Progress and prospects of research on the Quaternary sedimentary environment in the eastern shelf of China
-
摘要: 中国东部陆架位于亚洲大陆与西太平洋的过渡区域,是连接全球最大的沉积源-汇系统的重要纽带,记录了东亚构造变形、亚洲季风系统形成与演化、海平面变化及东亚重大水系变迁等诸多重要信息。在总结前人研究的基础上,结合最近20年来中国海洋专项获得的数据资料和研究成果,综述了中国东部陆架区第四纪以海侵-海退变化为主要特征的沉积环境变化,探讨了陆架沉积环境变化与区域构造、海平面和东亚季风气候变化的联系;基于目前在长江、黄河流域及东部陆架区开展的沉积物源-汇研究,讨论了长江和黄河贯通入海的可能时代及控制因素;提出新生代以来陆架地质环境演变与东亚构造历史、季风系统演化、海平面变化、重大水系调整及陆架有机碳埋藏的耦合机制研究是未来在中国东部陆架实施科学钻探的重点科学目标。Abstract: The eastern shelf of China is located in the transitional zone between the Asian continent and the western Pacific Ocean. It is an important link connecting the largest sedimentary source-sink system in the world, and bears many important information on tectonic deformation in East Asia, the formation and evolution of the Asian monsoon system, sea level changes and major water system changes in East Asia. Based on the review of previous studies and the new data obtained from marine projects in China during the last two decades, this paper reviews the Quaternary sedimentary environmental changes in the eastern shelf of China, mainly focusing on changes in marine transgression and regression cycles, and discusses the connection between the Quaternary sedimentary environment in eastern shelf of China and regional tectonic, sea level and East Asian monsoon climate changes. Based on the previous sedimentary source-sink studies in the Yangtze and Yellow River basins and the shelf area, we discuss the timing of penetrating into the sea of the Yangtze and Yellow rivers and controlling factors. We propose that the coupling mechanism of the geological environment evolution in the eastern shelf of China with Asian tectonic deformation, monsoon system evolution, sea-level change, major water system adjustment and carbon burial since the Cenozoic is a key scientific goal for future scientific drilling in the eastern shelf of China.
-
鸭绿江发源于长白山天池,全长790km,流域面积约6.2×104km2,多年平均径流量289×108m3,多年平均入海泥沙量为113×104t/a[1]。鸭绿江河口处于北黄海西朝鲜湾的湾顶,河口形态呈喇叭型,口门附近心滩、沙岛发育,具有独特的水文泥沙条件和地貌特征[2]。鸭绿江自丹东南部直接注入北黄海,是北黄海主要物源区之一,对辽东半岛附近海区底质沉积产生重要影响[3, 4],甚至对北黄海中部泥质细粒沉积区也产生一定程度影响[5]。前人对鸭绿江端元沉积物粒度特征[3, 6]、地球化学特征[1, 7]、碎屑矿物组成特征[8, 9]、重金属分布特征[4, 10, 11]、水文特征[2, 12-15]等方面进行了研究, 但是,与长江、黄河、珠江等大河端元组成相比,对于鸭绿江端元组成的研究还非常薄弱。因此,对鸭绿江端元沉积特征进行深入研究是十分必要的。
利用地球化学方法进行物源示踪已日趋成熟,一些学者也通过该方法对鸭绿江端元沉积物特征进行了分析[1, 7],但现有的研究多针对全样(原位采集的样品)进行测试分析。而自然形成的沉积物是不同粒级颗粒物的混合体,不同粒级的颗粒对水动力条件的响应并不一致[16],且不同粒度颗粒物的混合会产生“粒度效应”,对使用地球化学方法识别沉积物物源结果的准确度产生影响[17, 18]。因此,对沉积物进行水动力敏感粒度分级,可以极大地提高地球化学物源识别方法的准确性。为剔除粒度效应对物源分析的影响,本文通过对鸭绿江河口表层沉积物进行粒度分级,探讨不同粒级沉积物内元素地球化学特征、控制因素、源区背景等内容,以期进一步明确鸭绿江端元沉积物地球化学特征。
1. 材料与方法
1.1 样品采集与处理
2012年11月份,采用手持GPS进行定位,以插管方式在近岸海域获取11个表层沉积物样品,各采样点平均水深小于2m。根据研究需要,选取其中6个样品进行地球化学测试分析,分别编号为YL01、YL02、YL04、YL06、YL07、YL09。其中,YL01、YL02两个样品直接采自鸭绿江河道内部,其他4个站位样品分别采自鸭绿江河口西侧沿岸海域(图 1)。
为探讨鸭绿江端元陆源碎屑沉积物地球化学特征,对全样进行去除有机质和碳酸盐处理:在60℃水浴加热条件下,向样品中加入过量的浓度为30%的H2O2和1mol/L的HCl,分别去除有机质和碳酸盐,对处理后的样品进行离心清洗,以备粒度分级。黏土及粉砂粒级全岩样最能反映沉积物源区的物质组成特征[19],为剔除“粒度效应”对物源分析的影响,根据Stokes定律,结合水筛、离心等方法,将样品分成>63、32~63、8~32、2~8和 < 2 μm 5个粒级。
1.2 样品测试
粒度测试在中国科学院海洋研究所海洋地质与环境重点实验室完成。采用Cilas2000型激光粒度仪进行测试,仪器测试范围0.3~2000μm,重复测量相对误差 < 3%。为对比分析,对全样和处理后样品均进行了粒度测试。采用矩法[20]进行粒度参数计算,根据谢帕德三角图分类法进行沉积物命名,采用Φ值粒级划分标准。
地球化学测试在自然资源部第一海洋研究所完成,采用Thermo ICAP6300型电感耦合等离子体原子发射光谱仪(ICP-OES)进行常量元素测试。将样品研磨至200目,经105℃烘干3h后,称取50.00mg样品于聚四氟乙烯溶样内胆中。加入1.50mL高纯HNO3、1.50mL高纯HF,密封样品后放入烘箱,在195℃保持48h以上。冷却后取出溶样内胆,置于电热板上蒸至湿盐状,再加入1mL的HNO3蒸干(以除去残余的HF)。然后加入3mL高纯HNO3(1:1),1mL Rh内标溶液(500×10-9),密封后放入150℃的烘箱中保持24h,以保证对样品的完全提取。冷却后,将提取液转移至干净的PET(聚酯)瓶中,用Mill-Q水稀释至50.00 g,待上ICP-OES测定。所有元素测试每隔10个样做一个重复样,并加入一个监控样(GSD-9),元素的测试精度优于5%,数据准确可靠。
2. 结果
2.1 表层沉积物粒度特征
9个站位表层沉积物全样和处理后样品的粒度测试结果表明,处理前、后沉积物共包括砂(S)、砂质粉砂(ST)、粉砂(T)和黏土质粉砂(YT)4种类型。其中,YL1#、YL3#两个站位样品类型由砂质粉砂(全样)变为粉砂(处理后),其他站位样品处理前、后沉积物类型未发生变化。
与全样相比,处理后样品中砂组分含量明显降低(表 1),由25.7%降至20.6%,粉砂和黏土两个组分含量则有所升高,分别从56.6%和17.7%升至61.0%和18.4%。沉积物平均粒径和中值粒径均在处理后偏高,分别从全样中的5.7和5.5Φ升至处理后的5.9和5.6Φ,说明处理后沉积物粒径变细。鸭绿江河口受径流、潮流、波浪等复杂水动力影响,中水道、西水道和西岸潮滩的水动力条件各不相同[6],造成了沉积物分选均较差,处理后样品分选程度相对变好,由1.7降至1.6。处理前后样品偏态程度相差不大(全样1.5,处理后1.4),均以正偏态为主,说明沉积物主要以粗组分为主,细粒一侧表现为低的尾部。处理前后样品均以宽平峰态为主,但处理后样品峰型略有变窄,峰态值由2.3降至2.2。
