九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素

黄威, 胡邦琦, 宋维宇, 赵京涛, 路晶芳, 孟祥君, 江云水, 崔汝勇, 丁雪

黄威,胡邦琦,宋维宇,等. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素[J]. 海洋地质与第四纪地质,2022,42(5): 137-148. DOI: 10.16562/j.cnki.0256-1492.2022052401
引用本文: 黄威,胡邦琦,宋维宇,等. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素[J]. 海洋地质与第四纪地质,2022,42(5): 137-148. DOI: 10.16562/j.cnki.0256-1492.2022052401
HUANG Wei,HU Bangqi,SONG Weiyu,et al. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge[J]. Marine Geology & Quaternary Geology,2022,42(5):137-148. DOI: 10.16562/j.cnki.0256-1492.2022052401
Citation: HUANG Wei,HU Bangqi,SONG Weiyu,et al. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge[J]. Marine Geology & Quaternary Geology,2022,42(5):137-148. DOI: 10.16562/j.cnki.0256-1492.2022052401

九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素

基金项目: 青岛海洋科学与技术试点国家实验室山东省专项经费(2021QNLM020003-2);国家自然科学基金面上项目“菲律宾海盆底层水体性质对中更新世气候转型的响应机制”(41976192);中国地质调查局地质调查二级项目(DD20221720,DD20191010)
详细信息
    作者简介:

    黄威(1981—),男,高级工程师,研究方向为海底成矿作用与物质循环,E-mail:huangw@mail. cgs.gov.cn

  • 中图分类号: P736.4

Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge

  • 摘要: 铁锰结壳富集Co、Cu、Mn、Ni、Ti、V、REE、Y和Zn等关键金属,研究其富集于结壳的规律以及相关地质环境制约因素对于未来开发利用这些海底金属资源十分重要。本文对九州-帕劳海脊南部13°20′N新发现的铁锰结壳样品进行了矿物学、元素地球化学和电子探针微区分析,发现其成分较为均一,未遭受明显的磷酸盐化作用,属于单层型水生成因结壳。Co、Ni等高含量关键金属主要富集在水羟锰矿内,其中主要以晶格态形式存在的Co所经历的表面氧化还原反应是其累积富集的关键;而Ni除了与Co一样通过置换Mn或占据晶格空位而呈现富集特征外,还大量以吸附态形式存在。Ti、V和REY等通过表面络合、晶格进入以及共沉淀作用富集在以六方纤铁矿为主的铁羟基氧化物组分内。Cu、Zn的晶格进入能力不足,加之海水Cu含量偏低,Zn的弱吸附作用共同导致它们以相对低含量形式分散分布。基于Co经验公式揭示结壳的形成起始于晚中新世,未出现明显生长间断,但持续生长时间不足导致结壳的关键金属累积富集程度低于全球主要结壳成矿区。不过,研究区理想的水深条件、较低的沉积速率、稳定的构造环境、合适的最小含氧带水深分布和远离非成矿物质的大规模稀释影响,都是本区结壳未来持续性增生和进一步富集关键金属的有利条件。
    Abstract: Ferromanganese crusts are highly enriched in a wide variety of critical metals including Co, Cu, Mn, Ni, Ti, V, REE, Y, and Zn. Study of their enrichment in the crusts and the geological constraints is important for future development and utilization of them at seafloor. Recently, ferromanganese crust samples were acquired from 13°20′N seamount of the southern Kyushu-Palau Ridge, and analyzed in mineralogy and element geochemistry, as well as for electron probe microanalysis. Results show that the mineralogical and chemical composition of the samples are relatively uniform, and the crusts have not suffered from obvious phosphatization, which indicates that the crusts are characterized by one hydrogenetic crustal layer. Critical metals with high content such as Co and Ni are mainly enriched in vernadite. Co mainly exists in the lattice of vernadite due mainly to surface oxidation of vernadite. Ni is enriched in the crusts by replacing and occupying lattice vacancies of Mn as Co does, and a large amount of Ni exists in the form of adsorption. Ti, V, and REY are enriched in the iron oxyhydroxide components dominated by feroxyhyte by surface complexation, crystal lattice entry, and co-precipitation. Cu and Zn are lack of crystal lattice entry ability; the Cu content in seawater is very low and the adsorption of Zn is weak, thus resulting in their dispersed distribution and low content in the samples. This study reveals that the crusts started growing in the late Miocene and show no obvious growth break; the accumulated enrichment degree of critical metals in these samples is lower than that in the highest potential areas of the global ocean due to insufficient continuous growth time. However, the ideal water depth conditions, low deposition rate, stable tectonic environment, suitable water depth distribution of the oxygen minimum zone, and long distance from macroscale input of the non-metallogenic material into the study area are favorable for continuous growth and enrichment of critical metals in these crusts in the future.
  • 我国南海海域蕴藏大量的天然气水合物资源[1, 2],2017年由中国地质调查局主持在我国南海神狐海域开展首次天然气水合物试采工程获得成功,使我国成为全球首个实现在海域粉砂质储层水合物开采中获得连续稳定产气的国家[3, 4]。我国南海北部区域水合物储层埋藏浅、胶结性差、疏松程度极高[5-7],水合物试采过程中对水合物上覆地层特性的评价是保证试采作业安全进行的必要条件。

