Detrital zircon U-Pb age and provenance discrimination in sediments of the central mud area in the South Yellow Sea
-
摘要: 对南黄海中部泥质区南侧4个表层沉积物和SYS90-1A孔中5个沉积物样品进行碎屑锆石U-Pb定年,具体分析了研究区表层沉积物物源差异及约1.0 Ma以来沉积物物源变化。结果显示,泥质区沉积物主要来自黄河,而泥质区外部南侧沉积物可能主要由长江供应。SYS90-1A孔主要记录了早更新世晚期以来的沉积记录,不同时期物源差异明显:中更新世早期以长江源物质为主,利用磁化率开展旋回地层学分析,根据天文年代调谐确定该时期具体时代为0.59~0.71 Ma;早更新世晚期至中更新世以及中更新世中期以来以黄河源物质为主。这一结果与前人关于南黄海早更新世以来沉积物以黄河源物质为主的认识不同,长江源物质对南黄海泥质区沉积物贡献需要重新认识。上述表层沉积物样品和钻孔沉积物样品碎屑锆石U-Pb年龄分布与朝鲜半岛河流沉积物完全不同,说明该区域自早更新世晚期以来沉积物主要来自中国大陆。
-
关键词:
- 中部泥质区 /
- 碎屑锆石U-Pb年龄 /
- 物源判别 /
- 南黄海
Abstract: Detrital zircons taken from four surface sediments and five sediment samples from SYS90-1A borehole in the southern part of the central mud area of the South Yellow Sea was U-Pb dated and their provenances were discriminated, based on which the changes since about 1.0 Ma in the provenance of the sediment samples were analyzed. Results show that the sediments in the mud area are mainly from the Yellow River, and the sediments in the south of the mud area may be transported by the Yangtze River. The borehole SYS90-1A mainly records the deposits since the late Early Pleistocene, showing obvious provenance differences in different stages. In the early Middle Pleistocene, the sediments were mainly transported from the Yangtze River; and cyclic stratigraphy that was determined based on magnetic susceptibility and astronomical chronology tuning showed that the specific time of the stage is 590~710 ka. From the late early Pleistocene to the middle Pleistocene and since the middle Pleistocene, the sediments were mainly from the Yellow River. This result is different from the previous understanding that the sediments in the South Yellow Sea since the Early Pleistocene were mainly derived from the Yellow River, and the contribution of the sediments from the Yangtze River to the mud area needs to be re-recognized. The detrital zircon U-Pb age distribution of all samples is completely different from that of the fluvial sediments of the Korean Peninsula, indicating that the sediments in this area are mainly from mainland China since the late Early Pleistocene. -
天然气水合物是一种笼状结构的类冰状结晶化合物,主要是由甲烷和水分子结合而成,因其在冻土地区和海洋大陆边缘广泛分布、与海底稳定性相关,以及可能对全球气候具有潜在影响而广受关注[1-2]。新西兰Hikurangi大陆边缘每两年左右发生一次慢滑移事件[3],有关证据显示,多期次水合物形成分解可能是造成该区产生蠕变的重要原因之一[4]。
2017年11月—2018年1月执行了“蠕变中的天然气水合物滑动和Hikurangi随钻测井”为主旨的IODP372航次。该航次的主要目的之一是调查天然气水合物和海底滑坡的关系,因此,在新西兰Hikurangi边缘Tuaheni滑坡复合体(Tuaheni Landslide Complex,TLC)的U1517站位进行了随钻测井工作(图1)。该站位钻井的主要任务是通过在滑坡体和天然气水合物稳定区进行测井和采样,研究水合物与蠕变的关系。
20世纪末,研究人员在新西兰Hikurangi边缘发现地震高振幅异常和似海底反射(BSR)标志[4-7]。该区域反射地震[8-11]、电磁[12-14]、甲烷渗漏、海水甲烷浓度、与渗漏相关的沉积坍塌和冷泉等证据均指示有天然气水合物存在[15-19]。通过反射地震发现,Hikurangi大陆边缘的Tuaheni滑坡复合体显示了活动蠕变变形的特征,且蠕变中的近陆边缘与海底天然气水合物稳定带底部的尖灭相一致[4],因此,科学家认为水合物分解—形成过程可能与新西兰Hikurangi边缘的多期次慢滑移密切相关[4, 20-21]。TLC地区水合物分布和含量估算是研究蠕变与水合物关系的必要环节。Mountjoy提出3种机制解释浅层天然气水合物是如何导致慢滑移,主要认为是由于水合物的分解导致沉积物液化失稳、水合物分解对地层孔隙压力的影响和水合物含量对地层提供的不同支撑模式的影响[4]。不同饱和度的水合物对沉积物的支撑模式不同[22],因此,准确估算慢滑移区域水合物的饱和度可以进一步分析天然气水合物导致TLC慢滑移的原因,IODP372航次测井和取心为水合物饱和度估算提供了可靠资料。