表 1 鸭绿江河口表层沉积物粒度参数Table 1. Grain size parameters of surface sediments in the Yalu River estuary编号 中值粒径/Φ 平均粒径/Φ 分选系数 偏态系数 峰态系数 砂组分/% 粉砂组分/% 黏土组分/% YL-01 6.6 6.9 1.6 1.1 2.0 0.2 73.5 26.3 YL-02 5.4 5.8 1.7 1.7 2.3 6.4 80.0 13.5 YL-03 5.9 6.1 1.9 1.5 2.4 17.3 64.2 18.5 YL-04 6.3 6.6 1.8 1.3 2.1 2.2 74.3 23.6 YL-05 2.4 2.9 1.5 2.0 2.6 85.2 12.7 2.1 YL-06 6.3 6.6 1.7 1.3 2.1 0.4 76.3 23.3 YL-07 6.8 7.0 1.6 1.0 1.9 0.3 72.6 27.1 YL-08 3.5 4.0 1.3 1.8 2.4 72.4 24.5 3.1 YL-09 6.7 6.9 1.6 1.0 2.0 1.0 71.3 27.7 最大值 6.8 7.0 1.9 2.0 2.6 85.2 80.0 27.7 最小值 2.4 2.9 1.3 1.0 1.9 0.2 12.7 2.1 平均值 5.6 5.9 1.6 1.4 2.2 20.6 61.0 18.4 YL01 6.3 6.5 1.7 1.4 2.2 2.7 76.6 20.6 YL02 5.1 5.5 1.9 1.7 2.5 24.1 63.1 12.9 YL03 5.7 5.9 2.1 1.5 2.6 24.8 57.1 18.1 YL04 6.2 6.4 1.9 1.4 2.3 8.9 69.1 22.0 YL05 2.5 2.9 1.4 2.0 2.6 87.4 10.5 2.1 Yl06 6.5 6.6 1.8 1.3 2.2 3.1 74.1 22.8 YL07 6.9 7.1 1.6 1.0 1.9 0.1 68.5 31.4 YL08 3.5 3.8 1.3 1.8 2.4 77.8 19.3 2.9 YL09 6.7 6.8 1.8 1.2 2.2 2.6 71.1 26.3 最大值 6.9 7.1 2.1 2.0 2.6 87.4 76.6 31.4 最小值 2.5 2.9 1.3 1.0 1.9 0.1 10.5 2.1 平均值 5.5 5.7 1.7 1.5 2.3 25.7 56.6 17.7 注:YL-01—YL-09为处理后样品测试,YL01—YL09为全样测试。 总的来说,样品处理前后,粒级组分含量发生较为明显变化,但粒度参数变化较小。说明非陆源组分对粒级百分含量有一定影响,沉积物样品具有相近的沉积动力环境及物源区。
2.2 全样常量元素含量特征
本文对全样中Al2O3、Fe2O3、CaO、MgO、K2O、Na2O、MnO、TiO2、P2O5共9种常量元素百分含量特征进行分析,这9种元素总含量为20.65%~28.18%。其中,Al2O3含量明显高于其他元素,各站位Al2O3含量均大于10.00%;Fe2O3和K2O两种元素含量相近,大多为3.00%~4.00%;MgO和Na2O两种元素含量大多为1.00%~3.00%;CaO和TiO2两种元素含量相近,接近1.00%;MnO和P2O5两种元素含量相近且很低,普遍在0.03%左右(表 2)。
表 2 鸭绿江河口表层沉积物常量元素含量特征Table 2. The major elements contents of surface sediments in the Yalu River estuary% 编号 Al2O3 Fe2O3 CaO MgO K2O Na2O MnO TiO2 P2O5 YL01 14.84 3.13 0.74 1.20 3.06 1.91 0.03 0.88 0.03 YL02 12.15 2.35 0.90 1.00 3.23 2.31 0.03 0.74 0.03 YL04 10.44 1.83 1.23 0.73 3.09 2.66 0.03 0.61 0.03 YL06 15.41 3.43 0.81 1.29 3.16 2.03 0.03 0.84 0.03 YL07 15.86 3.99 0.80 1.55 3.13 1.92 0.04 0.85 0.05 YL09 16.09 3.93 0.64 1.37 3.18 1.73 0.03 0.87 0.05 站位均值 14.13 3.11 0.85 1.19 3.14 2.09 0.03 0.80 0.04 标准偏差 2.30 0.87 0.20 0.29 0.06 0.34 0.00 0.11 0.01 变异系数 0.16 0.28 0.24 0.24 0.02 0.16 0.11 0.13 0.27 >63μm 11.64 1.35 0.83 0.63 3.28 2.54 0.01 0.45 0.02 32~63μm 12.69 3.12 1.10 1.27 3.14 2.66 0.03 0.55 0.05 8~32μm 11.01 3.04 1.15 1.39 2.73 2.49 0.04 0.85 0.04 2~8μm 17.12 5.96 0.69 2.47 3.26 1.63 0.05 0.95 0.08 < 2μm 18.35 8.43 0.36 2.41 3.00 0.71 0.06 0.95 0.15 粒级均值 14.16 4.38 0.83 1.64 3.08 2.01 0.04 0.75 0.07 各站位之间Al2O3和Fe2O3两种元素含量的标准偏差和变异系数相对较大,鸭绿江河口表层沉积物中这两种元素含量略低于西侧沿岸。其他元素含量相对稳定,在东西向上并未显示出明显的差异分布特征,说明表层沉积物的物源相近。辽南沿岸流自鸭绿江口向西南流动,是北黄海一支主要的海流[21],鸭绿江物质入海后在其带动下向西扩散,构成区内沉积物的主体。
2.3 分级样品常量元素含量特征
采用过量H2O2和HCl对样品进行处理,在去除有机质和碳酸盐后剩余组分皆为陆源碎屑物质。数据分析表明:与全样相比,处理后各粒级样品中元素含量的均值与其相近,说明表层沉积物中有机质和碳酸盐含量较低,对沉积物地球化学特征影响较小,鸭绿江河口及近岸海域表层沉积物以陆源碎屑沉积为主。从表 2可以看出,不同粒级样品内元素分布特征具有明显的规律性和差异性,而全样测试结果仅相当于分粒级样品均值水平。正因如此,如果通过全样进行测试分析,则完全掩盖了这种规律性和差异性。
具体来看,Al2O3、Fe2O3、MgO、MnO、TiO2、P2O5六种元素总体上随着粒级减小而含量逐渐增加,但元素含量在>63、32~63和8~32μm三个粒级内相近,且低于均值含量;2~8μm粒级内元素含量显著增加,已高于均值含量;至 < 2μm粒级内元素含量则明显高于均值(表 2)。CaO、Na2O两种元素在各粒级内含量分布特征与上述6种元素相反,总体上随着粒级减小而含量逐渐降低,元素在>63、32~63和8~32μm三个粒级内含量相近且高于均值含量;2~8μm粒级元素含量已明显降低且低于均值含量;至 < 2μm粒级内元素含量进一步降低。K2O含量在各个粒级内分布较为相近,并未表现出在某一个粒级内富集,未受“粒度效应”控制。此外,K2O含量明显高于长江、黄河端元沉积物[22],与流域内地层岩性密切相关。因此,物源输入是控制K2O含量分布的决定性因素,可以作为鸭绿江端元的指示性元素。此外,各站位全样和分级样品中K2O含量极为接近,进一步说明该批次样品为同源产物,结合周边水系空间分布,可认为该批次样品是来自鸭绿江端元输入物质。
2.4 表层沉积物化学蚀变特征
在风化过程中全岩化学的变化可以定量分析沉积岩风化历史,虽然全岩化学变化会受到成岩和变质过程的影响,但是化学蚀变指数(CIA)可以用来指示风化程度,未风化的岩浆岩CIA值一般≤50,残余黏土的CIA值接近100,典型页岩的CIA平均值则为70~75[23]。数据分析表明,鸭绿江口表层沉积物CIA值最多分布在65~75之间(表 3),反映出温暖、湿润条件下的中等化学风化程度。后处理样品与全样相比,各站位CIA值普遍有所变化。有关研究表明,溶解有机质能与金属离子形成有机金属络合物,导致金属离子生物地球化学行为发生改变,影响其溶解性、生物有效性等理化性质[24]。因此,在去除有机质的过程中,有可能同时也去除了吸附的变性黏土矿物,导致处理后样品的CIA值发生变化。此外,处理后分级样品也显示出不同的化学蚀变特征,依据各站位同一粒级样品常量元素含量均值计算的CIA值表明, >63、32~63和8~32μm三个粒级样品化学蚀变程度相近,CIA值在64左右;至2~8μm化学蚀变程度有所增加,CIA值增至75;C2μm样品化学蚀变程度则显著增加,CIA值达82。随着粒级逐渐减小,样品中黏土矿物含量逐渐增加,致使反映化学蚀变程度的CIA值不断升高。
表 3 鸭绿江河口表层沉积物样品化学蚀变指数Table 3. The chemical index of alteration of surface sediments in the Yalu River estuary编号 CIA 粒级/μm CIA 全样 处理后样品 YL01 72 72 >63 64 YL02 65 71 32~63 65 YL04 60 69 8~32 63 YL06 72 67 2~8 75 YL07 73 70 < 2 82 YL09 74 73 注:CIA= Al2O3/[Al2O3+ CaO*+ K2O+ Na2O]*100。当CaO的摩尔数大于Na2O时,mCaO*=mNa2O,而小于Na2O时,则mCaO*=m CaO[25]。本文中CaO*依据此方法计算获得。 长石类矿物在陆壳中占有很大的比重,约占上陆壳矿物组成的41%,并且极易风化[26]。因此,长石矿物中化学活动性强的Na、Ca和K元素在化学风化作用过程中易于淋滤流失,而Al2O3则赋存在残余的黏土矿物之中。斜长石-钾长石风化形成黏土的过程在未受到钾交代作用的情况下应沿着平行A-CN的方向进行,随着化学风化程度加强,风化趋势线逐渐与A-K线相交[27]。从图 2可以看出,全样和分级样品均位于斜长石-钾长石基线以上,随着粒级减小,化学风化程度逐渐加强并靠近A-K线。鸭绿江河口表层沉积物风化趋势线(黑色箭头实线)位于理想风化趋势线(红色箭头虚线)左侧,说明该源区风化产物未遭受钾交代影响,目前处于以斜长石风化为主的阶段。此外,在A-CN-K图中,根据风化趋势线反向延长线与长石连线的交点,可以推断出物源区岩石中斜长石与钾长石的比例[28]。依据此方法,鸭绿江河口表层沉积物源区斜长石与钾长石的比值大致为5:3,粗碎屑颗粒(>63μm)中因含有较多化学风化较弱的长石碎屑,该比值略小于5:3。