    地层水平渗透系数是直接反映土体渗透性的参数,获取水合物储层上覆地层水平渗透系数具有重要的工程实践意义[8]。目前获取地层水平渗透系数的主要方法有室内渗透实验法、现场孔压消散法以及近年来逐渐发展完善的基于孔压静力触探数据资料进行反演的方法。由于室内实验法和现场孔压消散法耗时较长且其只能对测试特定深度的部分岩心或土层进行测试,不能反映地层渗透性能的纵向分布规律[9, 10]。因此,利用孔压静力触探获取的连续性资料,建立孔压静力触探参数与地层渗透系数之间的经验、半经验或理论关系式,对地层渗透系数进行反演,成为获取地层渗透系数的首选[11, 12]。其中最为行之有效且具有一定理论基础的,便是近年来逐步发展和完善的位错理论模型。

    为此,本文在分析基于位错理论提出的不同的地层水平渗透系数预测模型基本原理、适用条件的基础上,提出采用基于位错理论的水平渗透系数预测模型计算神狐海域W18/19区块水合物上覆钙质黏土层水平渗透系数的合理性,基于位错理论模型对W18/19区块水合物上覆钙质黏土层水平渗透系数纵向分布规律进行预测。

    目前国内外常用的基于孔压静力触探资料估算地层水平渗透系数的方法都是基于位错理论提出的[13, 14],其基本思想是孔压静力触探探头压入地层过程中,利用土层内有限单元的运动体积错位来近似模拟探头周围孔隙水压力的改变情况。其核心是将探头周围一定体积空间内孔隙水的渗流量等价为探头贯入产生的土体体积改变量,通过不同的渗流模型描述孔隙水的渗流规律,进而求解地层水平渗透系数[15, 16]。根据位错理论计算地层水平渗透系数的基本原理如图 1所示。

    图  1  位错理论求解地层渗透系数原理图
    Figure  1.  Permeability coefficient calculation theory based on CPTU dislocation

    图 1中A表示孔压扩散过程中的控制面积,m2ia表示孔压扩散流表面的水力梯度;U表示探头贯入速度,m/s;ro表示探头半径,m;u2锥头处实测孔隙水压力,Pa;u0为静水压力,Pa。由图 1可知,基于位错理论求解地层水平渗透系数的基本原理可以表示为:

    $$ k = \frac{{\pi r_o^2U}}{{A{i_a}}} $$ (1)

    在孔压静力触探探头规格和贯入速度一定的条件下,地层水平渗透系数的估算结果直接取决于Aia。基于上述基本理论,不同的研究者通过假设探头周围孔压扩散流表面形状(图 2)、初始孔隙水压力分布函数(式2)等的差异,提出了不同的地层水平渗透系数计算方法(表 1)。