由于声速和电阻率对水合物储层最为敏感,常用声学、电学模型来估算天然气水合物饱和度[23-24]。基于电阻率的模型有阿尔奇方程[25]和连通性方程[26];基于声速的模型有权重方程(Weighted equation,WE)[27]、等效介质理论(Effective Media Theory,EMT)模型[28]、改进的Biot-Gassmann理论(Biot-Gassmann Theory by Lee,BGTL)模型[29-30]和简化三相介质方程(Simplified Three-Phase Equation,STPE)[31]等,其中,常用于测井应用的模型主要是STPE和等效介质理论[32]两种。由于STPE模型参数较易获取,所以多次被实际应用于估算天然气水合物饱和度,均得到理想的预测效果[33-34];Hu等采用超声探测技术和时域反射技术实时探测了沉积物的纵横波速度和水合物饱和度的变化情况,检验了多种理论模型,发现BGTL理论预测的纵、横波速度更接近实测值[35],但BGTL模型中与岩石固结程度相关参数难以通过实际地层数据计算,从而导致较少被应用于测井数据估算水合物饱和度。本文主要通过STPE与BGTL模型对U1517站位水合物饱和度进行研究,在BGTL模型使用新的参数选取方法,使参数获取更为简易,计算过程中,根据岩性划分不同层段对应的矿物成分含量,用于纵波速度模型计算,以精确模型判断水合物储层深度分布和天然气水合物饱和度计算。
1. 测井数据分析
IODP372航次U1517站位测井位于38°S、178°E(图1),井深约205 mbsf。该航次通过随钻测井采集了井径、声波速度、伽马密度、孔隙度、自然伽马和电阻率等数据,其中纵波数据在160~168 mbsf层段内未获取。通过对LDEO(Lamont Doherty Earth Observatory)数据库提供的U1517站位原始测井数据进行解释分析,并拟合背景趋势线,结果如图2所示,实测纵波声速与背景拟合声速相比,速度增加出现在94~160 mbsf层段,氯离子浓度异常出现在104~160 mbsf层段;在94~104 mbsf层段纵波速度和孔隙度等明显增加,而电阻率与密度减小,氯离子浓度并无异常,该层段的异常与21~28 mbsf层段相似,可能为井孔和局部岩性变化造成(图中黄色区域)。天然气水合物稳定区大概位于104~160 mbsf,并且在130~145 mbsf层段(图中绿色区域),纵波速度、电阻率和井径明显增加,密度减小。该航次从U1517站位获得多个柱状样品,使用红外热像仪进行扫描,温度异常表明天然气水合物的存在,并发现在岩心的上层沉积物或其岩心采集器中有甲烷释放[37]。图3所示为地层因子与纵波速度交会图,由于含天然气水合物的沉积物具有较高的纵波速度和地层因子,所以含天然气水合物的沉积地层的交会图显示高于饱和水沉积地层[34],在130~145 mbsf层段显示较高的地层因子和纵波速度。
2. 储层水合物饱和度估算
依据国际大洋发现计划出版物(International Ocean Discovery Program Publications)[36]获取矿物类型及含量数据,基于该数据,根据岩性划分不同层段对应的矿物成分含量,结果如图4所示,用于纵波速度模型计算,以精确天然气水合物饱和度计算值。岩石骨架的不同矿物类型的物性参数如表1所示。
2.1 简化三相介质模型(STPE)
含天然气水合物储层具有相对较高的纵横波速度。本次研究中使用STPE模拟U1517站位井的纵波速度,其中用于纵波速度(Vp)建模的STPE[31, 33]使用等式(1)对水合物储层的纵波速度建模:
$${V_{\rm{p}}} = \sqrt {\frac{{k + {\rm{4}}\mu /{\rm{3}}}}{\rho }} , \; {V_{\rm{s}}} = \sqrt {\frac{\mu }{\rho }} $$ (1) 式中ρ是含天然气水合物沉积模型的体积密度,k是体积模量,μ是剪切模量。建模参数ε是解释在加强主体沉积物骨架方面天然气水合物形成相对于压实的影响减小,Lee和Waite推荐使用ε=0.12为建模数值[30]。在Vp和Vs建模中使用的参数α使用等式(2)计算:
$${\alpha _{\rm{i}}} = {\alpha _0}{({p_0}/{p_i})^{\rm{n}}} \approx {\alpha _0}{({d_0}/{d_{\rm{i}}})^{\rm{n}}}$$ (2) 式中α0是有效压力p0和深度d0的固结参数,αi是有效压力pi和深度di的固结参数,固结参数可以使用饱和水沉积物的速度来估算[40]。固结参数取决于固结程度和该区域的有效压力,Mindlin认为体积模和剪切模量为有效压力的1/3幂[41],因此不同位置,根据研究区域的主要岩性,α的值随深度而变化[40]。通过建模速度基线和实测纵波速度之间的最佳拟合选定α的值[40],本次研究用于U1517站位井的固结参数αi=42(60/di)1/3。使用上述参数,获得了井下剖面背景纵波速度和天然气水合物饱和度,饱和水沉积地层VP符合程度较高(图5,图6),黑色实线为航次实测纵波速度,红色实线为本文利用STPE模型计算结果,如图5所示,104~160 mbsf层段内测井实测VP大于理论基线速度,可能属于天然气水合物储层区,利用航次实测数据和模型结果计算出水合物饱和度(图6)。结果显示,在104~160 mbsf的深度区间内平均饱和度约为5.2%,最高饱和度达到22.7%,其中130~145 mbsf层段内水合物饱和度较高,平均饱和度为7.9%。
2.2 改进的Biot-Gassmann模型(BGTL)
BGTL理论建立在经典的BGT理论(Biot-Gassmann Theory)上,在预测速度时不仅考虑了分压的影响,而且还考虑了岩石的孔隙度、固结度等因素的影响[35]。在BGTL模型计算中,将天然气水合物作为基质中的一种矿物成分。本研究用于VP建模的BGTL模型使用等式(1)进行。
公式(1)中沉积介质的剪切模量μ可由下式计算:
$$ \mu=\frac{\mu_{\rm{ma}}{ G}^2\left(1-\varPhi\right)^{2{ n}}{ k}}{{{k_{\rm{ma}}}}+4\mu_{\rm{ma}}\left[1-{ G}^2\left(1-\varPhi\right)^{2{ n}}\right]/3} $$ (3) 式中,kma为岩石骨架的体积模量;μma为岩石骨架的剪切模量;Φ为孔隙度;常数G主要用来校正由基质中的黏土引起的差异。Han等通过实验室数据表明G = 1对清洁砂岩有利[42],随着黏土体积增加,G将按下式(4)计算减少:
$${{G}} = 0.955\;2 + 0.044\;8{{\rm{e}}^{ - {C_{\rm{v}}}{\rm{/}}0.067\;14}}$$ (4) 式中,泥质含量Cv可使用来自U1517A井的伽马射线测井数据通过公式(5)[34]估算:
$${C_{\rm{v}}} = 0.083({2^{{\rm{GCUR}} \times {{\rm{I}}_{{\rm{GR}}}}}} - 1)$$ (5) 式中,GCUR是与地层有关的经验系数,新地层(古新近系地层)GCUR=3.7[43],IGR为通过伽马测井数据计算的伽马射线指数,可由公式(6)计算:
$${{\rm{I}}_{{\rm{GR}}}} = \frac{{{\rm{G}}{{\rm{R}}_{{\rm{log}}}} - {\rm{G}}{{\rm{R}}_{{\rm{min}}}}}}{{{\rm{G}}{{\rm{R}}_{{\rm{max}}}} - {\rm{G}}{{\rm{R}}_{{\rm{min}}}}}}$$ (6) 式中,GRlog为测井伽马值,GRmin为砂岩层伽马值,GRmax为泥岩层伽马值。
公式(3)中参数n取决于分压大小及岩石的固结程度,可由公式(7)得到:
$${{n}} = [{\rm{1}}{{\rm{0}}^{({\rm{0}}.{\rm{426}} - {\rm{0}}.{\rm{235Log10}}p)}}]{{/m}}$$ (7) 测量数据表明m≈5适合于固结沉积物,m≈1.5适用于疏松沉积物[29];如图7所示利用BGTL预测饱和水沉积地层段(0~90 mbsf)速度和实测纵波速度对比,其中使用P=8.0 MPa和CV=58%,改变m值预测速度,在高孔隙度低纵波速度时m=2.5预测速度拟合程度高,而在低孔隙度高声速时,m值应小于2.5,大于1。在可能含天然气水合物地层(104~160 mbsf)的中子孔隙度主要为45%~65%,因此,本次研究建模使用m=2.5。
使用上述参数,获得了井下剖面背景纵波速度和天然气水合物饱和度(图8,图9),如图所示,黑色实线为航次实测纵波速度,红色实线为本文使用BGTL模型计算结果,绿色区域为利用航次实测与模型速度计算的水合物饱和度,104~160 mbsf层段内测井实测VP大于理论饱和水背景VP,可能属于水合物储层区,因此导出水合物饱和度。结果显示,在104~160 mbsf的深度区间内平均饱和度约为6.0%,最高饱和度达到21.6%,其中130~145 mbsf层段内平均水合物饱和度为8.5%。
3. 讨论
图10为U1517站位井在104~160 mbsf层段的测井曲线,通过测井数据和背景基线看出存在3层纵波速度和电阻率明显异常的含水合物层段,同时,井径、密度和伽马测井数据均有不同程度的异常。在112~114 mbsf层段,环电阻率和声波速度明显增加,最高峰值分别为9.25 Ω·m和1.79 km/s,可能为含天然气水合物的薄层;在130~145 mbsf层段,环电阻率和声波速度最高峰值分别为2.88 Ω·m和1.90 km/s,属于较厚层的含水合物区域;在150~160 mbsf层段,密度与自然伽马降低较为明显,环电阻率和声波速度最高峰值分别为1.97 Ω·m和1.83 km/s。
图 10 U1517站位井井径、纵波速度、电阻率、密度和伽马测井曲线Vp为实测声波速度,Vpw为背景速度值;Rt-Ring为环电阻率;Rt-P40L为低频随钻相移电阻;R0为背景电阻率值。Figure 10. The well logs from site U1517A showing the caliper, P-wave velocity, resistivity, density and gamma rayVp is measured velocity, Vpw is calculated velocity baseline, Rt-Ring is ring resistivity, Rt-P40L is 400 kHz phasor resistivity, R0 is calculated resistivity baseline.如图11所示,由纵波速度数据通过STPE和BGTL模型估算了U1517站位井104~160 mbsf层段的天然气水合物饱和度,并与IODP372航次科学家利用阿尔奇公式和氯离子浓度两种方法计算结果相比较。STPE、BGTL和航次科学家利用阿尔奇公式3种模型在104~160 mbsf层段计算的平均饱和度分别为5.2%、6.0%和6.5%,130~145 mbsf层段的平均饱和度分别为7.9%、8.5%和9.6%;130~145 mbsf层段符合航次科学家使用氯离子浓度含量估算的高饱和度层段。112~114 mbsf和130~145 mbsf层段,阿尔奇公式估算的最高饱和度分别为56%和49%,大于BGTL和STPE计算结果,但是电阻率识别高饱和度薄层水合物约为2~5 cm,而声波测井分辨率约为15 cm,该薄层饱和度异常可能由于声波测井无法探测到而引起的,同时井径也发生变化,可能影响随钻测井速度与电阻率。氯离子异常在局部地层出现异常高值,从岩心分析看,异常高值与薄砂层相对应。因此,在104~160 mbsf层段3种方法估算的饱和度随深度变化相似,表明不同测井数据之间差异不大,且天然气水合物平均饱和度最高的层段为130~145 mbsf。使用STPE和BGTL模型计算的饱和水地层(0~90 mbsf)的纵波速度与实测纵波速度比较见图12所示,对于U1517井BGTL模型比STPE模型更适用于该站位水合物饱和度估算。
4. 结论
(1)通过U1517站位随钻测井和岩心数据综合分析,证实了该站位黏土质粉砂岩性不同层位存在天然气水合物,水合物呈层状分布。天然气水合物储层区域在104~160 mbsf层段,其中存在3层纵波速度和电阻率明显异常的含水合物层段(112~114、130~145和150~160 mbsf),112~114 mbsf层段可能为薄的天然气水合物层,而130~145 mbsf层段相较于其他层段水合物饱和度相对较高。其中112~114 mbsf层段天然气水合物饱和度最高,130~145 mbsf层段为主要天然气水合物赋存区域。
(2)依据LWD和取心数据,在计算过程中,根据岩性划分不同井段对应的矿物成分含量,用于纵波速度模型计算,并使用饱和水地层孔隙度与纵波速度拟合得到BGTL模型参数的方法,使BGTL模型更便于应用到测井资料估算水合物饱和度,通过STPE和BGTL模型计算出了U1517站位的水合物饱和度,并比较分析两种模型在饱和水地层的预测与实测纵波速度表明BGTL拟合度高于STPE;计算结果与航次科学家估算的饱和度相比,平均饱和度相近,3种方法计算的水合物饱和度值随深度变化相似,表明计算结果的合理性。
致谢:本研究所用样品和数据由IODP372航次提供,中国IODP办公室提供了胡高伟参加航次的旅费资助,在此一并致谢!