3. 讨论
3.1 元素间相关性变化
全样相关分析表明,Al2O3、Fe2O3、MgO、TiO2、P2O5五种元素之间呈显著正相关(表 4),说明其物源一致且受控因素相同,这5种元素与化学蚀变指数(CIA)均呈显著正相关。化学蚀变的终极产物是以三水铝石为主的黏土矿物。已有的相关研究表明,Al2O3是黏土矿物的主要组成元素,而Fe2O3、MgO、TiO2、P2O5易受到黏土矿物等细粒沉积物吸附而富集。因此,物源区化学风化作用强度直接控制了细粒组分含量,进而影响这5种元素含量分布,与黏土组分百分含量较强的正相关性也说明了这一点。CaO和Na2O两种元素与上述5种元素和CIA呈明显的负相关,说明这两组元素受控因素截然相反,粗粒碎屑沉积物是控制这两种元素分布的主要因素,其与细粒组分含量(粉砂、黏土)负相关也说明了这一点。K2O与其他8种元素和CIA相关性均较弱,与砂组分百分含量呈较强的负相关,说明K2O主要赋存于粗粒沉积物中,但粒径大小并不是控制其分布的主要因素。鸭绿江发源于长白山天池,在天池本身造盾、造锥和近代喷发阶段均以粗面质和碱流质岩性为主[29],而该类岩石显著特征是富钾。因此,其风化产物中K2O含量异常偏高,物源区岩性特征是控制K2O分布的最主要因素。MnO与前5种元素呈中等程度的正相关,与黏土组分百分含量呈较强的正相关性,与CIA相关性较弱,说明MnO分布是受多种因素控制,粒度效应只是其一。锰易受氧化,取样位置较浅,且MnO易形成自生矿物,常以薄膜形式包裹碎屑颗粒[30, 31]。因此,锰矿物自生作用可能也是控制MnO分布的另一主要因素。
表 4 鸭绿江河口表层沉积物全样常量元素相关性Table 4. The correlation coefficient of major elements for bulk samples in the Yalu River estuaryAl2O3 Fe2O3 CaO MgO K2O Na2O MnO TiO2 P2O5 CIA 砂/% 粉砂/% 黏土/% Al2O3 1.00 Fe2O3 0.98 1.00 CaO -0.91 -0.85 1.00 MgO 0.96 0.98 -0.84 1.00 K2O 0.01 0.04 -0.18 0.08 1.00 Na2O -0.96 -0.93 0.97 -0.90 -0.03 1.00 MnO 0.39 0.51 -0.06 0.59 -0.17 -0.21 1.00 TiO2 0.95 0.89 -0.97 0.89 -0.01 -0.98 0.21 1.00 P2O5 0.71 0.82 -0.67 0.76 0.20 -0.74 0.39 0.59 1.00 CIA 0.99 0.96 -0.95 0.94 0.01 -0.99 0.31 0.98 0.69 1.00 砂/% -0.68 -0.69 0.39 -0.61 0.61 0.57 -0.50 -0.53 -0.46 -0.62 1.00 粉砂/% 0.49 0.36 -0.36 0.27 -0.67 -0.45 -0.05 0.50 -0.03 0.49 -0.75 1.00 黏土/% 0.60 0.71 -0.28 0.66 -0.36 -0.48 0.76 0.38 0.68 0.52 -0.86 0.31 1.00 注:相关系数|r|≥0.85时,在0.01水平上显著相关;|r| < 0.85时,在0.05水平上显著相关。 处理后样品元素间的相关性统计分析表明,样品经过处理、分级后,元素之间的相关性发生一些显著变化,如各元素与各粒级组分百分含量的相关性大为减弱,“粒度效应”已不是控制元素分布的主要因素。Al2O3、Fe2O3、MgO、K2O、TiO2、P2O5六种元素与CIA之间呈明显的正相关性(表 5),CaO、Na2O两种元素与CIA之间呈明显的负相关性。根据元素活动性顺序可以将化学风化过程划分为早期去Na、Ca阶段,中期去K阶段和晚期去Si阶段[27]。全样中K2O与CIA无明显相关性,但经过处理分级后,陆源碎屑中K2O与CIA相关性达0.97。因此,可以认为物源区处于化学风化过程的早期阶段,Na、Ca两种元素已经开始流失,源区化学风化作用强度是控制上述8种元素分布的最主要因素。MnO与CIA和粒级组分百分含量相关性均较弱,与Fe2O3和P2O5两种元素相关性则显著加强,而这两钟元素与自生氧化环境关系密切。因此,进一步证明自生作用是控制MnO分布的主要因素之一。
表 5 鸭绿江河口表层沉积物分级样品常量元素相关性Table 5. The correlation coefficient of major elements for graded samples in the Yalu River estuaryAl2O3 Fe2O3 CaO MgO K2O Na2O MnO TiO2 P2O5 CIA 砂/% 粉砂/% 黏土/% Al2O3 1.00 Fe2O3 0.57 1.00 CaO -0.41 -0.38 1.00 MgO 0.91 0.70 -0.15 1.00 K2O 0.97 0.51 -0.53 0.81 1.00 Na2O -0.67 -0.81 0.82 -0.58 -0.69 1.00 MnO 0.18 0.67 0.37 0.55 -0.01 -0.18 1.00 TiO2 0.83 0.58 -0.61 0.69 0.80 -0.82 0.09 1.00 P2O5 0.62 0.85 -0.02 0.81 0.48 -0.58 0.81 0.63 1.00 CIA 0.99 0.63 -0.54 0.89 0.97 -0.78 0.17 0.88 0.63 1.00 砂/% 0.14 0.18 0.32 0.14 0.16 0.12 0.16 0.10 0.34 0.07 1.00 粉砂/% -0.36 0.02 0.50 -0.24 -0.38 0.32 0.26 -0.16 0.23 -0.39 0.80 1.00 黏土/% 0.15 -0.10 -0.45 0.08 0.15 -0.24 -0.23 0.05 -0.29 0.20 -0.93 -0.96 1.00 注:相关系数|r|≥0.85时,在0.01水平上显著相关;|r| < 0.85时,在0.05水平上显著相关。 3.2 常量元素分布受控因素分析
采用主成分提取方法,通过具有Kaiser标准化的正交旋转法,旋转在5次迭代后收敛,对分级样品进行分析。提取出控制元素分布的3个主成分,贡献累积方差总和达89.98%(表 6)。成分1贡献方差达44.80%,对Al2O3、Fe2O3、MgO、K2O、TiO2五种元素和CIA为显著正载荷,对CaO、Na2O为负载荷,对粒级组分含量载荷微弱。Al2O3是黏土矿物的主要组成元素,前文数据已表明K2O是鸭绿江端元典型的指示标志,TiO2可以看作是陆源碎屑沉积物的代表,自生沉积作用对沉积物中TiO2总含量影响甚微[32],而Ca、Na流失是初级化学风化过程的显著标志。因此,成分1可以反映出鸭绿江河口及近岸海域表层沉积物为陆源碎屑组成,物源区化学风化程度是控制常量元素分布的最主要因素。
表 6 鸭绿江河口表层沉积物分级样品常量元素旋转矩阵Table 6. The rotation matrix of major elements for graded samples in the Yalu River estuary分析要素 成份 1 2 3 Al2O3 0.90 -0.04 0.27 Fe2O3 0.57 0.06 0.69 CaO -0.71 0.38 0.31 MgO 0.70 -0.03 0.62 K2O 0.95 -0.03 0.07 Na2O -0.83 0.21 -0.24 MnO -0.07 0.12 0.99 TiO2 0.91 0.04 0.15 P2O5 0.49 0.27 0.82 CIA 0.94 -0.09 0.25 砂/% 0.14 0.97 0.06 粉砂/% -0.31 0.91 0.12 黏土/% 0.12 -0.98 -0.10 贡献方差/% 44.80 23.23 21.96 累积方差/% 44.80 68.03 89.98 成分2贡献方差为23.23%,对砂和粉砂组分含量为显著正载荷,对黏土组分含量为显著负载荷。前文中分级样品元素含量特征表明,>63、32~63和8~32μm三个粒级内元素含量特征相近,与粒级相关性微弱,而这3个粒级与砂和粉砂粒级相对应;8μm以下样品随粒级减小元素含量显著增加,而该粒级主要与黏土粒级相对应。因此,成分2代表了“粒度效应”对元素分布的控制,但主要控制8μm以下样品内元素分布。
成分3贡献方差为21.96%,对Fe2O3、MnO和P2O5为显著正载荷,对粒级组分含量载荷微弱。说明这3种元素虽然易被黏土等细粒组分吸附,但并未与之含量有明显的相关性。而这3种元素与氧化环境下自生作用关系密切。因此,成分3反映出表生环境下的自生作用对常量元素的分布有一定的控制作用。
3.3 物源区识别
沉积物是物源区母岩在遭受风化、剥蚀等地质作用后,在地质营力作用下,携带到沉积区而形成的物质。因此,物源区的岩性特征与沉积物组成密切相关。鸭绿江流域位于中朝准地台东北部的辽老摩裂谷内,中朝准地台作为一级构造单元,活动性较强,具有盖层变性强烈和花岗质岩浆活动广泛的特点[33]。辽老摩裂谷内岩浆活动主要集中在古元古代和中生代,在裂谷形成发展和太平洋板块向欧亚板块俯冲的双重影响下,兼有裂谷岩浆活动和板块俯冲岩浆活动特征,而辽老摩裂谷内断裂构造发育,且断裂多为正断层,为后期岩浆活动的上涌提供了通道[34]。
岩性特征与构造活动密切相关,辽老摩裂谷内沉积了一套巨厚的古元古代沉积-火山岩地层[35]。大约在1.9Ga时裂谷内地层发生了一次大规模的区域变质作用,其中,与鸭绿江河口表层沉积物密切相关的辽河群在沉积后的1.90~1.87Ga内发生了4期变质和3期变形作用,变质岩石为石英岩、变粒岩、片岩、千枚岩和板岩等[36]。与辽河群地层相伴的是大面积的古元古代花岗岩基体和基性岩侵入体。其中,花岗质侵入体主要由变形的二长花岗片麻岩和未变形的斑状二长花岗岩、花岗岩和碱性花岗岩组成,基性侵入体则由富含镁铁质的辉长岩和辉绿岩组成[37]。最终形成上游地区主要为中生代的喷发岩和新生代的熔岩台地,中下游地区主要为太古代的变质岩系的地层分布格局[8]。
