Abstract:
Exploring the climate and environmental changes and the driving mechanisms during the Late Glacial and Holocene in the northern China is vital to predicting the possible scenarios of future climate change. Based on the loess-paleosol profile of Linfen Basin in the southeastern margin of the Loess Plateau, we analyzed three AMS
14C dates, grain size, magnetic susceptibility, soil organic carbon, and geochemical elements, and reconstructed the climate change history of Linfen Basin from the Late Glacial Period to the middle and late Holocene. Results show that the loess and paleosol of the Songcungou section are in the early and middle chemical weathering stages, respectively. The chemical weathering intensity of aeolian deposits in different areas was obviously different, which is mainly controlled by regional variation of the East Asian Summer Monsoon (EASM) intensity. Comprehensive analysis of multiple indicators shows that climate evolution of the Linfen Basin has experienced four stages since the Late Glacial Period. (Ⅰ) In the Late Glacial Period, the East Asian Winter Monsoon (EAWM) was strong, and the climate was dry and cold. (Ⅱ) In the early Holocene, EASM was intensified and the climate became warm and humid. (Ⅲ) In the early Middle Holocene, EASM reached its peak, and the climate was warmest and wettest. (Ⅳ) In the late Middle Holocene, EASM weakened and the climate turned dry and cold again. The climate change in the Linfen Basin was mainly controlled by the changes of solar radiation intensity and ice volume in the Northern Hemisphere.