2001, 173(1-4): 97-120. doi: 10.1016/S0025-3227(00)00169-9

    [38] 周长振, 孙家淞. 试论苏北岸外浅滩的成因[J]. 海洋地质研究, 1981, 1(1):83-91

    ZHOU Changzhen, SUN Jiasong. On the genesis of the shoal off North Jiangsu [J]. Marine Geological Research, 1981, 1(1): 83-91.

    [39] 陈珊珊, 王中波, 张勇, 等. 东海北部外陆架及邻区灾害地质体特征及成因研究[J]. 中国地质, 2020, 47(5):1512-1529

    CHEN Shanshan, WANG Zhongbo, ZHANG Yong, et al. Characteristics and origin of disaster geological bodies in the northern outer shelf of the East China Sea and its adjacent areas [J]. Geology in China, 2020, 47(5): 1512-1529.

    [40]

    Saito Y, Yang Z S, Hori K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene [J]. Geomorphology, 2001, 40(2-3): 219-231. doi: 10.1016/S0169-555X(01)00118-0

    [41]

    Martin J M, Zhang J, Shi M C, et al. Actual flux of the Huanghe (Yellow River) sediment to the western Pacific ocean [J]. Netherlands Journal of Sea Research, 1993, 31(3): 243-254. doi: 10.1016/0077-7579(93)90025-N

    [42] 朱大奎, 傅命佐. 江苏岸外辐射沙洲的初步研究[M]. 北京: 海洋出版社, 1986

    ZHU Dakui, FU Mingzuo. A Preliminary Study on the Radiating Bar off the Coast of Jiangsu Province[M]. Beijing: Ocean Press, 1986.

    [43]

    Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea [J]. Earth-Science Reviews, 2003, 63(1-2): 93-120. doi: 10.1016/S0012-8252(03)00033-3

    [44]

    Park S C, Lee H H, Han H S, et al. Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea [J]. Marine Geology, 2000, 170(3-4): 271-288. doi: 10.1016/S0025-3227(00)00099-2

    [45] 姚政权, 刘健, 万世明, 等. 中国东部陆架第四纪沉积环境演化研究进展与展望[J]. 海洋地质与第四纪地质, 2022, 42(5):42-57 doi: 10.16562/j.cnki.0256-1492.2022063001

    Yao Zhengquan, Liu Jian, Wan Shiming, et al. Progress and prospects of research on the Quaternary sedimentary environment in the eastern shelf of China [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 42-57. doi: 10.16562/j.cnki.0256-1492.2022063001

    [46] 陈俊兵, 刘龙龙, 吴振, 等. 杭州湾舟山群岛海域晚第四纪声学地层[J]. 海洋地质前沿, 2021, 37(12):49-57 doi: 10.16028/j.1009-2722.2021.190

    Chen Junbing, Liu Longlong, Wu Zhen, et al. Shallow acoustic stratigraphy of the late Quaternary in the Zhoushan Islands of Hangzhou Bay [J]. Marine Geology Frontiers, 2021, 37(12): 49-57. doi: 10.16028/j.1009-2722.2021.190

图(18)  /  表(2)
计量
  • 文章访问数:  959
  • HTML全文浏览量:  299
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 修回日期:  2022-11-01
  • 网络出版日期:  2023-04-19
  • 刊出日期:  2023-04-27

目录

/

返回文章
返回