岩性特征可根据F1-F2判别图解(图 3)进行识别[38]。数据分析表明,全样和2μm以上样品均为石英岩沉积物源区,而 < 2μm样品则为铁镁质火成物源区。自1940年以来, 鸭绿江流域共修建了大、中、小型水库41座,大幅减少了入海泥沙的输入量[15],致使上游地区砂、粉砂等粗粒组分多在近源沉积,而黏土组分可向下游悬移输运。因此,>2μm粒级样品可能主要来自鸭绿江中下游地区变质基底和花岗质侵入体的风化产物;而 < 2μm粒级样品则可能主要来自鸭绿江上游地区基性侵入体的风化产物。
3.4 全样与分级处理样品信息提取的差异性
(1) 粒度信息提取差异性
粒度特征是碎屑沉积物的最本质属性,其测试结果准确与否将直接影响与之相关的分析。以鸭绿江河口YL1#(细粒)和YL8#(粗粒)两个站位样品为例,分析后处理过程对粒径变化的影响。结果显示,粗粒沉积物在处理前后各粒级百分含量变化很小,仅在5~6Φ之间粒级百分含量略有变化,几乎不受实验处理的影响。说明粗粒沉积物以陆源碎屑为主,不含或者含有很少的碳酸盐碎屑和有机质。而细粒沉积物在处理前后粒级百分含量变化则较大,由单峰为主变为双峰分布,粒径频率曲线整体向细粒端元偏移,处理后沉积物明显变细(图 4)。说明非陆源物质对细粒沉积物组成有一定程度影响。此外,在强酸处理下,一些较粗的陆源物质(Fe-Mn氧化物、磷酸盐矿物等)也可能会被除掉,去除后使得粒径整体偏细。因此,若仅对陆源碎屑沉积物进行粒度分析,有必要采用一定浓度的双氧水和盐酸(或醋酸)对样品进行去除有机质和生物碳酸盐处理,尤其是对细粒沉积物。
(2) 元素含量信息提取差异性
前文表 2中的测试数据已表明,全样测试结果与分级样品均值相近,但与某一单独粒级相比偏差较大。将各粒级元素含量与全样结果进行偏差计算(表 7),可以看出 < 2μm样品内P2O5含量与全样测试结果偏差达284.29%。总的来看,>63、2~8和 < 2μm三个粒级内元素含量与全样测试结果偏差明显高于其他两个粒级,或者可以认为,砂和黏土粒级内元素含量与全样测试结果偏差明显高于粉砂粒级,全样测试结果与粉砂粒级内元素含量更为接近。值得注意的是,各粒级内K2O含量与全样测试结果偏差明显低于其他8种元素,进一步说明了物源输入是控制K2O含量分布的最主要因素。此外,全样测试结果与分级样品均值相近,说明在陆源物质不断供应及较强的水动力条件下,鸭绿江河口表层沉积物中有机质和碳酸盐含量较低,对元素含量特征影响较小。但是,对于一些水动力条件较弱,有机质和自生碳酸盐含量较高的海域,在利用地球化学方法进行物源示踪时,去除掉非陆源碎屑组分是十分必要的。
表 7 分级样品与全样元素含量差异百分比Table 7. Percentage difference in content of elements between grading samples and bulk samples% 粒级/μm Al2O3 Fe2O3 CaO MgO K2O Na2O MnO TiO2 P2O5 >63 17.65 56.54 2.15 46.97 4.31 21.44 50.44 43.42 41.72 32~63 10.23 0.23 28.87 7.02 0.05 27.07 14.18 30.83 20.93 8~32 22.08 2.31 34.98 17.12 13.16 18.88 34.55 6.98 1.89 2~8 21.16 91.47 18.82 107.45 3.64 21.88 70.92 18.83 98.24 < 2 29.87 170.91 57.56 102.68 4.36 66.28 89.52 18.66 284.29 虽然不能以偏概全,但就鸭绿江河口表层沉积物而言,全样测试结果仅相当于分粒级样品的均值水平。与分级样品相比,全样测试结果明显具有均一化特征,极大地掩盖了不同粒级内元素地球化学特征的差异性和规律性,这对利用地球化学方法进行物源示踪、元素间相关分析、元素控制因素分析等研究结果的准确性产生了影响。因此,在利用地球化学方法进行物源示踪时,是否去除非陆源碎屑组分以及是否进行粒度分级需慎重斟酌。
4. 结论
(1) 鸭绿江河口表层沉积物源区目前处于温暖、湿润条件下,以斜长石风化为主的中等化学风化程度阶段,风化产物未遭受钾交代影响。源区斜长石与钾长石的比值大致为5:3,8μm以上各粒级样品化学风化程度相近,8μm以下样品随粒级减小化学风化程度显著增强。
(2) Al2O3、Fe2O3、MgO、MnO、TiO2、P2O5六种元素在>63、32~63和8~32μm三个粒级内含量相近,8μm以下样品随粒级减小元素含量显著增加。CaO、Na2O两种元素在各粒级内含量分布特征与上述6种元素相反。K2O含量高且未受“粒度效应”控制,可作为鸭绿江端元的指示性元素。
(3) 源区化学风化程度是控制常量元素分布的主要因素,“粒度效应”和表生环境下的自生作用对常量元素的分布也有一定的控制作用。但样品经分级处理后,“粒度效应”对元素的控制作用大为减弱,主要控制8μm以下样品内元素分布。
(4) 根据流域岩性特征分析,>2μm粒级样品可能主要来鸭绿江中下游地区变质基底和花岗质侵入体的风化产物;而 < 2μm粒级样品则可能主要来自鸭绿江上游地区基性侵入体的风化产物。
(5) 全样测试结果仅相当于分粒级样品均值水平,极大地掩盖了不同粒级内元素地球化学特征的差异性和规律性。因此,在利用全样地球化学特征进行物源示踪时需综合考虑。
-
表 1 文中提及的中国东部陆架主要钻孔岩心信息
Table 1 Detailed information of cores on the coastal area and the eastern shelf of China mentioned in text
区域 钻孔 纬度/(°) 经度/(°) 长度/m 水深/m 底界年龄/Ma 文献来源 渤海 BC-1 39.15 119.9 240.5 24 0.24 [25] BH08 38.28 120 212.4 28 1 [34] BH1 37.28 119.1 198.8 4 3 [29] BH2 37.17 119.07 228.2 陆上 3 [29] BZ1 38.85 117.38 204.5 陆上 2.2 [26] BZ2 39.03 117.14 203.6 陆上 3.2 [27] CK3 38.15 117.54 500 陆上 6.6 [28] G2 39.07 117.63 1226 陆上 8.5 [35] G3 38.83 117.43 905 陆上 8 [36] G4 38.04 117.6 400 陆上 5.2 [28] HLL02 37.03 119.13 425 陆上 5 [29] JXC-1 40.4 121.05 70.3 22 1.2 [31] Lz908 37.15 118.97 101.3 陆上 0.12 [20] MT04 39.27 118.83 383 陆上 3.2 [30] TJC-1 38.73 118.95 200.3 26 2.28 [32] YKC-2 40.43 121.61 70.2 13 0.7 [31] YRD-1101 38.04 118.6 200.3 1.8 1.9 [37] 黄海 CSDP-1 34.3 122.37 300.1 52.5 3.5 [33] CSDP-2 34.56 121.26 2 809.9 22 5* [38] DLC70-3 36.33 123.53 71.2 72 0.8 [39] EY02-2 34.5 123.5 70 79 0.89 [40] NHH01 35.22 123.22 125.6 73 1 [41] QC1 32.52 122.5 117.2 29.5 1 [42] QC2 34.3 122.27 108.8 49.1 1.9 [42] 东海 CJ-1 31.13 121.75 172.3 陆上 0.89 [43] ECS-DZ1 30.48 112.05 153.6 12 2 [44] EY02-1 30.73 126.57 70 90 0.26 [40] FX 31.20 121.25 102 陆上 0.12 [17] MFC 31.24 121.46 112 陆上 0.12 [17] SFK-1 29.1 125.3 88.3 82.9 0.15 [45] ZK9 30.88 122.42 50 12.5 0.013 [46] 注:*为上部550 m沉积的底界年代。 -
[1] Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011: 1-384.
[2] Johnson K S, Chavez F P, Friederich G E. Continental-shelf sediment as a primary source of iron for coastal phytoplankton [J]. Nature, 1999, 398(6729): 697-700. doi: 10.1038/19511
[3] Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment [J]. Annual Review of Marine Science, 2012, 4: 401-423. doi: 10.1146/annurev-marine-120709-142717
[4] 石学法, 乔淑卿, 杨守业, 等. 亚洲大陆边缘沉积学研究进展(2011-2020)[J]. 矿物岩石地球化学通报, 2021, 40(2):319-336 SHI Xuefa, QIAO Shuqing, YANG Shouye, et al. Progress in sedimentology research of the Asian continental margin (2011-2020) [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 319-336.