-
图 1 南黄海及研究钻孔位置示意图
CSDP-1孔见文献[16],CSDP-2孔见文献[9],NHH01孔见文献[15],海流根据文献[24]绘制,泥质区范围根据文献[25]绘制。SYB80、SYB86、SYB198和SYB256为本文研究表层样站位。
Figure 1. South Yellow Sea and the borehole location
Data sources: Borehole CSDP-1 from [16], borehole CSDP-2 from [9], borehole NHH01 from [15], marine circulation from [24], mud area from [25]. SYB80, SYB86, SYB198, and SYB256 are from this study.
图 6 研究样品及周边河流沉积物碎屑锆石U-Pb年龄谱
黄河样品数据来自文献[41],长江样品数据来自文献[42],锦江、汉江和蟾津江样品数据来自文献[33]。图中绿色圆点为主要对比峰值区。
Figure 6. U-Pb age spectra of detrital zircon of the study samples and the surrounding river sediments
Data sources: Yellow River sample data from [41], Yangze River sample data from [42], Han River, Geum River, and Seomjin River samples data from [33]. The green dots are peak areas for comparison.
图 7 物源分析图
a. 研究样品与周边河流样品MDS图,b. 基于K-S检验南黄海南部表层样品物源分析[33],c. 样品位置图。
Figure 7. Provenance analysis
a:MDS plot of study samples and surrounding river samples; b:Possible provenance discrimination of southeastern Yellow Sea sandy sediments using the Kolmogorov-Smirnoff (K-S) test[33]; c:Sample location.
表 1 沉积物样品位置及岩性信息
Table 1 Samples location and lithology information
序号 样品编号 位置 埋深/m 岩性 备注 1 SYB80 33°27′15″N、 123°17′46″E 0.20 粉砂 表层样 2 SYB86 33°05′40″N、124°24′17″E 0.20 粉砂 表层样 3 SYB198 33°05′40″N、124°44′02″E 0.20 粉砂 表层样 4 SYB256 33°05′40″N、124°03′48″E 0.20 粉砂 表层样 5 SYS90-1A-B709 33°48′49″N、 123°43′58″E 34.88 粉砂 钻孔样 6 SYS90-1A-C717 33°48′49″N、 123°43′58″E 56.20 细砂 钻孔样 7 SYS90-1A-D235 33°48′49″N、 123°43′58″E 68.88 粉砂 钻孔样 8 SYS90-1A-D275 33°48′49″N、123°43′58″E 69.68 粉砂 钻孔样 9 SYS90-1A-D945 33°48′49″N、123°43′58″E 85.66 粉砂 钻孔样 表 2 第一组样品不同年龄区间锆石比例
Table 2 The proportion of zircons in different ages of the first group of samples
% 样品编号 <100 Ma 100~300 Ma 300~500 Ma 600~1100 Ma 1300~1500 Ma 1800~2000 Ma 2300~2700 Ma SYS90-1A-C717 1 27 13 27 4 16 12 SYS90-1A-D235 4 26 11 35 2 6 17 SYB86 0 44 11 18 4 18 5 SYB198 3 54 13 21 2 5 2 SYB256 3 33 13 18 3 19 11 表 3 第二组样品不同年龄区间锆石比例
Table 3 The proportion of zircons in different ages of the second group of samples
% 样品编号 <200 Ma 200~300 Ma 350~500 Ma 600~1100 Ma 1300~1500 Ma 1800~2000 Ma 2000~2600 Ma SYS90-1A-B709 4 21 11 23 6 23 13 SYS90-1A-D275 3 13 12 41 3 16 13 SYS90-1A-D945 2 22 13 26 2 22 15 SYB80 2 21 9 35 4 15 15 -
[1] 石学法, 乔淑卿, 杨守业, 等. 亚洲大陆边缘沉积学研究进展(2011-2020)[J]. 矿物岩石地球化学通报, 2021, 40(2):319-336 SHI Xuefa, QIAO Shuqing, YANG Shouye, et al. Progress in sedimentology research of the Asian continental margin (2011-2020) [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 319-336.
