珠江口盆地阳江东凹高含CO2油气藏的类型、成因及成藏过程

马宁, 熊万林, 龙祖烈, 朱俊章, 温华华, 杨兴业, 汪晓萌

马宁,熊万林,龙祖烈,等. 珠江口盆地阳江东凹高含CO2油气藏的类型、成因及成藏过程[J]. 海洋地质与第四纪地质,2023,43(1): 118-127. DOI: 10.16562/j.cnki.0256-1492.2022062201
引用本文: 马宁,熊万林,龙祖烈,等. 珠江口盆地阳江东凹高含CO2油气藏的类型、成因及成藏过程[J]. 海洋地质与第四纪地质,2023,43(1): 118-127. DOI: 10.16562/j.cnki.0256-1492.2022062201
MA Ning,XIONG Wanlin,LONG Zulie,et al. Types, genesis, and formation of CO2-rich reservoirs in the Yangjiangdong Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology,2023,43(1):118-127. DOI: 10.16562/j.cnki.0256-1492.2022062201
Citation: MA Ning,XIONG Wanlin,LONG Zulie,et al. Types, genesis, and formation of CO2-rich reservoirs in the Yangjiangdong Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology,2023,43(1):118-127. DOI: 10.16562/j.cnki.0256-1492.2022062201

珠江口盆地阳江东凹高含CO2油气藏的类型、成因及成藏过程

基金项目: “南海大中型天然气田形成条件、勘探潜力与突破方向”之课题3“南海东部大中型天然气田勘探潜力与突破方向”
详细信息
    作者简介:

    马宁(1988—),女,工程师,主要从事油气地球化学研究,E-mail:mndd2007@163.com

  • 中图分类号: P744

Types, genesis, and formation of CO2-rich reservoirs in the Yangjiangdong Sag, Pearl River Mouth Basin

  • 摘要: 通过对阳江东凹高含CO2油气藏的流体组分组成、P-T相图、原油生物标志化合物、天然气组分及同位素、流体包裹体进行研究,分析了高含CO2油气藏的类型、成因及成藏过程。结果表明,阳江东凹高含CO2的油气藏分为3类:第一类为含CO2溶解气的常规油藏,第二类为含CO2溶解气的挥发性油藏,第三类为含溶解烃的CO2气藏。油气藏中原油主要为浅湖-半深湖相及半深湖-深湖相烃源岩成熟阶段的产物,烃类气均为原油伴生气,CO2属于幔源型无机成因气。EP20-A井原油的充注时期为12~10.7 Ma,CO2充注时期为5.6~1.7 Ma。EP20-C井存在两期原油充注及两期CO2充注,第一期原油充注时期为14~6 Ma,为主要充注期,第二期原油充注时期为4~0 Ma,第一期CO2的充注时期为11~10 Ma,第二期CO2的充注时期为5~1.5 Ma。根据CO2充注强度的相对大小,分别形成了EP20-C井含溶解烃的CO2气藏,EP20-A井含CO2溶解气的挥发性油藏,EP20-B井含CO2溶解气的常规油藏。
    Abstract: By studying the composition of the fluid wells, P-T phase diagram, crude oil biomarkers, natural gas components, isotopes and fluid inclusions of high CO2 oil and gas reservoirs in the Yangjiangdong Sag, the types, genesis, and formation of CO2-rich reservoirs were analyzed. Results show that the CO2-rich reservoirs could be divided into three types: i.e., conventional reservoir with CO2 -dissolved gas, volatile reservoir with high CO2 dissolved gas, and CO2 gas reservoirs containing dissolved hydrocarbons. The crude oil in the reservoir is mainly originated from shallow–semi-deep lake facies and semi-deep–deep lake facies in the mature stage. The hydrocarbon gas is crude oil associated, and CO2 belongs to mantle-derived inorganic gas. The charging period in EP20-A well is 12~10.7 Ma, and that of CO2 is 5.6~1.7 Ma. Two stages of crude oil charging and two stages of CO2 charging in EP20-C well were recognized. The first stage of crude oil charging is 14~6 Ma, which is the main charging period; and the second stage is 4~0 Ma. The first stage of CO2 charging period is 11~10 Ma, and the second is 5 ~1.5 Ma. The relative magnitude of CO2 charging intensity show that the CO2 gas reservoir containing dissolved hydrocarbon was formed in well EP20-C, volatile reservoir containing CO2 dissolved gas was formed in well EP20-A, and conventional reservoir containing CO2 dissolved gas was formed in well EP20-B.
  • 图  1   珠江口盆地阳江凹陷构造单元划分[13]