[5] 汪品先. 亚洲形变与全球变冷: 探索气候与构造的关系[J]. 第四纪研究, 1998, 18(3):213-221 doi: 10.3321/j.issn:1001-7410.1998.03.004 WANG Pinxian. Deformation of Asia and global cooling: searching links between climate and tectonics [J]. Quaternary Sciences, 1998, 18(3): 213-221. doi: 10.3321/j.issn:1001-7410.1998.03.004
[6] Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China [J]. Nature, 2002, 416(6877): 159-163. doi: 10.1038/416159a
[7] Zheng H B, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7556-7561. doi: 10.1073/pnas.1216241110
[8] Zhang J, Wan S M, Clift P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: tectonic or climate forcing? [J]. Quaternary Science Reviews, 2019, 216: 74-88. doi: 10.1016/j.quascirev.2019.06.002
[9] Xiao G Q, Sun Y Q, Yang J L, et al. Early Pleistocene integration of the Yellow River I: detrital-zircon evidence from the North China Plain [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546: 109691. doi: 10.1016/j.palaeo.2020.109691
[10] Shackleton N J. Oxygen isotopes, ice volume and sea level [J]. Quaternary Science Reviews, 1987, 6(3-4): 183-190. doi: 10.1016/0277-3791(87)90003-5
[11] Rohling E J, Grant K, Bolshaw M, et al. Antarctic temperature and global sea level closely coupled over the past five glacial cycles [J]. Nature Geoscience, 2009, 2(7): 500-504. doi: 10.1038/ngeo557
[12] 赵松龄, 杨光复, 苍树溪, 等. 关于渤海湾西岸海相地层与海岸线问题[J]. 海洋与湖沼, 1978, 9(1):15-25 ZHAO Songling, YANG Guangfu, CANG Shuxi, et al. On the marine stratigraphy and coastlines of the western coast of the Gulf of Bohai [J]. Oceanologia et Limnologia Sinica, 1978, 9(1): 15-25.
[13] 汪品先, 闵秋宝, 卞云华, 等. 我国东部第四纪海侵地层的初步研究[J]. 地质学报, 1981, 55(1):1-13 WANG Pinxian, MIN Qiubao, BIAN Yunhua, et al. Strata of Quaternary transgressions in East China: a preliminary study [J]. Acta Geologica Sinica, 1981, 55(1): 1-13.
[14] 王强, 李凤林. 渤海湾西岸第四纪海陆变迁[J]. 海洋地质与第四纪地质, 1983, 3(4):83-89 doi: 10.16562/j.cnki.0256-1492.1983.04.013 WANG Qiang, LI Fenglin. The changes of marine-continental conditions in the West coast of the Bohai Gulf during Quaternary [J]. Marine Geology & Quaternary Geology, 1983, 3(4): 83-89. doi: 10.16562/j.cnki.0256-1492.1983.04.013
[15] 汪品先, 闵秋宝. 我国第四纪海侵研究中的几个基本问题[J]. 海洋地质与第四纪地质, 1985, 5(1):15-25 doi: 10.16562/j.cnki.0256-1492.1985.01.003 WANG Pinxian, MIN Qiubao. Quaternary marine transgressions in China: some basic questions [J]. Marine Geology & Quaternary Geology, 1985, 5(1): 15-25. doi: 10.16562/j.cnki.0256-1492.1985.01.003
[16] 王张华, 丘金波, 冉莉华, 等. 长江三角洲南部地区晚更新世年代地层和海水进退[J]. 海洋地质与第四纪地质, 2004, 24(4):1-8 doi: 10.16562/j.cnki.0256-1492.2004.04.001 WANG Zhanghua, QIU Jinbo, RAN Lihua, et al. Chronostratigraphy and transgression/regression during Late Pleistocene in the southern Changjiang (Yangtze) River delta plain [J]. Marine Geology & Quaternary Geology, 2004, 24(4): 1-8. doi: 10.16562/j.cnki.0256-1492.2004.04.001
[17] Zhao B C, Wang Z H, Chen J, et al. Marine sediment records and relative sea level change during Late Pleistocene in the Changjiang delta area and adjacent continental shelf [J]. Quaternary International, 2008, 186(1): 164-172. doi: 10.1016/j.quaint.2007.08.006
[18] Liu J, Saito Y, Wang H, et al. Stratigraphic development during the Late Pleistocene and Holocene offshore of the Yellow River delta, Bohai Sea [J]. Journal of Asian Earth Sciences, 2009, 36(4-5): 318-331. doi: 10.1016/j.jseaes.2009.06.007
[19] Yao Z Q, Guo Z T, Xiao G Q, et al. Sedimentary history of the western Bohai coastal plain since the late Pliocene: implications on tectonic, climatic and sea-level changes [J]. Journal of Asian Earth Sciences, 2012, 54-55: 192-202. doi: 10.1016/j.jseaes.2012.04.013
[20] Yi L, Lai Z P, Yu H J, et al. Chronologies of sedimentary changes in the South Bohai Sea, China: constraints from luminescence and radiocarbon dating [J]. Boreas, 2013, 42(2): 267-284. doi: 10.1111/j.1502-3885.2012.00271.x
[21] Shi X F, Yao Z Q, Liu Q S, et al. Sedimentary architecture of the Bohai Sea China over the last 1 Ma and implications for sea-level changes [J]. Earth and Planetary Science Letters, 2016, 451: 10-21. doi: 10.1016/j.jpgl.2016.07.002
[22] Wang P X. Cenozoic deformation and the history of sea-land interactions in Asia[M]//Clift P, Kuhnt W, Wang P, et al. Continent-Ocean Interactions within East Asian Marginal Seas. Washington: American Geophysical Union, 2004: 1-22.