    图  2  基于位错理论的孔压扩散模型示意图
    a:球面流模型;b:半球面流模型;c:任意锥角球形流模型;d:柱面径向流模型
    Figure  2.  Flow models based on CPTU dislocation
    a: spherical flow; b:half spherical flow; c:Spherical flow for any tip cone angle; d:cylindrical flow
    $$ \left\{ \begin{gathered} 幂函数形式:u-{u_0} = \left( {{u_2}-{u_0}} \right)\frac{{{r_0}}}{r} \hfill \\ 负指数形式:u-{u_0} = \left( {{u_2} - {u_0}} \right){e^{ - \beta \left( {\frac{r}{{r0}} - 1} \right)}} \hfill \\ \;\;\;\;\left( {0.15 \leqslant \beta \leqslant 0.40} \right) \hfill \\ \end{gathered} \right. $$ (2)
    表  1  基于位错理论的地层水平渗透系数计算方法对比
    Table  1.  Horizontal permeability coefficient calculation methods based on CPTU dislocation theory
    求解模型 孔压扩散模型 初始孔压分布函数 KD ξ 建议适用条件
    Elsworth方法[17, 18] 球面流 幂函数分布 ${K_D} = \frac{{0.62}}{{{{\left( {{B_q}{Q_t}} \right)}^{1.6}}}}$ 0.25 BqQt<1.2, 不排水地层
    Chai方法[12] 半球面流 幂函数分布 $\left\{ \begin{gathered} {K_D} = \frac{1}{{{B_q}{Q_t}}}, {B_q}{Q_t} < 0.45 \hfill \\ {K_D} = \frac{{0.044}}{{{{\left( {{B_q}{Q_t}} \right)}^{4.91}}}}, {B_q}{Q_t} \geqslant 0.45 \hfill \\ \end{gathered} \right.$ 0.5 正常固结或轻微超固结的黏性土和松散的无黏性土
    王君鹏方法[19, 20] 任意锥角球面流 负指数分布 $\frac{{{{\sin }^2}\frac{\alpha }{2}}}{{0.3{{\text{e}}^{-0.3}}\left( {\frac{1}{{\sin \alpha }}-1} \right)}}$
    邹海峰方法[15] 柱面径向流 幂函数分布 $\left\{ \begin{gathered} {K_D} = \frac{1}{{{B_q}{Q_t}}}, {B_q}{Q_t} < 0.35 \hfill \\ {K_D} = \frac{{0.017}}{{{{\left( {{B_q}{Q_t}} \right)}^{4.64}}}}, {B_q}{Q_t} \geqslant 0.35 \hfill \\ \end{gathered} \right.$ $\frac{{{r_0}}}{{2h}}$
    李镜培方法(2016)[21] 柱面径向流 负指数分布 $\left\{ \begin{gathered} {K_D} = \frac{{0.1}}{{{B_q}{Q_t}}}, {B_q}{Q_t} < 0.45 \hfill \\ {K_D} = \frac{{0.0044}}{{{{\left( {{B_q}{Q_t}} \right)}^{4.91}}}}, {B_q}{Q_t} \geqslant 0.45 \hfill \\ \end{gathered} \right.$ $\frac{{{r_0}}}{{0.6h}}$
    下载: 导出CSV 
    | 显示表格

    引入无量纲渗透系数KD,尽管不同的水平渗透系数计算模型所采取的孔压扩散模型和初始孔压分布假设有所区别,但式(1)均可转化为通式(3)来表述:

    $$ k = \xi \cdot {K_D} \cdot \frac{{U{r_o}{\gamma _w}}}{{{{\sigma '}_{vo}}}} $$ (3)

    式中,ξ为模型系数,不同的学者提出的基于位错理论的地层水平渗透系数计算模型参数及其基本应用条件如表 1所示。

    表 1中,QtBq分别表示归一化锥尖阻力和孔压参数比,${Q_t} = \frac{{{q_t}-{\sigma _{vo}}}}{{{{\sigma '}_{vo}}}}$,${B_q} = \frac{{{u_2}-{u_0}}}{{{q_t}-{\sigma _{vo}}}}$。σv0σv0分别为上覆土层的总自重应力及有效自重应力,qt为锥尖总阻力, α为触探探头锥尖角,h表示孔压过滤环的高度。

    值得指出的是,虽然基于球面流、半球面流计算模型并未明确说明计算的地层渗透系数k的方向,然而实际上无量纲渗透系数KD仍然主要受到土层水平向渗透系数的控制[7],因此,上述方法计算的渗透系数均为水平渗透系数。而且,上述方法均假定CPTU探头的贯入产生正的超静孔隙水压力,而对强超固结黏土和致密砂土,探头贯入可能引起周围土体剪胀,从而导致正超静孔隙水压力的降低,甚至产生负值。因此,上述方法均仅适用于松散的无黏性土与正常固结或轻微超固结的黏性土。

    CPTU测试采用国际标准探头完成,W18/19区块全井段井下CPTU测试深度达141mbsf,测试区平均水深约1300m。与地层水平渗透系数分布求解相关的典型CPTU测试结果如图 3所示。

    图  3  W18/19区块典型CPTU测试结果
    Figure  3.  Typical CPTU test results at site W18/19

    图 3可知,W18/19区块CPTU测试过程中锥尖阻力、孔隙压力线性规律比较明显,说明该站位纵向上土类分布较为一致,但自上而下土层压实程度逐渐增大。临井全井段取心结果显示,该区块水合物上覆地层为典型的钙质黏土层。

    图 4可知,W18/19区块水合物上覆地层超孔隙压力和有效上覆土应力线性趋势较好,超孔隙压力均为正值,地层为正常固结地层,因此, 可以采用位错理论,利用孔压静力触探基本参数进行地层水平渗透系数纵向分布规律的求解。

    图  4  W18/19区块上覆地层超孔隙压力、有效锥尖阻力和有效上覆土应力分布
    Figure  4.  Excess pore-pressure, effective cone resistance and effective overlying stress at site W18/19

    表 1可知,求解地层水平渗透系数的关键是计算无量纲参数(Bq·Qt),W18/19区块水合物上覆地层无量纲参数(Bq·Qt)的纵向分布规律如图 5所示。由图可知,测试站位水合物上覆钙质黏土层无量纲参数的基本分布范围是:2.5≤Bq·Qt≤3.6,而文献[22]指出,Elsworth方法的基本适用条件是Bq·Qt<1.2,因此,Elsworth方法不适用于我国南海神狐海域天然气水合物上覆钙质黏土层评价。