[2] 杨守业. 亚洲主要河流的沉积地球化学示踪研究进展[J]. 地球科学进展, 2006, 21(6):648-655 doi: 10.3321/j.issn:1001-8166.2006.06.013 YANG Shouye. Advances in sedimentary geochemistry and tracing applications of Asian rivers [J]. Advances in Earth Science, 2006, 21(6): 648-655. doi: 10.3321/j.issn:1001-8166.2006.06.013
[3] 汪品先, 翦知湣. 探索南海深部的回顾与展望[J]. 中国科学:地球科学, 2019, 62(10):1473-1488 doi: 10.1007/s11430-019-9484-4 WANG Pinxian, JIAN Zhimin. Exploring the deep South China Sea: retrospects and prospects [J]. Science China Earth Sciences, 2019, 62(10): 1473-1488. doi: 10.1007/s11430-019-9484-4
[4] Shackleton N J, Hall M A, Pate D. Pliocene stable isotope stratigraphy of site 846 [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 138: 337-355.
[5] Mix A C, Le J, Shackleton N J. Benthic foraminiferal stable isotope stratigraphy of Site 846: 0-1.8 Ma [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 138: 839-856.
[6] 张勇, 姚永坚, 李学杰, 等. 中生代以来东亚洋陆汇聚带多圈层动力下的中国海及邻区构造演化及资源环境效应[J]. 中国地质, 2020, 47(5):1271-1309 ZHANG Yong, YAO Yongjian, LI Xuejie, et al. Tectonic evolution and resource-environmental effect of China Seas and adjacent areas under the multisphere geodynamic system of the East Asia ocean-continent convergent belt since Mesozoic [J]. Geology in China, 2020, 47(5): 1271-1309.
[7] Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea [J]. Earth-Science Reviews, 2003, 63(l-2): 93-120.
[8] 刘健, 李绍全, 王圣洁, 等. 末次冰消期以来黄海海平面变化与黄海暖流的形成[J]. 海洋地质与第四纪地质, 1999, 19(1):13-24 doi: 10.16562/j.cnki.0256-1492.1999.01.003 LIU Jian, LI Shaoquan, WANG Shengjie, et al. Sea level changes of the Yellow Sea and formation of the Yellow Sea Warm Current since the last deglaciation [J]. Marine Geology & Quaternary Geology, 1999, 19(1): 13-24. doi: 10.16562/j.cnki.0256-1492.1999.01.003
[9] 刘健, 段宗奇, 梅西, 等. 南黄海中部隆起晚新近纪-第四纪沉积序列的地层划分与沉积演化[J]. 海洋地质与第四纪地质, 2021, 41(5):25-43 LIU Jian, DUAN Zongqi, MEI Xi, et al. Stratigraphic classification and sedimentary evolution of the late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2021, 41(5): 25-43.
[10] 卢健, 李安春. 南黄海表层沉积物粒度特征季节变化及其影响因素[J]. 海洋科学, 2015, 39(3):48-58 doi: 10.11759/hykx20140527001 LU Jian, LI Anchun. Seasonal variations and influencing factors of the grain size characteristics of surface sediments in the South Yellow Sea [J]. Marine Sciences, 2015, 39(3): 48-58. doi: 10.11759/hykx20140527001
[11] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989: 1-289 QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the Yellow Sea[M]. Beijing: Oceanic Publish House, 1989: 1-289.
[12] 魏建伟, 石学法, 辛春英, 等. 南黄海黏土矿物分布特征及其指示意义[J]. 科学通报, 2003, 48(1):7-11 WEI Jianwei, SHI Xuefa, XIN Chunying, et al. Clay mineral distributions in the southern Yellow Sea and their significance [J]. Chinese Science Bulletin, 2003, 48(1): 7-11.
[13] Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011.
[14] Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea [J]. Marine Geology, 2017, 390: 270-281. doi: 10.1016/j.margeo.2017.06.004
[15] Yao Z Q, Shi X F, Qiao S Q, et al. Persistent effects of the Yellow River on the Chinese marginal seas began at least ~ 880 ka ago [J]. Scientific Reports, 2017, 7(1): 2827. doi: 10.1038/s41598-017-03140-x
[16] 何梦颖, 梅西, 张训华, 等. 南黄海陆架区CSDP-1孔沉积物碎屑锆石U-Pb年龄物源判别[J]. 吉林大学学报:地球科学版, 2019, 49(1):85-95 HE Mengying, MEI Xi, ZHANG Xunhua, et al. Provenance discrimination of detrital zircon U-Pb dating in the core CSDP-l in the continental shelf of South Yellow Sea [J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1): 85-95.
[17] Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau [J]. Quaternary Science Reviews, 2013, 78: 355-368. doi: 10.1016/j.quascirev.2012.11.032
[18] Vermeesch P, Garzanti E. Making geological sense of 'Big Data' in sedimentary provenance analysis [J]. Chemical Geology, 2015, 409: 20-27. doi: 10.1016/j.chemgeo.2015.05.004
[19] Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary record [J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 277-303. doi: 10.2113/0530277
[20] Gehrels G E, Valencia V A, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03017. doi: 10.1029/2007GC001805
[21] Shaulis B, Lapen T J, Toms A. Signal linearity of an extended range pulse counting detector: applications to accurate and precise U-Pb dating of zircon by laser ablation quadrupole ICP-MS [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(11): Q0AA11. doi: 10.1029/2010GC003198
[22] 许东禹, 刘锡清, 张训华, 等. 中国近海地质[M]. 北京: 地质出版社, 1997: 1-80 XU Dongyu, LIU Xiqing, ZHANG Xunhua, et al. China Offshore Geology[M]. Beijing: Geological Publishing House, 1997: 1-80.