    Figure  1.   Tectonic division and stratigraphic age representation in Yangjiang Sag, Pearl River Mouth Basin [13]

    图  2   EP20-A井流体P-T相图

    Figure  2.   Diagram of fluid P-T phase in well EP20-A

    图  3   油气藏流体类型图

    Figure  3.   Diagram of fluid type of oil and gas reservoir

    图  4   原油及烃源岩生物标志化合物指纹特征对比

    Figure  4.   Fingerprint characteristics of biomarkers in crude oil and source rocks

    图  5   天然气组分判别成因类型

    Figure  5.   Discrimination of genetic types by natural gas components

    图  6   碳同位素判识天然气成因类型

    Ⅰ:煤成气区,Ⅱ:油型气区,Ⅲ:碳同位素倒转混合气区,Ⅳ:煤成气和油型气区,Ⅴ:煤成气、油型气和混合气区,Ⅵ:生物气和亚生物气区。

    Figure  6.   Discrimination of genetic types of natural gas by carbon isotope

    Ⅰ: coal-derived gas; Ⅱ:oil-associated gas; Ⅲ: mixed gas with reversed carbon isotope sequence; Ⅳ: coal-derived gas and(or) oil-associated gas; Ⅴ: coal-derived gas, oil-associated gas and mixed gas, Ⅵ: biogenic and sub-biogenic gas.

    图  7   CO2成因类型判识

    Ⅰ:有机成因二氧化碳区,Ⅱ:无机成因二氧化碳区,Ⅲ:有机成因与无机成因二氧化碳共存区,Ⅳ:有机、无机成因二氧化碳混合气区。

    Figure  7.   Discrimination of CO2 genetic types

    Ⅰ: Organic CO2, Ⅱ: inorganic CO2, Ⅲ: organic CO2 or inorganic CO2, Ⅳ: organic and inorganic mixed CO2.

    图  8   EP20-A井、EP20-C井及EP20-B井流体包裹体显微观察照片

    UV 表示荧光,TR 表示偏光,5×10 表示显微镜物镜放大倍数;a-b:EP20-A井2494 m石英颗粒内成岩裂纹中检测到大量发黄绿色荧光油包裹体;c-d:EP20-A井2693.5 m石英颗粒粒间孔隙中检测到大量黄褐色沥青;e:EP20-A井2693.5 m石英颗粒内成岩裂纹中检测到CO2包裹体;f:EP20-C井3294.5.5 m石英颗粒内成岩裂纹中检测到CO2包裹体;g-j: EP20-C井3271.5 m石英颗粒内成岩裂纹中检测到大量发蓝色-蓝绿色荧光含沥青油包裹体;k-n:EP20-B井2162 m石英颗粒内裂纹中检测到发黄色、蓝绿色荧光油包裹体。

    Figure  8.   Micrograph of fluid inclusion in wells EP20-A, EP20-C, and EP20-B

    图  9   油气充注期次及时间

    Figure  9.   Period and age of oil and gas accumulation

    表  1   油气藏流体高压物性分析数据

    Table  1   Data sheet of high pressure physical property analysis of oil and gas reservoir fluid

    井号深度/m层段气油比
    /(m3/m3)
    体积系数地层
    温度
    /℃
    地层
    压力
    /MPa
    地层原油
    密度
    /(g/cm3)
    死油密度
    (20℃时)
    /(g/cm3)
    井流物组成/mol%闪蒸气组成/mol%
    C1+N2C2-C6+CO2C7+C1CO2
    EP20-A2693.5珠江组下段ZJ550372.22.2845119.426.20.59930.789821.7656.0622.1825.151.8
    EP20-B2160珠江组上段ZJ320181.07195.3320.320.870.91329.2713.477.3335.5237.28
    EP20-C3271.5文三段WC3414472.10.0034142.437.090.809813.2184.042.7512.780
    下载: 导出CSV