    图  5  W18/19区块无量纲参数Bq·Qt分布
    Figure  5.  Bq·Qt versus depth relationship at site W18/19

    因此,以下将基于半球面流、任意锥角球面流和柱面径向流模型评价水合物上覆钙质黏土层的水平渗透系数。基于不同预测模型的水合物上覆钙质黏土层水平渗透系数纵向分布规律评价结果如图 6所示。

    图  6  W18/19区块水合物上覆层水平渗透率系数纵向分布规律
    Figure  6.  Vertical distribution of horizontal permeability coefficient at site W18/19

    图 6可知,W18/19水合物储层上覆钙质黏土层水平渗透率系数为0.1×10-8 ~4×10-8m/s,当深度小于30mbsf时,地层水平渗透率系数较大,且不同模型的预测结果均有较大的扰动,模型预测结果离散性强。当深度大于30mbsf时,不同模型的预测结果趋于一致,30mbsf以深地层的水平渗透率系数为0.1×10-8 ~0.6×10-8m/s,且随着深度的增加,水平渗透率系数逐渐降低。

    为了进一步分析不同模型对水合物上覆钙质黏土层水平渗透率系数预测结果的差异,将30mbsf以深地层的预测结果单独分析(如图 6右下角)。横向对比结果发现,不同模型预测结果之间恒存在如下关系式:

    $$ {k_{{\text{Chai}}}} \leqslant {k_{李镜培}} < {k_{王君鹏}} \leqslant {k_{邹海峰}} $$ (4)

    式(4)中下标分别代表不同的预测模型。即:虽然从数量级上来讲,不同模型的预测结果均表明W18/19区块水合物上覆地层的水平渗透率系数在10-8m/s量级,但Chai模型和李镜培模型预测的水合物上覆钙质黏土层水平渗透率系数较接近且偏保守,而王君鹏方法和邹海峰方法的预测结果较接近且偏大。

    但对比上述预测结果与表 1可知,从探针外围初始孔压分布函数来分析,邹海峰方法与Chai方法均假设探针外围初始孔隙压力扩散模式为幂函数分布,而王君鹏方法和李镜培方法均假设探针外围初始孔隙压力扩散模式为负指数分布。而从孔压扩散模型的角度来分析,Chai方法与王君鹏方法均采用“类球面流”模型,而邹海峰方法与李镜培方法则采用柱面径向流模型,上述结论与式(4)的相对大小关系没有确切的对应关系,因此,地层水平渗透系数是孔压扩散模型和孔压分布函数共同作用的结果,虽然部分研究已证明负指数分布函数更能确切的表述静力触探探针外围孔压分布规律[23, 24],但是如果抛开孔压扩散模型,不能仅利用孔压分布函数来判断水平渗透系数计算模型对特定土层的适应性。

    (1) 位错理论提供了利用CPTU数据直接进行地层水平渗透系数估算的有效途径,南海北部W18/19区块水合物上覆钙质黏土层属于正常固结土层,孔压静力触探探头贯入过程中产生的超孔隙压力均为正值,因此,可以用基于位错理论的模型评价该区域水合物上覆钙质黏土层的水平渗透系数,Elsworth方法不适用于W18/19区块水合物上覆钙质黏土层水平渗透系数评价;

    (2) 基于不同的模型,得到的W18/19区块水合物上覆钙质黏土层水平渗透系数为0.1×10-8~4×10-8m/s,且随着深度的增大而减小;30mbsf以浅地层预测结果受扰动较大,30mbsf以深地层的水平渗透率系数为0.1×10-8 ~0.6×10-8m/s且不同模型预测结果间的差异较小,因此,基于位错理论的模型预测结果能反映W18/19区块水合物上覆钙质黏土层水平渗透系数分布区间;

    (3) 孔压扩散模型和初始孔压分布函数的差异是导致不同模型预测结果差异的根本因素,为了进一步优化模型,需要从以上两方面进行优化,并结合实际矿场孔压消散结果和室内渗透系数测试结果对模型进行修正,才能进一步增强模型的实用性。

  • 图  1   结壳样品位置

    Figure  1.   Location of the ferromanganese crusts in the study area

    图  2   结壳样品形貌特征

    Figure  2.   Morphology of the ferromanganese crusts

    图  3   结壳样品X射线衍射图谱

    Cal:方解石,Fel:长石,Fer:六方纤铁矿,Q:石英,Ver:水羟锰矿。

    Figure  3.   Pattern of X-ray diffraction of the ferromanganese crusts

    Cal: calcite, Fel: feldspar, Fer: feroxyhyte, Q: quartz, Ver: vernadite.