[23] 杨守业. 亚洲主要河流的沉积地球化学示踪研究进展[J]. 地球科学进展, 2006, 21(6):648-655 doi: 10.3321/j.issn:1001-8166.2006.06.013 YANG Shouye. Advances in sedimentary geochemistry and tracing applications of Asian rivers [J]. Advances in Earth Science, 2006, 21(6): 648-655. doi: 10.3321/j.issn:1001-8166.2006.06.013
[24] 郑洪波, 汪品先, 刘志飞, 等. 东亚东倾地形格局的形成与季风系统演化历史寻踪: 综合大洋钻探计划683号航次建议书简介[J]. 地球科学进展, 2008, 23(11):1150-1160 doi: 10.3321/j.issn:1001-8166.2008.11.005 ZHENG Hongbo, WANG Pinxian, LIU Zhifei, et al. Carving the history of East Asia’s East-tilting topography and East Asian monsoon-an introduction to IODP proposal 683 [J]. Advances in Earth Science, 2008, 23(11): 1150-1160. doi: 10.3321/j.issn:1001-8166.2008.11.005
[25] Qin Y S, Zhao Y Y, Chen L R, et al. Geology of Bohai Sea[M]. Beijing: China Ocean Press, 1990.
[26] 肖国桥, 郭正堂, 陈宇坤, 等. 渤海湾西岸BZ1钻孔的磁性地层学研究[J]. 第四纪研究, 2008, 28(5):909-916 doi: 10.3321/j.issn:1001-7410.2008.05.014 XIAO Guoqiao, GUO Zhengtang, CHEN Yukun, et al. Magnetostratigraphy of BZ1 borehole in West coast of Bohai Bay, northern China [J]. Quaternary Sciences, 2008, 28(5): 909-916. doi: 10.3321/j.issn:1001-7410.2008.05.014
[27] 姚政权, 郭正堂, 陈宇坤, 等. 渤海湾海陆交互相沉积的磁性地层学[J]. 海洋地质与第四纪地质, 2006, 26(1):9-15 doi: 10.16562/j.cnki.0256-1492.2006.01.002 YAO Zhengquan, GUO Zhengtang, CHEN Yukun, et al. Magnetostratigraphy of marine-terrigenous facies deposits in Bohai Bay [J]. Marine Geology & Quaternary Geology, 2006, 26(1): 9-15. doi: 10.16562/j.cnki.0256-1492.2006.01.002
[28] Xu Q M, Yang J L, Hu Y Z, et al. Magnetostratigraphy of two deep boreholes in southwestern Bohai Bay: tectonic implications and constraints on the ages of volcanic layers [J]. Quaternary Geochronology, 2018, 43: 102-114. doi: 10.1016/j.quageo.2017.08.006
[29] Yi L, Deng C L, Tian L Z, et al. Plio-Pleistocene evolution of Bohai Basin (East Asia): demise of Bohai Paleolake and transition to marine environment [J]. Scientific Reports, 2016, 6: 29403. doi: 10.1038/srep29403
[30] 胥勤勉, 袁桂邦, 秦雅飞, 等. 滦河三角洲南部MT04孔磁性地层研究及其构造与气候耦合关系的探讨[J]. 第四纪研究, 2014, 34(3):540-552 doi: 10.3969/j.issn.1001-7410.2014.03.08 XU Qinmian, YUAN Guibang, QIN Yafei, et al. Magnetostratigraphy and discussion of coupling relationship between tectonic movement and climate change of MT04 borehole in southern Luanhe River delta [J]. Quaternary Sciences, 2014, 34(3): 540-552. doi: 10.3969/j.issn.1001-7410.2014.03.08
[31] 王忠蕾, 郑洪波, 梅西, 等. 辽东湾北部钻孔磁性地层年代框架及地质意义[J]. 第四纪研究, 2020, 40(3):616-632 doi: 10.11928/j.issn.1001-7410.2020.03.03 WANG Zhonglei, ZHENG Hongbo, MEI Xi, et al. Magnetic stratigraphy of boreholes in the north of Liaodong Bay and its significance [J]. Quaternary Sciences, 2020, 40(3): 616-632. doi: 10.11928/j.issn.1001-7410.2020.03.03
[32] 李翔, 李日辉, 陈晓辉, 等. 渤海西部TJC-1孔磁性地层研究[J]. 第四纪研究, 2016, 36(1):208-215 doi: 10.11928/j.issn.1001-7410.2016.20 LI Xiang, LI Rihui, CHEN Xiaohui, et al. Quaternary magnetostratigraphy recorded in the sediments of core TJC-1 in the western Bohai Sea [J]. Quaternary Sciences, 2016, 36(1): 208-215. doi: 10.11928/j.issn.1001-7410.2016.20
[33] Liu J X, Liu Q S, Zhang X H, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea [J]. Quaternary Science Reviews, 2016, 144: 1-15. doi: 10.1016/j.quascirev.2016.05.025
[34] Yao Z Q, Shi X F, Liu Q S, et al. Paleomagnetic and astronomical dating of sediment core BH08 from the Bohai Sea, China: implications for glacial-interglacial sedimentation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 393: 90-101. doi: 10.1016/j.palaeo.2013.11.012
[35] 肖国强, 杨吉龙, 赵长荣, 等. 天津滨海地区G2孔磁性地层年代及其构造指示[J]. 地质通报, 2014, 33(10):1642-1650 doi: 10.3969/j.issn.1671-2552.2014.10.024 XIAO Guoqiang, YANG Jilong, ZHAO Changrong, et al. Magnetostratigraphy of drill hole G2 in the Tianjin coastal area and its tectonic significance [J]. Geological Bulletin of China, 2014, 33(10): 1642-1650. doi: 10.3969/j.issn.1671-2552.2014.10.024
[36] Yang J L, Liang M Y, Algeo T J, et al. Upper Miocene-Quaternary magnetostratigraphy and magnetic susceptibility from the Bohai Bay Basin (eastern China) and implications for regional volcanic and basinal subsidence history [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109469. doi: 10.1016/j.palaeo.2019.109469
[37] Liu J, Wang H, Wang F F, et al. Sedimentary evolution during the last ~ 1.9 Ma near the western margin of the modern Bohai Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451: 84-96. doi: 10.1016/j.palaeo.2016.03.012
[38] 刘健, 段宗奇, 梅西, 等. 南黄海中部隆起晚新近纪—第四纪沉积序列的地层划分与沉积演化[J]. 海洋地质与第四纪地质, 2021, 41(5):25-43 LIU Jian, DUAN Zongqi, MEI Xi, et al. Stratigraphic classification and sedimentary evolution of the Late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2021, 41(5): 25-43.
[39] Mei X, Li R H, Zhang X H, et al. Evolution of the Yellow Sea warm current and the Yellow Sea cold water mass since the Middle Pleistocene [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 442: 48-60. doi: 10.1016/j.palaeo.2015.11.018
[40] 葛淑兰, 石学法, 朱日祥, 等. 南黄海EY02-2孔磁性地层及古环境意义[J]. 科学通报, 2006, 51(7):855-865 GE Shulan, SHI Xuefa, ZHU Rixiang, et al. Magnetostratigraphy of borehole EY02-2 in the southern Yellow Sea and its paleoenvironmental significance [J]. Chinese Science Bulletin, 2006, 51(7): 855-865.
[41] Liu J X, Shi X F, Liu Q S, et al. Magnetostratigraphy of a greigite-bearing core from the south yellow sea: implications for remagnetization and sedimentation [J]. Journal of Geophysical Research:Solid Earth, 2014, 119(10): 7425-7441. doi: 10.1002/2014JB011206
[42] 郑光膺. 南黄海第四纪层型地层对比[M]. 北京: 科学出版社, 1989: 1-262 ZHENG Guangying. Comparison of Sandwich Stratum of Quaternary in the South Yellow Sea[M]. Beijing: Science Press, 1989: 1-262.