    表  2   天然气组分及同位素数据

    Table  2   Composition and isotopes of natural gas

    井号深度 /m层位样品类型组分含量/%干燥系数
    /%
    δ13C1
    /‰
    δ13C2
    /‰
    δ13CCO2
    /‰
    40Ar/
    36Ar
    3He/
    4He
    CO2生成年龄
    /Ma
    C1C2C3CO2
    EP20-A2693.5珠江组下段ZJ550PVT闪蒸气25.136.835.4751.7957
    EP20-B2160珠江组上段ZJ320PVT转出气38.284.471.5434.5583−41.41−27.83−6.04
    EP20-C3271.5文昌组WC341PVT转出气13.232.271.6280.2067−46.93−32.50−5.574933.40E-068.90
    下载: 导出CSV

    表  3   盐水包裹体均一温度数据

    Table  3   The homogenized temperature of aqueous inclusions

    井名深度/m盐水包裹体均一温度/℃共生类型时间/Ma
    EP20-A249486.3~89.812~10.7
    2693.5106.2~113.1CO25.6~1.7
    EP20-C3265~3280102~116.7, 122.7~124.412~6, 1.5~0
    3271.5102.4~117.5, 120~126.612~6, 4~0
    3280.996.7~109.6, 113.6~117.714~10, 8~6
    3294.5106.9~108.3, 118.5~122.2CO211~10, 5~1.5
    EP20-B216288.3~96.63~0
    下载: 导出CSV
  • [1] 何家雄, 祝有海, 黄霞, 等. 南海北部边缘盆地不同类型非生物成因CO2成因成藏机制及控制因素[J]. 天然气地球科学, 2011, 22(6):935-942

    HE Jiaxiong, ZHU Youhai, HUANG Xia, et al. Accumulated mechanisms for different genetic types of non-biological CO2 and controlling factors in north marginal basins, South China Sea [J]. Natural Gas Geoscience, 2011, 22(6): 935-942.

    [2] 何家雄, 祝有海, 崔莎莎, 等. 南海北部边缘盆地CO2成因及运聚规律与资源化利用思路[J]. 天然气地球科学, 2009, 20(4):488-496

    HE Jiaxiong, ZHU Youhai, CUI Shasha, et al. Origin, migration and accumulation of CO2 and its resource utilization in marginal basin, northern South China Sea [J]. Natural Gas Geoscience, 2009, 20(4): 488-496.

    [3] 何家雄, 马文宏, 陈胜红, 等. 南海北部边缘盆地非烃气分布及形成的地质条件与控制因素[J]. 海洋地质与第四纪地质, 2011, 31(2):95-104

    HE Jiaxiong, MA Wenhong, CHEN Shenghong, et al. Non-hydrocarbon gas distribution and its geological conditions and controlling factors in the marginal basin of northern South China Sea [J]. Marine Geology & Quaternary Geology, 2011, 31(2): 95-104.

    [4] 向凤典. 珠江口盆地(东部)的CO2气藏及其对油气聚集的影响[J]. 中国海上油气:地质, 1994(3):13-20

    XIANG Fengdian. Carbon dioxide reservoir and its significance to hydrocarbon accumulation in eastern Pearl River Mouth Basin [J]. China Offshore Oil and Gas:Geology, 1994(3): 13-20.

    [5] 张向涛, 彭光荣, 朱定伟, 等. 珠江口盆地恩平凹陷CO2成藏特征与成藏过程[J]. 大地构造与成矿学, 2021, 45(1):211-218

    ZHANG Xiangtao, PENG Guangrong, ZHU Dingwei, et al. Characteristics and processes of CO2 accumulation in the Enping Sag, Pearl River Mouth Basin [J]. Geotectonica et Metallogenia, 2021, 45(1): 211-218.

    [6] 熊万林, 朱俊章, 杨兴业, 等. 恩平凹陷北部隆起构造带油气成因来源及成藏过程研究[J]. 中国海上油气, 2020, 32(1):54-65

    XIONG Wanlin, ZHU Junzhang, YANG Xingye, et al. Study on the genetic sources and accumulation processes of oil and gas in the north uplift structural belt of Enping Sag [J]. China Offshore Oil and Gas, 2020, 32(1): 54-65.