    图  4   结壳样品REY的PAAS标准化配分模式

    为便于显示,将海水的REY值扩大106倍;PAAS的REY含量引自文献[20]。海水的REY含量数据选择与本研究区临近且水深层位相近的海水的值,其中REE数据引自文献[21],采样区域为本研究区东面的西太平洋,水深2000 m;Y数据引自文献[22],采样区域为西南太平洋东加罗林海盆,水深1980 m。

    Figure  4.   Shale normalized rare earth elements and yttrium contents of the ferromanganese crusts

    To facilitate the display in the diagram, the REY contents of the seawater are expanded by 106 times; PAAS data are from the reference [20]. The REY data of the seawater is from the reference [21], the sampling area with the water depth of 2000 m is in the western Pacific Ocean close the study area, which is similar to the distribution depth of the samples in this paper. Y data of the seawater is from the reference [22]. The sampling area was in the east Caroline Basin of the southwest Pacific Ocean, in water depth of 1980 m.

    图  5   结壳样品成因类型判别

    底图修改自文献[23]。

    Figure  5.   Ternary discriminative diagram for genetic classification of ferromanganese crusts

    Discrimination plots are modified from the reference [23].

    图  6   本文研究区与全球结壳主要成矿区内样品的关键金属平均含量对比

    PCZ、NPCZ、南太平洋、印度洋和大西洋铁锰结壳样品的成分数据引自文献[6]。

    Figure  6.   Mean contents of the critical metals in the ferromanganese crusts from the research area and the highest potential areas of the global ocean

    The contents of the critical metals in the ferromanganese crusts of the PCZ, NPCZ, South Pacific, Indian, and Atlantic Ocean are from the reference[6].

    表  1   结壳样品元素含量特征

    Table  1   Chemical composition of the ferromanganese crusts

    元素外层中间层内层基质
    Al/%1.581.691.987.97
    Ca/%2.312.362.414.26
    Fe/%17.7018.7818.5211.20
    Mn/%20.6819.4418.671.35
    P/%0.230.230.220.09
    Si/%5.926.477.0121.29
    Ti/%0.941.081.030.76
    Ce/10−669276471794
    Co/10−6340032203090156
    Cu/10−61120853927373
    Ni/10−6340026202720291
    V/10−6547515491261
    Zn/10−6512463491276
    LREY/10−6123013221202173
    HREY/10−627425822960
    REY/10−6150315791431233
    下载: 导出CSV

    表  2   样品不同层位铁锰氧化物的电子探针微区成分数据

    Table  2   Element contents in the ferromanganese oxides layers from different parts of the sample revealed in electron probe microanalysis

    元素AlCaCeCoCuFeMnNiPSiTiVZn
    外层
    (n=13)
    最大值/%1.623.040.160.730.1824.3728.611.100.453.701.320.130.10
    最小值/%0.431.620.050.240.0916.8422.980.420.302.070.640.070.05
    平均值/%0.642.470.130.590.1419.2526.810.650.362.621.160.090.08
    离散系数/%45.9816.6421.8723.6019.8910.586.0624.5812.9717.9014.8017.2917.38
    中间层
    (n=20)
    最大值/%1.222.890.160.740.2224.8132.270.820.474.931.380.120.11
    最小值/%0.342.050.090.260.0717.0122.720.400.301.591.000.070.01
    平均值/%0.672.540.130.500.1421.0626.500.580.382.921.210.100.07
    离散系数/%29.347.8814.5725.3424.5911.229.6723.0014.4826.758.9713.6633.77
    内层
    (n=20)
    最大值/%1.772.610.190.750.2035.4730.660.750.486.403.140.140.14
    最小值/%0.491.050.100.200.0816.3611.020.150.281.881.130.070.06
    平均值/%0.852.240.150.420.1323.7123.830.430.393.621.440.110.09
    离散系数/%41.4017.2216.1227.8422.6315.3415.9229.6013.7525.8329.8115.9125.82
    下载: 导出CSV

    表  3   微区铁锰氧化物纹层内各元素间的相关系数矩阵(n=53)

    Table  3   Pearson correlation coefficient matrix for major and valuable metal elements contained in the ferromanganese oxide layers (n=53)

    AlCaCeCoCuFeMnNiPSiTiV
    Ca−0.78
    Ce0.12−0.07
    Co−0.670.57−0.21
    Cu−0.010.18−0.13−0.04
    Fe0.49−0.430.60−0.69−0.06
    Mn−0.720.67−0.410.750.06−0.90
    Ni−0.480.45−0.450.650.13−0.820.77
    P0.090.080.35−0.47−0.010.68−0.52−0.64
    Si0.78−0.640.38−0.72−0.040.87−0.94−0.760.52
    Ti0.53−0.550.53−0.37−0.040.76−0.76−0.550.180.72
    V−0.030.060.41−0.300.110.68−0.49−0.500.630.460.40
    Zn0.17−0.100.12−0.450.150.44−0.39−0.470.500.400.120.45
    下载: 导出CSV
  • [1]

    Hein J R, Koschinsky A. 13. 11 - Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 273-291.