[43] Duan Z Q, Liu Q S, Shi X F, et al. Reconstruction of high-resolution magnetostratigraphy of the Changjiang (Yangtze) River Delta, China [J]. Geophysical Journal International, 2016, 204(2): 948-960. doi: 10.1093/gji/ggv497
[44] Yi L, Ye X Y, Chen J B, et al. Magnetostratigraphy and luminescence dating on a sedimentary sequence from northern East China Sea: constraints on evolutionary history of eastern marginal seas of China since the Early Pleistocene [J]. Quaternary International, 2014, 349: 316-326. doi: 10.1016/j.quaint.2014.07.038
[45] Jiang Z X, Jin C S, Wang Z B, et al. Chronostratigraphic framework of the East China Sea since MIS 6 from geomagnetic paleointensity and environmental magnetic records [J]. Global and Planetary Change, 2020, 185: 103092. doi: 10.1016/j.gloplacha.2019.103092
[46] Wang Z H, Xu H, Zhan Q, et al. Lithological and palynological evidence of Late Quaternary depositional environments in the subaqueous Yangtze delta, China [J]. Quaternary Research, 2010, 73(3): 550-562. doi: 10.1016/j.yqres.2009.11.001
[47] Chen Z Y, Chen Z L, Zhang W G. Quaternary stratigraphy and trace-element indices of the Yangtze Delta, eastern China, with special reference to marine transgressions [J]. Quaternary Research, 1997, 47(2): 181-191. doi: 10.1006/qres.1996.1878
[48] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003.
[49] Shi X F, Yao Z Q, Liu J X, et al. Dominant role of sea level on the sedimentary environmental evolution in the Bohai and Yellow Seas over the last 1 million years [J]. Frontiers in Earth Science, 2021, 9: 638221. doi: 10.3389/feart.2021.638221
[50] McKee B A, Nittrouer C A, DeMaster D J. Concepts of sediment deposition and accumulation applied to the continental shelf near the mouth of the Yangtze River [J]. Geology, 1983, 11(11): 631-633. doi: 10.1130/0091-7613(1983)11<631:COSDAA>2.0.CO;2
[51] Shan X, Shi X F, Clift P D, et al. Carbon isotope and rare earth element composition of Late Quaternary sediment gravity flow deposits on the mid shelf of East China Sea: implications for provenance and origin of hybrid event beds [J]. Sedimentology, 2019, 66(5): 1861-1895. doi: 10.1111/sed.12561
[52] 阎玉忠, 王宏, 李凤林, 等. 渤海湾西岸晚更新世沉积的差异性特征[J]. 第四纪研究, 2006, 26(3):181-191 YAN Yuzhong, WANG Hong, LI Fenglin, et al. Different depositional processes of boreholes BQ1 and BQ2 in the Late Pleistocene on the West coast of Bohai Bay [J]. Quaternary Sciences, 2006, 26(3): 181-191.
[53] 王强, 张玉发, 袁桂邦, 等. MIS 3阶段以来河北黄骅北部地区海侵与气候期对比[J]. 第四纪研究, 2008, 28(1):79-95 doi: 10.3321/j.issn:1001-7410.2008.01.009 WANG Qiang, ZHANG Yufa, YUAN Guibang, et al. Since MIS 3 stage the correlation between transgression and climatic changes in the North Huanghua area, Hebei [J]. Quaternary Sciences, 2008, 28(1): 79-95. doi: 10.3321/j.issn:1001-7410.2008.01.009
[54] 刘健, 王红, 李绍全, 等. 南黄海北部泥质沉积区冰后期海侵沉积记录[J]. 海洋地质与第四纪地质, 2004, 24(3):1-10 doi: 10.16562/j.cnki.0256-1492.2004.03.001 LIU Jian, WANG Hong, LI Shaoquan, et al. Postglacial transgressive sedimentary records of muddy sedimentary areas in the North of the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2004, 24(3): 1-10. doi: 10.16562/j.cnki.0256-1492.2004.03.001
[55] Yi L, Yu H J, Ortiz J D, et al. Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the South Bohai Sea, China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 329-330: 101-117. doi: 10.1016/j.palaeo.2012.02.020
[56] 庄振业, 许卫东, 刘东生, 等. 渤海南部S3孔晚第四纪海相地层的划分及环境演变[J]. 海洋地质与第四纪地质, 1999, 19(2):27-35 ZHUANG Zhenye, XU Weidong, LIU Dongsheng, et al. Division and environmental evolution of Late Quaternary marine beds of S3 hole in the Bohai Sea [J]. Marine Geology & Quaternary Geology, 1999, 19(2): 27-35.
[57] 王中波, 张江勇, 梅西, 等. 中国陆架海MIS 5(74 ~ 128 ka)以来地层及其沉积环境[J]. 中国地质, 2020, 47(5):1370-1394 WANG Zhongbo, ZHANG Jiangyong, MEI Xi, et al. The stratigraphy and depositional environments of China’s sea shelves since MIS 5 (74-128) ka [J]. Geology in China, 2020, 47(5): 1370-1394.
[58] Yi L, Yu H J, Ortiz J D, et al. A reconstruction of Late Pleistocene relative sea level in the South Bohai Sea, China, based on sediment grain-size analysis [J]. Sedimentary Geology, 2012, 281: 88-100. doi: 10.1016/j.sedgeo.2012.08.007
[59] Gradstein F M, Ogg J G, Schmitz M D, et al. The Geologic Time Scale[M]. Amsterdam: Elsevier, 2012: 1-1144.
[60] Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last ~ 3.50 Myr in the western South Yellow Sea: paleoenvironmental and tectonic implications[J]. Marine Geology, 2018, 399: 47-65.
[61] 李从先, 范代读, 杨守业, 等. 中国河口三角洲地区晚第四纪下切河谷层序特征和形成[J]. 古地理学报, 2008, 10(1):87-97 doi: 10.7605/gdlxb.2008.01.010 LI Congxian, FAN Daidu, YANG Shouye, et al. Characteristics and Formation of the Late Quaternary incised-valley sequences in estuary and delta areas in China [J]. Journal of Palaeogeography, 2008, 10(1): 87-97. doi: 10.7605/gdlxb.2008.01.010
[62] Fan D D, Shang S, Burr G. Sea level implications from Late Quaternary/Holocene paleosols from the Oujiang Delta, China [J]. Radiocarbon, 2019, 61(1): 83-99. doi: 10.1017/RDC.2018.77
[63] Wellner R W, Bartek L R. The effect of sea level, climate, and shelf physiography on the development of incised-valley complexes: a modern example from the East China Sea [J]. Journal of Sedimentary Research, 2003, 73(6): 926-940. doi: 10.1306/041603730926
[64] 李从先, 陈庆强, 范代读, 等. 末次盛冰期以来长江三角洲地区的沉积相和古地理[J]. 古地理学报, 1999, 1(4):12-25 doi: 10.3969/j.issn.1671-1505.1999.04.002 LI Congxian, CHEN Qingqiang, FAN Daidu, et al. Palaeogeography and Palaeoenvironment in Changjiang delta since last glaciation [J]. Journal of Palaeogeography, 1999, 1(4): 12-25. doi: 10.3969/j.issn.1671-1505.1999.04.002
[65] Lin A M, Yang Z Y, Sun Z M, et al. How and when did the Yellow River develop its square bend? [J]. Geology, 2001, 29(10): 951-954. doi: 10.1130/0091-7613(2001)029<0951:HAWDTY>2.0.CO;2
[66] Richardson N J, Densmore A L, Seward D, et al. Did incision of the Three Gorges begin in the Eocene? [J]. Geology, 2010, 38(6): 551-554. doi: 10.1130/G30527.1
[67] 范代读, 李从先, Yokoyama K, 等. 长江三角洲晚新生代地层独居石年龄谱与长江贯通时间研究[J]. 中国科学D辑 地球科学, 2005, 48(10):1718-1727 doi: 10.1360/01yd0447 FAN Daidu, LI Congxian, Yokoyama K, et al. Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run-through time [J]. Science in China Series D:Earth Sciences, 2005, 48(10): 1718-1727. doi: 10.1360/01yd0447
[68] 贾军涛, 郑洪波, 黄湘通, 等. 长江三角洲晚新生代沉积物碎屑锆石U-Pb年龄及其对长江贯通的指示[J]. 科学通报, 2010, 55(15):1520-1528 doi: 10.1007/s11434-010-3091-x JIA Juntao, ZHENG Hongbo, HUANG Xiangtong, et al. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: implication for the evolution of the Yangtze River [J]. Chinese Science Bulletin, 2010, 55(15): 1520-1528. doi: 10.1007/s11434-010-3091-x
[69] Craddock W H, Kirby E, Harkins N W, et al. Rapid fluvial incision along the Yellow River during Headward Basin integration [J]. Nature Geoscience, 2010, 3(3): 209-213. doi: 10.1038/ngeo777
[70] Jiang F C, Fu J L, Wang S B, et al. Formation of the Yellow River, inferred from loess–palaeosol sequence in Mangshan and lacustrine sediments in Sanmen Gorge, China [J]. Quaternary International, 2007, 175(1): 62-70. doi: 10.1016/j.quaint.2007.03.022
[71] Pan B T, Wang J P, Gao H S, et al. Paleomagnetic dating of the topmost terrace in Kouma, Henan and its indication to the Yellow River’s running through Sanmen Gorges [J]. Chinese Science Bulletin, 2005, 50(7): 657-664. doi: 10.1360/03wd0290
[72] Kong P, Jia J, Zheng Y. Time constraints for the Yellow River traversing the Sanmen Gorge [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(2): 395-407. doi: 10.1002/2013GC004912
[73] Xiao G Q, Pan Q, Zhao Q Y, et al. Early Pleistocene integration of the Yellow River II: evidence from the Plio-Pleistocene sedimentary record of the Fenwei Basin [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577: 110550. doi: 10.1016/j.palaeo.2021.110550
[74] 杨守业, 蔡进功, 李从先, 等. 黄河贯通时间的新探索[J]. 海洋地质与第四纪地质, 2001, 21(2):15-20 doi: 10.16562/j.cnki.0256-1492.2001.02.003 YANG Shouye, CAI Jingong, LI Congxian, et al. New discussion about the run-through time of the Yellow River [J]. Marine Geology and Quaternary Geology, 2001, 21(2): 15-20. doi: 10.16562/j.cnki.0256-1492.2001.02.003
[75] Yao Z Q, Shi X F, Qiao S Q, et al. Persistent effects of the Yellow River on the Chinese marginal seas began at least ~880 ka ago [J]. Scientific Reports, 2017, 7(1): 2827. doi: 10.1038/s41598-017-03140-x
[76] Coe A L. The Sedimentary Record of Sea-Level Change[M]. Cambridge: Cambridge University Press, 2003: 1-288.