[23] 刘忠臣, 刘保华, 黄振宗, 等. 中国近海及邻近海域地形地貌[M]. 北京: 海洋出版社, 2005: 1-96 LIU Zhongchen, LIU Baohua, HUANG Zhenzong, et al. Topography and Geomorphology of China's Offshore and Adjacent Areas[M]. Beijing: Oceanic Publish House, 2005: 1-96.
[24] 苏纪兰. 中国近海的环流动力机制研究[J]. 海洋学报, 2001, 23(3):1-16 SU Jilan. A review of circulation dynamics of the coastal oceans near China [J]. Acta Oceanologica Sinica, 2001, 23(3): 1-16.
[25] 梅西, 李学杰, 密蓓蓓, 等. 中国海域表层沉积物分布规律及沉积分异模式[J]. 中国地质, 2020, 47(5):1447-1462 MEI Xi, LI Xuejie, MI Beibei, et al. Distribution regularity and sedimentary differentiation patterns of China seas surface sediments [J]. Geology in China, 2020, 47(5): 1447-1462.
[26] 梅西, 张训华, 刘健, 等. 南黄海3.50Ma以来海陆环境演变的元素地球化学记录[J]. 吉林大学学报:地球科学版, 2019, 49(1):74-84 MEI Xi, ZHANG Xunhua, LIU Jian, et al. Elemental geochemical record of land and sea environmental evolution since 3.50 Ma in South Yellow Sea [J]. Journal of Jilin University:Earth Science Edition, 2019, 49(1): 74-84.
[27] 任纪舜. 新一代中国大地构造图: 中国及邻区大地构造图(1: 5000000)附简要说明: 从全球看中国大地构造[J]. 地球学报, 2003, 24(1):1-2 doi: 10.3321/j.issn:1006-3021.2003.01.001 REN Jishun. The new generation geotectonic map of China-geotectonic map of China and adjacent areas (1: 5000000) a brief description: Chinese geotectonics in a global view [J]. Acta Geoscientia Sinica, 2003, 24(1): 1-2. doi: 10.3321/j.issn:1006-3021.2003.01.001
[28] Shao L, Li C A, Yuan S Y, et al. Neodymium isotopic variations of the late Cenozoic sediments in the Jianghan Basin: implications for sediment source and evolution of the Yangtze River [J]. Journal of Asian Earth Sciences, 2012, 45: 57-64. doi: 10.1016/j.jseaes.2011.09.018
[29] 何梦颖, 郑洪波, 贾军涛. 长江现代沉积物碎屑锆石U-Pb年龄及Hf同位素组成与物源示踪研究[J]. 第四纪研究, 2013, 33(4):656-670 doi: 10.3969/j.issn.1001-7410.2013.04.04 HE Mengying, ZHENG Hongbo, JIA Juntao. Detrital zircon U-Pb dating and Hf isotope of modern sediments in the Yangtze River: implications for the sediment provenance [J]. Quaternary Sciences, 2013, 33(4): 656-670. doi: 10.3969/j.issn.1001-7410.2013.04.04
[30] 许志琴, 侯立玮, 王宗秀, 等. 中国松潘-甘孜造山带的造山过程[M]. 北京: 地质出版社, 1992 XU Zhiqin, HOU Liwei, WANG Zongxiu, et al. Orogenic Processes of the Songpan Ganze Orogenic Belt of China[M]. Beijing: Geological Publishing House, 1992.
[31] 岳保静, 廖晶. 黄河流域现代沉积物碎屑锆石U-Pb年龄物源探讨[J]. 海洋地质与第四纪地质, 2016, 36(5):109-119 doi: 10.16562/j.cnki.0256-1492.2016.05.011 YUE Baojing, LIAO Jing. Provenance study of Yellow River sediments by U-Pb dating of the detrital zircons [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 109-119. doi: 10.16562/j.cnki.0256-1492.2016.05.011
[32] 林旭, 刘静, 吴中海, 等. 环渤海湾盆地主要河流碎屑锆石U-Pb年龄特征及其物源示踪意义[J]. 海洋地质与第四纪地质, 2021, 41(2):136-145 doi: 10.16562/j.cnki.0256-1492.2020062201 LIN Xu, LIU Jing, WU Zhonghai, et al. U-Pb age characteristics of major fluvial detrital zircons in the Bohai Bay Basin and their provenance implications [J]. Marine Geology & Quaternary Geology, 2021, 41(2): 136-145. doi: 10.16562/j.cnki.0256-1492.2020062201
[33] Choi T, Lee Y I, Orihashi Y, et al. The provenance of the southeastern Yellow Sea sediments constrained by detrital zircon U-Pb age [J]. Marine Geology, 2013, 337: 182-194. doi: 10.1016/j.margeo.2013.01.007
[34] Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years [J]. Nature, 2005, 437(7055): 125-128. doi: 10.1038/nature03975
[35] Paton C, Woodhead J D, Hellstrom J C, et al. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q0AA06.
[36] Thompson J M, Meffre S, Danyushevsky L. Impact of air, laser pulse width and fluence on U-Pb dating of zircons by LA-ICPMS [J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 221-230. doi: 10.1039/C7JA00357A
[37] Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages for the Early Cambrian time-scale [J]. Journal of the Geological Society, 1992, 149(2): 171-184. doi: 10.1144/gsjgs.149.2.0171
[38] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(15):1554-1569 doi: 10.3321/j.issn:0023-074X.2004.16.002 WU Yuanbao, ZHENG Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age [J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569. doi: 10.3321/j.issn:0023-074X.2004.16.002
[39] Vermeesch P. IsoplotR: a free and open toolbox for geochronology [J]. Geoscience Frontiers, 2018, 9(5): 1479-1493. doi: 10.1016/j.gsf.2018.04.001
[40] 贾军涛, 郑洪波, 杨守业. 长江流域岩体的时空分布与碎屑锆石物源示踪[J]. 同济大学学报:自然科学版, 2010, 38(9):1375-1380 JIA Juntao, ZHENG Hongbo, YANG Shouye. Rock types in Yangtze drainage and their implications for zircon U-Pb provenance study of Yangtze sediments [J]. Journal of Tongji University:Natural Science, 2010, 38(9): 1375-1380.