    [2]

    Petersen S, Krätschell A, Augustin N, et al. News from the seabed – geological characteristics and resource potential of deep-sea mineral resources [J]. Marine Policy, 2016, 70: 175-187. doi: 10.1016/j.marpol.2016.03.012

    [3]

    Halbach P E, Jahn A, Cherkashov G. Marine Co-Rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources[M]//Sharma R. Deep-Sea Mining. Cham: Springer, 2017: 65-141.

    [4]

    Li Y H, Schoonmaker J E. 9.1 - Chemical composition and mineralogy of marine sediments [M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 1-32.

    [5]

    White W M, Klein E M. 4.13 - Composition of the oceanic crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 457-496.

    [6]

    Mizell K, Hein J R, Au M, et al. Estimates of metals contained in abyssal manganese nodules and ferromanganese crusts in the global ocean based on regional variations and genetic types of nodules [M]//Sharma R. Perspectives on Deep-Sea Mining: Sustainability, Technology, Environmental Policy and Management. Cham: Springer, 2022: 53-80.

    [7] 李三忠, 赵淑娟, 索艳慧, 等. 区域海底构造-上册[M]. 北京: 科学出版社, 2021.

    LI Sanzhong, ZHAO Shujian, SUO Yanhui, et al. Regional Submarine Tectonics-Volume One[M]. Beijing: Science Press, 2021.

    [8]

    Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05005.

    [9] 张洁, 李家彪, 丁巍伟. 九州-帕劳海脊地壳结构及其形成演化的研究综述[J]. 海洋科学进展, 2012, 30(4):595-607 doi: 10.3969/j.issn.1671-6647.2012.04.016

    ZHANG Jie, LI Jiabiao, DING Weiwei. Reviews of the study on crustal structure and evolution of the Kyushu-Palau ridge [J]. Advances in Marine Science, 2012, 30(4): 595-607. doi: 10.3969/j.issn.1671-6647.2012.04.016

    [10]

    Yamazaki T, Takahashi M, Iryu Y, et al. Philippine Sea Plate motion since the Eocene estimated from paleomagnetism of seafloor drill cores and gravity cores [J]. Earth, Planets and Space, 2010, 62(6): 495-502. doi: 10.5047/eps.2010.04.001

    [11]

    Party Shipboard Scientific. Initial reports of the deep sea drilling project leg 59. Part I: introduction, site reports, 2, site 447: east side of the West Philippine Basin[R]. 1981.

    [12] 何良彪. 马里亚纳海脊-西菲律宾海盆铁锰结核的地球化学[J]. 科学通报, 1991, 36(14):1190-1193

    HE Liangbiao. Geochemical characteristics of Fe-Mn nodules and crusts from the Mariana ridge and the West Philippine Basin [J]. Chinese Science Bulletin, 1991, 36(14): 1190-1193.

    [13] 陈穗田, Stüben D. 菲律宾海的锰结壳和锰结核[J]. 海洋学报, 1997, 19(4):109-116

    CHEN Suitian, Stüben D. Manganese crusts and nodules in the Philippine Sea [J]. Acta Oceanologica Sinica, 1997, 19(4): 109-116.

    [14] 徐兆凯, 李安春, 于心科, 等. 东菲律宾海新型铁锰结壳中元素的赋存状态[J]. 地球科学—中国地质大学学报, 2008, 33(3):329-336 doi: 10.3799/dqkx.2008.043

    XU Zhaokai, LI Anchun, YU Xinke, et al. Elemental occurrence phases of the new-type ferromanganese crusts from the east Philippine Sea [J]. Earth Science—Journal of China University of Geosciences, 2008, 33(3): 329-336. doi: 10.3799/dqkx.2008.043

    [15]

    Usui A, Graham I J, Ditchburn R G, et al. Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate, northwest Pacific Ocean [J]. Island Arc, 2007, 16(3): 420-430. doi: 10.1111/j.1440-1738.2007.00592.x

    [16]

    Wegorzewski A V, Kuhn T. The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean [J]. Marine Geology, 2014, 357: 123-138. doi: 10.1016/j.margeo.2014.07.004

    [17]

    Heller C, Kuhn T, Versteegh G J M, et al. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2018, 142: 16-33. doi: 10.1016/j.dsr.2018.09.008

    [18]

    Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004

    [19]

    Josso P, Lusty P, Chenery S, et al. Controls on metal enrichment in ferromanganese crusts: Temporal changes in oceanic metal flux or phosphatisation? [J]. Geochimica et Cosmochimica Acta, 2021, 308: 60-74. doi: 10.1016/j.gca.2021.06.002

    [20]

    McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.