[77] Limarino C, Tripaldi A, Marenssi S, et al. Tectonic, sea-level, and climatic controls on Late Paleozoic sedimentation in the western basins of Argentina [J]. Journal of South American Earth Sciences, 2006, 22(3-4): 205-226. doi: 10.1016/j.jsames.2006.09.009
[78] Komatsubara J. Fluvial architecture and sequence stratigraphy of the Eocene to Oligocene Iwaki Formation, northeast Japan: channel-fills related to the sea-level change [J]. Sedimentary Geology, 2004, 168(1-2): 109-123. doi: 10.1016/j.sedgeo.2004.03.005
[79] Chappell J, Shackleton N J. Oxygen isotopes and sea level [J]. Nature, 1986, 324(6093): 137-140. doi: 10.1038/324137a0
[80] 韦桃源, 陈中原, 魏子新, 等. 长江河口区第四纪沉积物中的地球化学元素分布特征及其古环境意义[J]. 第四纪研究, 2006, 26(3):397-405 doi: 10.3321/j.issn:1001-7410.2006.03.011 WEI Taoyuan, CHEN Zhongyuan, WEI Zixin, et al. The distribution of geochemical trace elements in the Quaternary sediments of the Changjiang River mouth and the paleoenvironmental implications [J]. Quaternary Sciences, 2006, 26(3): 397-405. doi: 10.3321/j.issn:1001-7410.2006.03.011
[81] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989: 1-289 QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of Yellow Sea[M]. Beijing: China Ocean Press, 1989: 1-289.
[82] Chen Z Y, Stanley D J. Quaternary subsidence and river channel migration in the Yangtze delta plain, eastern China [J]. Journal of Coastal Research, 1995, 11(3): 927-945.
[83] Allen M B, Macdonald D I M, Xun Z, et al. Early Cenozoic two-phase extension and Late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China [J]. Marine and Petroleum Geology, 1997, 14(7-8): 951-972. doi: 10.1016/S0264-8172(97)00027-5
[84] Yokoyama T, Koizumi I. Marine transgressions on the Pleistocene pecangan Formation in the Sangiran area, central Java, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 72: 177-193. doi: 10.1016/0031-0182(89)90141-7
[85] Kitaba I, Harada M, Hyodo M, et al. MIS 21 and the Mid-Pleistocene climate transition: climate and sea- level variation from a sediment core in Osaka Bay, Japan [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1-2): 227-239. doi: 10.1016/j.palaeo.2010.11.004
[86] Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change [J]. Science, 2005, 310(5752): 1293-1298. doi: 10.1126/science.1116412
[87] McCarthy F M G, Katz M E, Kotthoff U, et al. Sea-level control of New Jersey margin architecture: palynological evidence from Integrated Ocean Drilling Program Expedition 313 [J]. Geosphere, 2013, 9(6): 1457-1487. doi: 10.1130/GES00853.1
[88] Naish T, Kamp P J J, Alloway B V, et al. Integrated tephrochronology and magnetostratigraphy for cyclothemic marine strata, Wanganui Basin: implications for the Pliocene-Pleistocene boundary in New Zealand [J]. Quaternary International, 1996, 34-36: 29-48. doi: 10.1016/1040-6182(95)00067-4
[89] Katz M E, Browning J V, Miller K G, et al. Paleobathymetry and sequence stratigraphic interpretations from benthic foraminifera: insights on New Jersey shelf architecture, IODP Expedition 313 [J]. Geosphere, 2013, 9(6): 1488-1513. doi: 10.1130/GES00872.1
[90] Miller K G, Sugarman P J, Browning J V, et al. Pleistocene sequence stratigraphy of the shallow continental shelf, offshore New Jersey: constraints of Integrated Ocean Drilling Program Leg 313 core holes [J]. Geosphere, 2013, 9(1): 74-95. doi: 10.1130/GES00795.1
[91] Reynolds D J, Steckler M S, Coakley B J. The role of the sediment load in sequence stratigraphy: the influence of flexural isostasy and compaction [J]. Journal of Geophysical Research:Solid Earth, 1991, 96(B4): 6931-6949. doi: 10.1029/90JB01914
[92] Yao Z Q, Shi X F, Liu Y G, et al. Sea-level and climate signatures recorded in orbitally-forced continental margin deposits over the last 1 Myr: New perspectives from the Bohai Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109736. doi: 10.1016/j.palaeo.2020.109736
[93] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations [J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591
[94] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
[95] Zhao D B, Wan S M, Clift P D, et al. Provenance, sea-level and monsoon climate controls on silicate weathering of Yellow River sediment in the northern Okinawa Trough during Late Last Glaciation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490: 227-239. doi: 10.1016/j.palaeo.2017.11.002
[96] 石学法. 大洋钻探与中国边缘海沉积地质学[J]. 海洋科学, 1996, 25(3):47-50 SHI Xuefa. Ocean drilling and sedimentary geology of China marginal seas [J]. Marine Sciences, 1996, 25(3): 47-50.
[97] 郑洪波. IODP中的海陆对比和海陆相互作用[J]. 地球科学进展, 2003, 18(5):722-729 doi: 10.3321/j.issn:1001-8166.2003.05.012 ZHENG Hongbo. Land-ocean comparison and interactions in IODP [J]. Advance in Earth Sciences, 2003, 18(5): 722-729. doi: 10.3321/j.issn:1001-8166.2003.05.012
[98] 赵美训, 丁杨, 于蒙. 中国边缘海沉积有机质来源及其碳汇意义[J]. 中国海洋大学学报, 2017, 47(9):70-76 ZHAO Meixun, DING Yang, YU Meng. Sources of sedimentary organic matter in China marginal Sea surface sediments and implications of carbon sink [J]. Periodical of Ocean University of China, 2017, 47(9): 70-76.
-
期刊类型引用(2)
1. 柯旭栋,李磊,颉宇凡,薛国庆,王文杰,杨怡飞. 琼东南盆地L区块体搬运沉积三维地震构型表征及其成因. 海洋石油. 2025(01): 13-20 . 百度学术
2. 王旖旎,张百涛,王允洪,金可洁. 琼东南陵水凹陷北坡构造特征及构造演化分析. 海洋石油. 2024(03): 31-38 . 百度学术
其他类型引用(1)