[41] Yang J, Gao S, Chen C, et al. Episodic crustal growth of North China as revealed by U–Pb age and Hf isotopes of detrital zircons from modern rivers [J]. Geochimica et Cosmochimica Acta, 2009, 73(9): 2660-2673. doi: 10.1016/j.gca.2009.02.007
[42] Liang Z W, Gao S, Hawkesworth C J, et al. Step-like growth of the continental crust in South China: evidence from detrital zircons in Yangtze River sediments [J]. Lithos, 2018, 320-321: 155-171. doi: 10.1016/j.lithos.2018.09.011
[43] 向芳, 杨栋, 田馨, 等. 湖北宜昌地区第四纪沉积物中锆石的U-Pb年龄特征及其物源意义[J]. 矿物岩石, 2011, 31(2):106-114 doi: 10.3969/j.issn.1001-6872.2011.02.015 XIANG Fang, YANG Dong, TIAN Xin, et al. LA-ICP-MS U-Pb geochronology of zircons in the Quaternary sediments from the Yichang area of Hubei Province and its provenance significance [J]. Journal of Mineralogy and Petrology, 2011, 31(2): 106-114. doi: 10.3969/j.issn.1001-6872.2011.02.015
[44] Li Z X, Li X H, Zhou H W, et al. Grenvillian continental collision in south China: new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia [J]. Geology, 2002, 30(2): 163-166. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2
[45] Zhang C L, Li M, Wang T, et al. U-Pb zircon geochronology and geochemistry of granitoids in the Douling Group in the eastern Qinling [J]. Acta Geologica Sinica, 2004, 78(1): 83-95.
[46] Vermeesch P. Multi-sample comparison of detrital age distributions [J]. Chemical Geology, 2013, 341: 140-146. doi: 10.1016/j.chemgeo.2013.01.010
[47] Yi L, Chen S L, Ortiz J D, et al. 1500-year cycle dominated Holocene dynamics of the Yellow River delta, China [J]. The Holocene, 2016, 26(2): 222-234. doi: 10.1177/0959683615596834
[48] Kong G S, Park S C, Han H C, et al. Late Quaternary paleoenvironmental changes in the southeastern Yellow Sea, Korea [J]. Quaternary International, 2006, 144(1): 38-52. doi: 10.1016/j.quaint.2005.05.011
[49] Zhou X, Sun L G, Huang W, et al. Relationship between magnetic susceptibility and grain size of sediments in the China Seas and its implications [J]. Continental Shelf Research, 2014, 72: 131-137. doi: 10.1016/j.csr.2013.07.011
[50] Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea [J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009
[51] Hu B Q, Yang Z S, Zhao M X, et al. Grain size records reveal variability of the East Asian Winter Monsoon since the Middle Holocene in the Central Yellow Sea mud area, China [J]. Science China Earth Sciences, 2012, 55(10): 1656-1668. doi: 10.1007/s11430-012-4447-7
[52] Zhou X, Sun L G, Huang W, et al. Precipitation in the Yellow River drainage basin and East Asian monsoon strength on a decadal time scale [J]. Quaternary Research, 2012, 78(3): 486-491. doi: 10.1016/j.yqres.2012.07.008
[53] Zhou X, Jia N, Cheng W H, et al. Relocation of the Yellow River estuary in 1855 AD recorded in the sediment core from the northern Yellow Sea [J]. Journal of Ocean University of China, 2013, 12(4): 624-628. doi: 10.1007/s11802-013-2199-4
[54] Naimie C E, Blain C A, Lynch D R. Seasonal mean circulation in the Yellow Sea: a model-generated climatology [J]. Continental Shelf Research, 2001, 21(6-7): 667-695. doi: 10.1016/S0278-4343(00)00102-3
[55] 王飞飞, 刘健, 仇建东, 等. 南黄海中西部全新世中期以来泥质沉积厚度与成因[J]. 海洋地质与第四纪地质, 2014, 34(5):1-11 WANG Feifei, LIU Jian, QIU Jiandong, et al. Thickness variation and provenance of Mid-Holocene mud sediments in the central and western South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2014, 34(5): 1-11.
[56] 李铁刚, 李绍全, 苍树溪, 等. YSDP102钻孔有孔虫动物群与南黄海东南部古水文重建[J]. 海洋与湖沼, 2000, 31(6):588-595 doi: 10.3321/j.issn:0029-814X.2000.06.002 LI Tiegang, LI Shaoquan, CANG Shuxi, et al. Paleo-hydrological reconstruction of the southern Yellow Sea inferred from foraminiferal fauna in core YSDP102 [J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 588-595. doi: 10.3321/j.issn:0029-814X.2000.06.002
[57] 王利波, 杨作升, 赵晓辉, 等. 南黄海中部泥质区YE-2孔8.4 ka BP来的沉积特征[J]. 海洋地质与第四纪地质, 2009, 29(5):1-11 WANG Libo, YANG Zuosheng, ZHAO Xiaohui, et al. Sedimentary characteristics of core YE-2 from the central mud area in the South Yellow Sea during last 8400 years and its interspace coarse layers [J]. Marine Geology & Quaternary Geology, 2009, 29(5): 1-11.