    [21]

    Deng Y N, Ren J B, Guo Q J, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific [J]. Scientific Reports, 2017, 7(1): 16539. doi: 10.1038/s41598-017-16379-1

    [22]

    Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644. doi: 10.1016/S0016-7037(96)00276-1

    [23]

    Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements [J]. Ore Geology Reviews, 2017, 87: 3-15. doi: 10.1016/j.oregeorev.2016.09.003

    [24]

    Bonatti E, Kraemer T F, Rydell H. Classification and genesis of submarine iron-manganese deposits[M]//Horn D R. Ferromanganese Deposits on the Ocean Floor. New York: Arden House, 1972.

    [25] 黄威, 胡邦琦, 徐磊, 等. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质, 2021, 41(1):199-209 doi: 10.16562/j.cnki.0256-1492.2020101501

    HUANG Wei, HU Bangqi, XU Lei, et al. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209. doi: 10.16562/j.cnki.0256-1492.2020101501

    [26]

    Peacock C L, Sherman D M. Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy [J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1723-1733. doi: 10.1016/j.gca.2003.10.018

    [27]

    Millero F J, Woosley R, Ditrolio B, et al. Effect of ocean acidification on the speciation of metals in seawater [J]. Oceanography, 2009, 22(4): 72-85. doi: 10.5670/oceanog.2009.98

    [28]

    GEOTRACES Intermediate Data Product Group. The GEOTRACES intermediate data product 2021 (IDP2021). NERC EDS British Oceanographic Data Centre NOC, 2021.

    [29]

    Bruland K W, Middag R, Lohan M C. 8.2 - controls of trace metals in seawater[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 19-51.

    [30]

    Gong G C, Liu K K, Liu C T, et al. The chemical hydrography of the South China Sea West of Luzon and a comparison with the West Philippine Sea [J]. Terrestrial, Atmospheric and Oceanic Sciences, 1992, 3(4): 587-602. doi: 10.3319/TAO.1992.3.4.587(O)

    [31]

    Behrens M K, Pahnke K, Schnetger B, et al. Sources and processes affecting the distribution of dissolved Nd isotopes and concentrations in the West Pacific [J]. Geochimica et Cosmochimica Acta, 2018, 222: 508-534. doi: 10.1016/j.gca.2017.11.008

    [32]

    Manceau A, Drits V A, Silvester E, et al. Structural mechanism of Co2+ oxidation by the phyllomanganate buserite [J]. American Mineralogist, 1997, 82(11-12): 1150-1175. doi: 10.2138/am-1997-11-1213

    [33]

    Manceau A, Lanson M, Takahashi Y. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule [J]. American Mineralogist, 2014, 99(10): 2068-2083. doi: 10.2138/am-2014-4742

    [34]

    Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer, 2017: 23-63.

    [35]

    Nozaki Y. A fresh look at element distribution in the North Pacific Ocean [J]. Eos, Transactions American Geophysical Union, 1997, 78(21): 221-221.

    [36]

    Hens T, Brugger J, Etschmann B, et al. Nickel exchange between aqueous Ni(II) and deep-sea ferromanganese nodules and crusts [J]. Chemical Geology, 2019, 528: 119276. doi: 10.1016/j.chemgeo.2019.119276

    [37]

    Peacock C L. Physiochemical controls on the crystal-chemistry of Ni in birnessite: Genetic implications for ferromanganese precipitates [J]. Geochimica et Cosmochimica Acta, 2009, 73(12): 3568-3578. doi: 10.1016/j.gca.2009.03.020

    [38]

    Peacock C L, Sherman D M. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules [J]. American Mineralogist, 2007, 92(7): 1087-1092. doi: 10.2138/am.2007.2378

    [39]

    Wegorzewski A V, Grangeon S, Webb S M, et al. Mineralogical transformations in polymetallic nodules and the change of Ni, Cu and Co crystal-chemistry upon burial in sediments [J]. Geochimica et Cosmochimica Acta, 2020, 282: 19-37. doi: 10.1016/j.gca.2020.04.012

    [40]

    Sherman D M, Peacock C L. Surface complexation of Cu on birnessite (δ-MnO2): Controls on Cu in the deep ocean [J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6721-6730. doi: 10.1016/j.gca.2010.08.042

    [41]

    Little S H, Sherman D M, Vance D, et al. Molecular controls on Cu and Zn isotopic fractionation in Fe–Mn crusts [J]. Earth and Planetary Science Letters, 2014, 396: 213-222. doi: 10.1016/j.jpgl.2014.04.021

    [42]

    Yang P, Post J E, Wang Q, et al. Metal adsorption controls stability of layered manganese oxides [J]. Environmental Science & Technology, 2019, 53(13): 7453-7462.