    [7] 何家雄, 夏斌, 刘宝明, 等. 中国东部及近海陆架盆地CO2成因及运聚规律与控制因素研究[J]. 石油勘探与开发, 2005, 32(4):42-49 doi: 10.3321/j.issn:1000-0747.2005.04.007

    HE Jiaxiong, XIA Bin, LIU Baoming, et al. Origin, migration and accumulation of CO2 in East China and offshore shelf basins [J]. Petroleum Exploration and Development, 2005, 32(4): 42-49. doi: 10.3321/j.issn:1000-0747.2005.04.007

    [8] 王振峰, 何家雄, 裴秋波. 莺-琼盆地和珠江口盆地西部CO2成因及运聚分布特征[J]. 中国海上油气(地质), 2003(5):293-297

    WANG Zhenfeng, HE Jiaxiong, PEI Qiubo. The origin and migration-accumulation features of CO2 in Ying-Qiong basin and the western Pearl River Mouth Basin [J]. China Offshore Oil and Gas (Geology), 2003(5): 293-297.

    [9] 王振峰, 何家雄, 张树林, 等. 南海北部边缘盆地CO2成因及充注驱油的石油地质意义[J]. 石油学报, 2004, 25(5):48-53 doi: 10.3321/j.issn:0253-2697.2004.05.010

    WANG Zhenfeng, HE Jiaxiong, ZHANG Shulin, et al. Genesis of carbon dioxide and geological significance for carbon dioxide infilling and oil displacement in the northern marginal basin of South China Sea [J]. Acta Petrolei Sinica, 2004, 25(5): 48-53. doi: 10.3321/j.issn:0253-2697.2004.05.010

    [10] 陈红汉, 米立军, 刘妍鷨, 等. 珠江口盆地深水区CO2成因、分布规律与风险带预测[J]. 石油学报, 2017, 38(2):119-134 doi: 10.7623/syxb201702001

    CHEN Honghan, MI Lijun, LIU Yanhua, et al. Genesis, distribution and risk belt prediction of CO2 in deep-water area in the Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2017, 38(2): 119-134. doi: 10.7623/syxb201702001

    [11] 雷川, 罗静兰, 马永坤, 等. 珠江口盆地白云凹陷及其周缘CO2分布与控制因素分析与启示[J]. 矿物岩石, 2017, 37(3):97-106

    LEI Chuan, LUO Jinglan, MA Yongkun, et al. Distribution of carbon dioxide in Baiyun Sag and its periphery, Pearl River Mouth Basin [J]. Journal of Mineralogy and Petrology, 2017, 37(3): 97-106.

    [12] 刘妍鷨, 陈红汉, 王艳飞, 等. 珠江口盆地白云-荔湾深水区幔源CO2充注的黏土矿物成岩响应[J]. 地质科技通报, 2021, 40(3):85-95

    LIU Yanhua, CHEN Honghan, WANG Yanfei, et al. Diagenetic effect of mantle-derived CO2 charge to clay minerals in the Baiyun-Liwan deepwater area of the Pearl River Mouth Basin in South China Sea [J]. Bulletin of Geological Science and Technology, 2021, 40(3): 85-95.

    [13] 彭光荣, 张向涛, 许新明, 等. 南海北部珠江口盆地阳江凹陷油气勘探重要发现与认识[J]. 中国石油勘探, 2019, 24(3):267-279 doi: 10.3969/j.issn.1672-7703.2019.03.001

    PENG Guangrong, ZHANG Xiangtao, XU Xinming, et al. Important discoveries and understandings of oil and gas exploration in Yangjiang Sag of the Pearl River Mouth Basin, northern South China Sea [J]. China Petroleum Exploration, 2019, 24(3): 267-279. doi: 10.3969/j.issn.1672-7703.2019.03.001

    [14] 田立新, 张向涛, 彭光荣, 等. 珠江口盆地阳江凹陷石油地质特征及成藏主控因素[J]. 中国海上油气, 2020, 32(1):13-22

    TIAN Lixin, ZHANG Xiangtao, PENG Guangrong, et al. Petroleum geological characteristics and main controlling factors of the Yangjiang Sag in Pearl River Mouth Basin [J]. China Offshore Oil and Gas, 2020, 32(1): 13-22.