[58] 刘庚, 韩喜彬, 陈燕萍, 等. 南黄海沉积物磁性特征及其对物源变化的指示: 以南黄海中部泥质区YSC-10孔为例[J]. 沉积学报, 2021, 39(2):383-394 LIU Geng, HAN Xibin, CHEN Yanping, et al. Magnetic characteristics of core YSC - 10 sediments in the central Yellow Sea mud area and implications for provenance changes [J]. Acta Sedimentologica Sinica, 2021, 39(2): 383-394.
[59] 胡刚, 张勇, 孔祥淮, 等. 全新世中国大河三角洲沉积演化模式转化及其对人类活动的响应[J]. 海洋地质与第四纪地质, 2021, 41(5):77-89 doi: 10.16562/j.cnki.0256-1492.2020122201 HU Gang, ZHANG Yong, KONG Xianghuai, et al. Changes of evolution models of China's large river deltas since Holocene and their responses to anthropogenic activities [J]. Marine Geology & Quaternary Geology, 2021, 41(5): 77-89. doi: 10.16562/j.cnki.0256-1492.2020122201
[60] 孙效功, 方明, 黄伟. 黄、东海陆架区悬浮体输运的时空变化规律[J]. 海洋与湖沼, 2000, 31(6):581-587 doi: 10.3321/j.issn:0029-814X.2000.06.001 SUN Xiaogong, FANG Ming, HUANG Wei. Spatial and temporal variations in suspended particulate matter transport on the Yellow and East China Sea shelf [J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 581-587. doi: 10.3321/j.issn:0029-814X.2000.06.001
[61] 刘德政, 夏非. 江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义[J]. 海洋地质与第四纪地质, 2021, 41(5):210-220 doi: 10.16562/j.cnki.0256-1492.2021051901 LIU Dezheng, XIA Fei. Characteristics of grain size and magnetic susceptibility of the Late Quaternary sediments from core 07SR01 in the middle Jiangsu coast and their paleoenvironmental significances [J]. Marine Geology & Quaternary Geology, 2021, 41(5): 210-220. doi: 10.16562/j.cnki.0256-1492.2021051901
[62] Zhang J, Wan S M, Clift P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: tectonic or climate forcing? [J]. Quaternary Science Reviews, 2019, 216: 74-88. doi: 10.1016/j.quascirev.2019.06.002
[63] 杨子赓. Olduvai亚时以来南黄海沉积层序及古地理变迁[J]. 地质学报, 1993, 67(4):357-366 YANG Zigeng. The sedimentary sequence and palaeogeographic changes of the South Yellow Sea since the Olduvai subchron [J]. Acta Geologica Sinica, 1993, 67(4): 357-366.
[64] Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea [J]. Marine Geology, 2010, 278(1-4): 54-76. doi: 10.1016/j.margeo.2010.09.003
[65] Liu J X, Liu Q S, Zhang X H, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow sea [J]. Quaternary Science Reviews, 2016, 144: 1-15. doi: 10.1016/j.quascirev.2016.05.025
[66] Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last~3.50 Myr in the western South Yellow Sea: paleoenvironmental and tectonic implications [J]. Marine Geology, 2018, 399: 47-65. doi: 10.1016/j.margeo.2017.11.005
-
期刊类型引用(11)
1. 张海山. 西湖凹陷上部杂色泥岩井壁失稳研究和钻井液优化. 钻井液与完井液. 2024(02): 205-214 . 百度学术
2. 李宁,唐贤君,钟荣全,陈春峰,陈永军,何新建. 东海陆架盆地中部隆起带北西向大断层识别及成因机制. 中国海上油气. 2024(05): 22-33 . 百度学术
3. 张伯成,刘江,焦社宝,王军,陈春峰,唐贤君. 西湖凹陷天台构造走滑-转换体系特征及控藏作用. 中国海上油气. 2024(05): 44-56 . 百度学术
4. 唐贤君,李宁,黄晓松,何新建,陈永军,徐振中,钟荣全. 东海盆地西湖凹陷中下始新统宝石组再认识. 地层学杂志. 2024(04): 404-418 . 百度学术
5. 王辉,秦兰芝,李帅,徐东浩,肖晓光. 东海盆地西湖凹陷天台斜坡带平湖组层序格架下沉积差异充填及有利勘探方向. 地层学杂志. 2024(04): 419-429 . 百度学术
6. 祁鹏,郭刚,崔敏,王欣,李峰,李林致. 西湖凹陷天台斜坡新生代构造差异特征及其形成机制. 现代地质. 2023(02): 307-315 . 百度学术
7. 余浪,余一欣,蒋一鸣,邹玮,陈石,唐贤君,梁鑫鑫,何新建,陈冬霞. 东海陆架盆地西湖凹陷天台斜坡构造变换带发育特征及形成机理. 石油与天然气地质. 2023(03): 753-763 . 百度学术
8. 朱茂林,刘震,张枝焕,刘畅,杨鹏程,李佳阳,崔凤珍. 西湖凹陷平北地区平湖组下段烃源岩分布地震预测. 海洋地质与第四纪地质. 2022(01): 170-183 . 本站查看
9. 吴峰,任培罡,谈明轩,张福榕,马皓然. 东海西湖凹陷孔雀亭地区平湖组沉积相演变及其主控因素分析. 海洋地质与第四纪地质. 2022(02): 119-130 . 本站查看
10. 王磊,李春峰,李珂迪,姚泽伟,陶天生. 东海陆架盆地中生代残留地层特征及其构造启示. 海洋学研究. 2022(04): 11-24 . 百度学术
11. 李珂迪,李春峰,姚泽伟,陶天生. 东海中段钓鱼岛隆起的内部结构与演化. 海洋学研究. 2020(04): 1-15 . 百度学术
其他类型引用(3)