    [43]

    Grangeon S, Manceau A, Guilhermet J, et al. Zn sorption modifies dynamically the layer and interlayer structure of vernadite [J]. Geochimica et Cosmochimica Acta, 2012, 85: 302-313. doi: 10.1016/j.gca.2012.02.019

    [44]

    Hinkle M A G, Dye K G, Catalano J G. Impact of Mn(II)-manganese oxide reactions on Ni and Zn speciation [J]. Environmental Science & Technology, 2017, 51(6): 3187-3196.

    [45]

    Hein J R, Koschinsky A, Kuhn T. Deep-ocean polymetallic nodules as a resource for critical materials [J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169.

    [46]

    Wu F, Owens J D, Tang L M, et al. Vanadium isotopic fractionation during the formation of marine ferromanganese crusts and nodules [J]. Geochimica et Cosmochimica Acta, 2019, 265: 371-385. doi: 10.1016/j.gca.2019.09.007

    [47]

    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4

    [48]

    Bau M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect [J]. Geochimica et Cosmochimica Acta, 1999, 63(1): 67-77. doi: 10.1016/S0016-7037(99)00014-9

    [49]

    Azami K, Hirano N, Machida S, et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts [J]. Chemical Geology, 2018, 493: 224-233. doi: 10.1016/j.chemgeo.2018.05.045

    [50]

    Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    [51]

    Marcus M A, Toner B M, Takahashi Y. Forms and distribution of Ce in a ferromanganese nodule [J]. Marine Chemistry, 2018, 202: 58-66. doi: 10.1016/j.marchem.2018.03.005

    [52]

    Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: Genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4

    [53]

    Josso P, Parkinson I, Horstwood M, et al. Improving confidence in ferromanganese crust age models: A composite geochemical approach [J]. Chemical Geology, 2019, 513: 108-119. doi: 10.1016/j.chemgeo.2019.03.003

    [54]

    Puteanus D, Halbach P. Correlation of Co concentration and growth rate — A method for age determination of ferromanganese crusts [J]. Chemical Geology, 1988, 69(1-2): 73-85. doi: 10.1016/0009-2541(88)90159-3

    [55]

    Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor [J]. Nature, 1988, 335(6185): 59-62. doi: 10.1038/335059a0

    [56]

    Mcmurtry G M, Vonderhaar D L, Eisenhauer A, et al. Cenozoic accumulation history of a Pacific ferromanganese crust [J]. Earth and Planetary Science Letters, 1994, 125(1-4): 105-118. doi: 10.1016/0012-821X(94)90209-7

    [57]

    Hein J R, Konstantinova N, Mikesell M, et al. Arctic deep water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(11): 3771-3800. doi: 10.1002/2017GC007186

    [58]

    Dutkiewicz A, Müller R D, Wang X, et al. Predicting sediment thickness on vanished ocean crust since 200 Ma [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(12): 4586-4603. doi: 10.1002/2017GC007258

  • 期刊类型引用(6)

    1. Peng-fei Xie,Lin Yang,Qian-yong Liang,Xu-hui Zhang,Liang-hua Zhang,Bin Zhang,Xiao-bing Lu,Hui-ce He,Xue-min Wu,Yi-fei Dong. Stability analysis of seabed strata and casing structure during the natural gas hydrates exploitation by depressurization in horizontal wells in South China Sea. China Geology. 2022(02): 300-309 . 必应学术
    2. 王辉,修宗祥,孙永福,刘绍文,宋玉鹏,董立峰,宋丙辉. 考虑天然气水合物上覆层不排水抗剪强度深度变化的海底斜坡稳定性影响分析. 高校地质学报. 2022(05): 747-757 . 百度学术
    3. 李彦龙,刘昌岭,廖华林,董林,卜庆涛,刘志超. 泥质粉砂沉积物—天然气水合物混合体系的力学特性. 天然气工业. 2020(08): 159-168 . 百度学术
    4. 吴能友,李彦龙,万义钊,孙建业,黄丽,毛佩筱. 海域天然气水合物开采增产理论与技术体系展望. 天然气工业. 2020(08): 100-115 . 百度学术
    5. 卜庆涛,刘圣彪,胡高伟,刘昌岭,万义钊. 含水合物沉积物声学特性——实验模拟与数值模拟的对比分析. 海洋地质前沿. 2020(09): 56-67 . 百度学术
    6. 李彦龙,陈强,刘昌岭,吴能友,孙建业,申志聪,张民生,胡高伟. 水合物储层工程地质参数评价系统研发与功能验证. 海洋地质与第四纪地质. 2020(05): 192-200 . 本站查看

    其他类型引用(2)

图(6)  /  表(3)
计量
  • 文章访问数:  935
  • HTML全文浏览量:  330
  • PDF下载量:  83
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-05-23
  • 修回日期:  2022-06-27
  • 录用日期:  2022-06-27
  • 网络出版日期:  2022-10-24
  • 刊出日期:  2022-10-27

目录

/

返回文章
返回