    [15] 熊万林, 龙祖烈, 朱俊章, 等. 阳江凹陷恩平21洼不同沉积环境烃源岩发育特征及成藏贡献[J]. 油气地质与采收率, 2021, 28(5):50-56 doi: 10.13673/j.cnki.cn37-1359/te.2021.05.005

    XIONG Wanlin, LONG Zulie, ZHU Junzhang, et al. Development characteristics and accumulation contribution of source rocks in different sedimentary environments in Enping 21 Subsag of Yangjiang Sag [J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5): 50-56. doi: 10.13673/j.cnki.cn37-1359/te.2021.05.005

    [16] 赵健, 赵俊峰, 任康绪, 等. 巴西桑托斯盆地高含CO2油气藏类型、特征及成因模式[J]. 吉林大学学报:地球科学版, 2021, 51(6):1654-1664

    ZHAO Jian, ZHAO Junfeng, REN Kangxu, et al. Main types, characteristics and genetic model of oil & gas reservoirs with high CO2 content in Santos Basin, Brazil [J]. Journal of Jilin University:Earth Science Edition, 2021, 51(6): 1654-1664.

    [17] 国家能源部. SY/T 5542-2009 油气藏流体物性分析方法[S]. 北京: 石油工业出版社, 2010.

    National Energy Administration. SY/T 5542-2009 Test method for reservoir fluid physical properties[S]. Beijing: Petroleum Industry Press, 2010.

    [18] 戴金星, 宋岩, 洪峰, 等. 中国东部无机成因的二氧化碳气藏及其特征[J]. 中国海上油气(地质), 1994, 8(4):215-222

    DAI Jinxiong, SONG Yan, HONG Feng, et al. Inorganic genetic carbon dioxide gas accumulations and their characteristics in east part of China [J]. China Offshore Oil and Gas (Geology), 1994, 8(4): 215-222.

    [19] 李友川, 陶维祥, 孙玉梅, 等. 珠江口盆地惠州凹陷及其邻区原油分类和分布特征[J]. 石油学报, 2009, 30(6):830-834,842 doi: 10.3321/j.issn:0253-2697.2009.06.006

    LI Youchuan, TAO Weixiang, SUN Yumei, et al. Classification and distribution of oil in Huizhou Depression of Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2009, 30(6): 830-834,842. doi: 10.3321/j.issn:0253-2697.2009.06.006

    [20] 卢晓林, 石宁, 李美俊, 等. 珠江口盆地白云凹陷原油双杜松烷分布特征及地球化学意义[J]. 石油实验地质, 2019, 41(4):560-568 doi: 10.11781/sysydz201904560

    LU Xiaolin, SHI Ning, LI Meijun, et al. Distribution patterns and geochemical implication of bicadinanes in crude oils from Baiyun Sag, Pearl River Mouth Basin [J]. Petroleum Geology & Experiment, 2019, 41(4): 560-568. doi: 10.11781/sysydz201904560

    [21] 张向涛, 朱俊章, 熊万林, 等. 番禺4洼文昌组烃源岩生物标志化合物特征与油源判识[J]. 中国海上油气, 2020, 32(4):12-23

    ZHANG Xiangtao, ZHU Junzhang, XIONG Wanlin, et al. Biomarker characteristics and oil-source discrimination of source rocks in Wenchang Formation of Panyu 4 Sag [J]. China Offshore Oil and Gas, 2020, 32(4): 12-23.

    [22]

    Peters K E, Moldowan J M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments[M]. Englewood: Prentice Hall, 1993.

    [23] 戴金星. 各类天然气的成因鉴别[J]. 中国海上油气(地质), 1992, 6(1):11-19

    DAI Jinxing. Identification of various genetic natural gases [J]. China Offshore Oil and Gas (Geology), 1992, 6(1): 11-19.

图(9)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 修回日期:  2022-07-10
  • 录用日期:  2022-07-10
  • 网络出版日期:  2023-02-20
  • 刊出日期:  2023-02-27

目录

    /

    返回文章
    返回